
Proceedings of the 2014 Winter Simulation Conference
A. Tolk, S. D. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds.

Corrected: 9-26-2017

IMPROVING THE EFFICIENCY OF STOCHASTIC COMPOSITE SIMULATION MODELS
VIA RESULT CACHING

Peter J. Haas

IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099, USA

ABSTRACT

Stochastic composite simulation models, such as those created via the IBM Splash prototype platform, can
be used to estimate performance measures for complex stochastic systems of systems. When, as in Splash, a
composite model is made up of loosely coupled component models, we propose a method for improving the
efficiency of composite-model simulations. To run n Monte Carlo replications of the composite model, we
execute certain component models fewer than n times, caching and re-using results as needed. The number
of component-model replications is chosen to maximize an asymptotic efficiency measure that balances
computation costs and estimator precision. We initiate the study of result-caching schemes by giving an
exact theoretical analysis for the most basic two-model scenario, as well as outlining some approaches for
obtaining the parameter values needed for result caching.

1 INTRODUCTION

In this paper, we consider efficiency-improvement techniques for composite simulations, motivated by the
IBM Splash prototype. Splash (Haas et al. 2012, Tan et al. 2012) is a platform for combining existing
heterogeneous models and datasets to create composite simulation models of complex “systems of systems”,
thereby facilitating cross-disciplinary collaborative modeling and simulation as well as re-use of existing
models. In Splash, the component models may reside on different platforms and are loosely coupled via
data exchange; that is, models communicate by reading and writing data sets. When model and data
contributors initially register their models and datasets with Splash, they provide metadata that describe
key characteristics such as (i) the syntax and semantics of model inputs, model outputs, and datasets, (ii)
model execution information, (iii) the provenance of models and datasets, and (iv) information useful for
experimental design, such as recommended ranges and default values for model parameters. This metadata
is expressed using the “Splash Actor Description Language” (SADL); see Figure 1 for examples of a SADL
file for a model (the FR model discussed below) and for an input parameter file for the model. The SADL
file for the output dataset from the FR model is similar to the file for the input, except that the output
file contains time-series data, so there is an additional tag showing that the time series consists of values
observed in continuous time, at a frequency of one per year:

<time type="continuous" observations="regular" field="yr" unit="year" value="1">

(In future work, many of the free-text descriptions in a SADL file will be replaced by a formal ontology.)
Using the SADL metadata, Splash provides a drag-and-drop graphical user interface (GUI) for creating a
composite model. Moreover, Splash automatically detects any data mismatches between models and, in
the case of mismatches, pops up GUIs for the design of transformations from the outputs of one or more
upstream “source” component models to a form suitable for input to a downstream “target” component
model. In general, the SADL descriptions of models and datasets allow Splash to detect time-scale

Haas

<actor name="Financial Rate Model"
actor_type="model"
model_type="Simulation"
simulation_type="Continuous-stochastic"
owner="IBM"
version="1.0"
reference="See comments in Source Code">

<description>
Simple lognormal random walk model of
interest and inflation rates
usage: FRmod -p parFile -seed x

</description>
<execution>
<command>EXEC_DIR/FRmod</command>

</execution>
<arguments>
<input name="Financial_Params"
filepath="FR_params.txt"
sadl="METADATA_DIR/FR_params.sadl"
/>

...
(a) SADL for the model

<actor name="Financial_Params"
actor_type="data
data_type="parameters"
owner="IBM">

<description>
Input file for FRmod.
</description>
<data>
<schema type="xsd" uri="FR_params.xsd"/>
<format type="csv" delimiter=","/>

</data>
<!-- list of parameters -->
<attributes>
<attribute name="id"
description="initial discount rate"
measurement_type="numerical"
experiment_default_values=".01 .05 .09"
experiment_factor="true"
datatype="double"

/>
...

(b) SADL for the input parameter file

Figure 1: Snippets of SADL code for the FR model.

mismatches as well as “structural” mismatches, i.e., differences between the schemas of data output by
upstream models and the input schema of a downstream model; see Figure 2. Graphical specifications
of data transformations are automatically compiled into runtime code. Many simulation models—such as
climate models and massive-scale agent-based models—consume or produce huge amounts of data, so
Splash supports execution of data transformations in a MapReduce parallel processing environment (Dean
and Ghemawat 2004). Splash also supports experimental design and simulation-based optimization for
composite models; Figure 1(b) shows how a model parameter can be designated as a potential experimental
factor having specified default levels. Thus Splash combines techniques from both simulation and data
integration. Other analytical modules, such as data visualizers or R statistical routines, can easily be
inserted into the Kepler dataflow. The loose-coupling approach and extensive use of metadata encourage
comprehensive documentation and curation of models, help prevent users from combining conceptually
incompatible models, and help avoid the need for massive re-coding or enforcement of a common platform,
API, or communication protocol—an impossible task when dealing with experts in vastly different domains.

As an example, Figure 3 shows a screenshot of a simple composite model comprising two component
models. The PHI (Predictive Health Institute) model is derived from an agent-based simulation model
developed by Park et al. (2012) to explore the economic performance of a wellness program for managing
heart disease and diabetes under alternative payment models: capitated (i.e., fixed) payments to the healthcare
provider, outcome-based payments, or a combination of the two. The PHI model takes as input a time series
of the annual healthcare inflation rate, general economic inflation rate, and discount rate (cost of capital).
This time series is provided by the displayed financial-rate (FR) model. In the figure, the component labeled
“SplashDataTransformer” transforms the quarterly time series output by the FR model to the yearly time
series expected by the PHI model; the need for this transformation is automatically detected by Splash,
based on SADL metadata. Splash uses the Kepler scientific workflow engine (Altintas et al. 2004) to
provide the design environment and orchestrate the execution of the composite model.

Once a composite model has been created, it is repeatedly executed in order to explore system behavior.
Such exploration often takes the form of estimating the expected values of various performance measures
of interest, such as cost, profit, reliability, and so on, under one or more scenarios. Thus the basic task for a
given scenario is to estimate θ = E[Y], where Y is a random variable that represents a noisy observation of
a performance measure of interest. To estimate θ , the most direct approach is to run n multiple simulation
replications in order to generate n independent and identically distributed (i.i.d.) observations Y0,Y1, . . . ,Yn−1.

Haas

(a) GUI for time alignment (b) GUI for structural transformations

Figure 2: Splash GUIs for designing data transformations.

Figure 3: Design environment showing a simple composite healthcare model.

These observations are then used to compute a point estimate θn of θ , as well as confidence intervals and
other statistics of interest, according to standard statistical methodology; the value of n is chosen based on
precision requirements and constraints on simulation costs.

Often, the component models are large and complex, hence slow to run, so that composing these
models compounds the problem of long execution times. Moreover, the inter-model data transformations
can be very time consuming when the data is massive, as mentioned earlier. Thus techniques for increasing
simulation efficiency are critically important for composite modeling. Many classical efficiency-improvement
techniques can potentially be applied, such as common random numbers (CRN), importance sampling,
control variates, and so on. For example, the current Splash implementation has facilities for coordinating
pseudorandom number seeds between models that could be adapted to support CRN. This technique may
not be applicable, however, if one or more of the component models does not allow a user to specify seed
values, e.g., via a command-line argument; see Section III.C in Haas et al. (2012).

In this paper we propose an efficiency-improvement technique called result caching (RC) that is specific
to composite modeling and can complement more traditional techniques such as CRN. The main idea can
be summarized as follows. A naive approach to generating n simulation replications simply executes the
entire composite model n times, which requires executing each component model n times. In contrast, the
RC method re-uses the outputs of component models over multiple simulation replications. When applied

Haas

judiciously, this technique inflates the variance of the estimator θn but reduces the execution costs so that
there is an overall increase in simulation efficiency. We follow the classical approach of Hammersley and
Handscomb (1964) and quantify efficiency as an inverse product of execution cost and variance; specifically,
we apply results in Glynn and Whitt (1992) to rigorously define and justify an asymptotic efficiency metric
appropriate for our setting. The following simple example motivates our approach.
Example 1 Consider a composite model M comprising two component models M1 and M2 in series. An
execution of M proceeds by first executing M1, which produces a random output Y1 that is written to disk.
Then M2 is executed, taking Y1 as input (after appropriate transformation) and generating a final output Y2,
where Y2 is distributed according to a conditional cumulative distribution function F2(· |Y1). For example,
M1 might be a demand model that generates a sequence Y1 of customer arrival times. The data in Y1
might then fed into a queueing model M2, which in turn produces an output Y2, which might correspond to
the average waiting time of the first 100 customers. To generate i.i.d. samples Y2;1,Y2;2, . . . ,Y2;n from the
distribution of Y2, one could execute the composite model n times, thereby executing M1 and M2 a total
of n times each, for a total of 2n model executions. Suppose, however, that M1 is in fact deterministic, so
that the same output Y1 is produced every time the model is executed. Rather than repeatedly executing
M1, it is clearly more efficient to execute M1 only once and then use the resulting output Y1 during each of
the n replications as an input to M2. If the cost of executing M1 is large relative to the cost of executing
M2, then the cost savings can be significant.

In what follows, we initiate the study of RC schemes by giving an exact theoretical analysis for the
most basic two-model scenario, which generalizes the above example in that both models are stochastic.
Our goal is to illustrate the potential benefits of the method, while laying the groundwork for extension
of the technique to more complex composite models. We assume throughout that, as in the current Splash
prototype, there is no overlap in the execution of component models, so model M1 completes before model
M2 starts.

2 RESULT CACHING FOR TWO MODELS IN SERIES

Consider two simulation models M1 and M2 in series, as in Example 1, but now assume that both models
are stochastic. Using and expanding upon the notation of the example, denote by {Yi;n}n≥0 and {τi;n}n≥0
the random outputs and computation costs for Mi (i = 1,2) over successive simulation replications. For
each n, the quantity τi;n includes the cost of initializing the simulation of Mi for replication n, reading the
inputs, if any, from disk, executing the simulation for one replication, transforming the outputs as needed,
and writing the results to disk. We assume that all costs are a.s. finite.

Suppose that the goal of the simulation is to estimate θ = E[Y2;0], the expected value of the output
from M2. (We assume throughout that θ is real-valued.) Consider a strategy under which, for n simulation
replications of M2, only mn = dαne replications of M1 are executed, where α ∈ (0,1] is called the replication
fraction. (Throughout, bxc and dxe denote the largest integer less than or equal to x and the smallest integer
greater than or equal to x.) We write the (possibly transformed) output of M1 to disk after each of the mn
simulation replications and then repeatedly cycle through these outputs in a fixed order to obtain inputs to
M2. Thus each M1 output Y1;l is used in approximately n/mn executions of M2. Note that the deterministic
cycling scheme produces a stratified sample of the outputs of M1 and helps minimize estimator variance.
(In Splash, this strategy can easily be implemented by modifying the Kepler “wrapper” code that invokes
M1.) Finally, the estimate of θ is computed as θn = (1/n)∑

n−1
l=0 Y2;l; note that the averaged variables are

identically distributed but not independent, because Y2;l and Y2;l′ are based on a common M1 input whenever
l = l′ mod mn.

To formulate this setup precisely, we start with an i.i.d. sequence
{

Z j
}

j≥0 where Z j = (X1; j,T1; j,X2; j,0,

T2; j,0,X2; j,1,T2; j,1, . . .) for j ≥ 0. Each j value corresponds to an execution of M1, which creates an
output X1; j at a cost of T1; j, where this cost may depend on X1; j. For example, an output consisting of
a sequence of simulated customer delays may take longer to produce when there are many delays than

Haas

Table 1: Example of notation for basic random variables (n = 9, α = 0.5, mn = 5).

Rep. 0 1 2 3 4 5 6 7 8

Y1;0 Y1;1 Y1;2 Y1;3 Y1;4
X1;0 X1;1 X1;2 X1;3 X1;4

Y2;0 Y2;1 Y2;2 Y2;3 Y2;4 Y2;5 Y2;6 Y2;7 Y2;8
X2;0,0 X2;1,0 X2;2,0 X2;3,0 X2;4,0 X2;0,1 X2;1,1 X2;2,1 X2;3,1

τ1;0 τ1;1 τ1;2 τ1;3 τ1;4
T1;0 T1;1 T1;2 T1;3 T1;4

τ2;0 τ2;1 τ2;2 τ2;3 τ2;4 τ2;5 τ2;6 τ2;7 τ2;8
T2;0,0 T2;1,0 T2;2,0 T2;3,0 T2;4,0 T2;0,1 T2;1,1 T2;2,1 T2;3,1

when there are relatively few delays. The output X1; j is fed into M2 multiple times, to create outputs{
X2; j,i

}
i≥0 at respective costs

{
T2; j,i

}
i≥0, where these costs may depend both on the input from M1 and

the output from M2. The quantities X1; j and T1; j have distribution functions F(X)
1 (x) and F(T)

1 (t | X1; j).
Conditioned on X1; j, the pairs

{
(X2; j,i,T2; j,i)

}
i≥0 form an i.i.d. sequence, with X2; j,i, and T2; j,i having

distribution functions F(X)
2 (x | X1; j) and F(T)

2 (t | X1; j,X2; j,i). Finally, the time-ordered Y and τ random
variables are formally defined by setting, for each n≥ 0, (Y1;l,τ1;l) = (X1;l,T1;l) for l = 0,1, . . . ,mn−1 and
(Y2;l,τ2;l) = (X2;l mod mn,bl/mnc,T2;l mod mn,bl/mnc) for l = 0,1, . . . ,n−1.

See Table 1 for an illustration of these formulas—the table gives the X and T values corresponding to
the Y and τ values for the given scenario. For example, Y2;0 and Y2;5 are statistically dependent because
they share the same input X1;0.

3 OPTIMIZING STATISTICAL EFFICIENCY

Given the foregoing setup, we choose α to maximize the asymptotic efficiency of the estimation procedure,
as defined below. The asymptotic efficiency metric allows principled trade-offs between the precision of
an estimate and the computational cost of producing the estimate. It was originally proposed informally by
Hammersley and Handscomb (1964) and is rigorously treated in subsequent work (Fox and Glynn 1990,
Glynn and Whitt 1992). The idea is to consider the (normalized) variance of the estimator for θ under a
given computing budget. Although this variance is hard to compute exactly, it converges to a limit as the
computing budget increases. The inverse of this limiting variance is our efficiency measure, which can
then be maximized with respect to α . Thus an optimal choice of α approximately maximizes the statistical
precision of our estimator of θ under a given budget or, conversely, approximately minimizes the cost of
estimating θ to a specified precision.

Specifically, denote by Cn the cost of generating n outputs from M2 under the foregoing strategy. That
is,

Cn =
mn−1

∑
l=0

τ1;l +
n−1

∑
l=0

τ2;l =
mn−1

∑
j=0

[
T1; j +

rn, j−1

∑
i=0

T2; j,i

]
.

Here rn, j is the number of times that the output of the jth execution of M1 is input into M2. Formally,

rn, j = bn/mnc+ In, j (1)

where

In, j =

{
1 if mn bn/mnc+ j < n;
0 otherwise.

(2)

Haas

(We suppress the dependence on α in the above notation.) Under a budget c, the number of M2 outputs
that can be generated is

N(c) = sup{n≥ 0 : Cn ≤ c} , (3)

resulting in the estimate U(c) = θN(c).
Theorem 1 below gives a strong law of large numbers (SLLN) and central limit theorem (CLT) for

U(c) as the budget c becomes large, thereby showing that U(c) is strongly consistent for θ and yielding
an asymptotic normal approximation to the distribution of U(c) in the large-budget regime; the proof is in
Appendix A. Denote by c1 = E[T1;0] and c2 = E[T2;0,0] the expected computation costs for a single run of
M1 and M2. Also denote by V1 = Var[X2;0,0] the variance of the output from M2 based on a single replication
and by V2 = Cov[X2;0,0,X2;0,1] the covariance of two outputs from M2 when they share a common input
from M1. Finally, set rα = b1/αc and

g(α) = (αc1 + c2)h(α) (4)

for α ∈ (0,1], where
h(α) =V1 +[2rα −αrα(rα +1)]V2. (5)

Denote by ⇒ convergence in distribution and by N(0,1) a standard (mean 0, variance 1) normal random
variable.
Theorem 1 Suppose that E[T1;0 +T2;0,0 +X2

2;0,0]< ∞ and h(α)> 0. Then

U(c)→ θ (6)

almost surely and
c1/2[U(c)−θ]⇒

√
g(α)N(0,1) (7)

as c→ ∞.
Thus, for large values of c, the estimator U(c) is approximately normally distributed with mean θ

and variance g(α)/c. We define our efficiency metric as 1/g(α). As per the Hammersley-Handscomb
framework, the first factor of g in (4) quantifies the amortized (expected) cost per execution of the composite
model M, which is increasing in α , and the second factor quantifies the variance of an output from M,
which is decreasing in α (see below). We assume that V2 ≥ 0, which is usually true in practice.

The optimal value of α ∈ (0,1] can therefore be found by maximizing the efficiency metric or,
equivalently, by minimizing g(α) and hence minimizing the asymptotic variance. To gain insight into the

nature of the optimal solution, approximate rα by 1/α and write g(α)≈ g̃(α)
def
= (αc1 + c2)

(
V1 +(α−1−

1)V2
)
. It is then easy to verify that g̃(α) is maximized by setting α = α∗, where

α
∗ =

(
c2/c1

(V1/V2)−1

)1/2

.

(Truncate α∗ at 1/n or 1 as needed to ensure a feasible solution. Note that V1/V2≥ 1 by the Cauchy-Schwarz
inequality.) If c1 is large relative to c2, so that M1 is relatively expensive to execute, then α∗ is small, and
it is optimal to execute M1 a relatively small number of times. If M2 is relatively insensitive to the input
from M1, so that most of the variability arises from randomness within M2, then V2� V1, and again we
simulate M1 only a small number of times. In the extreme case where V2 = 0, we simulate M1 only once,
thereby recapturing the result of Example 1. If, on the other hand, M2 is a deterministic function of its
inputs and M1 is stochastic, then V1 =V2 and it is optimal to run n replications of M1. In this case, M2 is
merely a transformer of the output of M1. Finally, denote by ρ the ratio of the asymptotic efficiencies of
the RC and naive methods, so that

ρ =
1/g(α∗)
1/g(1)

≈ g̃(1)
g̃(α∗)

=
(γ1 +1)γ2

(γ2−1)
(
1+
√

γ1/(γ2−1)
)2 ,

Haas

where γ1 = c1/c2 and γ2 =V1/V2. Observe that, by choosing sufficiently large values of γ1 and γ2, we can
make ρ arbitrarily large. Thus extremely large efficiency improvements are possible in principle.

4 POINT AND INTERVAL ESTIMATION

Assume that a value of α has been selected and we are given either a budget c under which to compute a
100(1−δ)% confidence interval or a precision target, e.g., to estimate θ to within±100ε% with probability
100(1−δ)% for some ε ∈ (0,1). We cannot use Theorem 1 directly to obtain point and interval estimates.
The problem is that the RC method needs to know the total number n of replications in advance in order to
determine mn but, in the fixed-budget scenario, n = N(c) is unknown a priori; a similar problem occurs in
the fixed-precision scenario. One solution is to employ an adaptive variant of RC that uses cached output
bαlc from M1 for the lth simulation replication of the composite model. This variant does not stratify the
sample outputs from M1 very well, however.

Instead, we consider an approach that first computes an estimate n of the number of required composite
model replications, and then applies RC as described previously. In more detail, Remark 1 in Appendix A
shows that θn

a.s.−→ θ , so that, for any fixed value of n as above, θn is a strongly consistent point estimator
for θ . Also observe that E[Y2;i] = θ for each i, so that θn is unbiased. Next, set

hn(α) =
1
n

mn−1

∑
j=0

(rn, j−1

∑
i=0

(X2; j,i−θn)

)2

(8)

Remark 3 in Appendix A shows that

n1/2[θn−θ]⇒
√

h(α)N(0,1) (9)

as n→ ∞, and Remark 2 shows that hn(α)
a.s.−→ h(α), so that a standard argument leads to an asymptotic

100(1−δ)% confidence interval for θ having endpoints θn±zδ

(
hn(α)/n

)1/2, where zδ is the
(
(1+δ)/2

)
-

quantile of the standard normal distribution. A rough estimate of n is given by n ≈ c/(αc1 + c2) in the
fixed-budget case and n≈ hn0(α)

(
zδ/(εθn0)

)2 in the fixed-precision case. The latter formula is obtained
by first setting the half-width of the above confidence interval equal to εθ and solving for n, and then
approximating θ and hn(α) using a small pilot run comprising n0 composite-model replications (using
RC). The above procedure can be refined in many ways. For example, in the fixed-budget scenario, one
might set n ≈ βc/(αc1 + c2), where β ∈ (0,1) is chosen to ensure that, with a specified probability, the
budget is not exceeded.

5 SETTING THE REPLICATION FRACTION

To use the RC technique, the user needs to compute α∗, which requires knowledge of the statistics
S = (c1,c2,V1,V2). However, costs, variances, and covariances are not observed until the simulation is
run, leading to a seemingly intractable situation. Two observations point toward a solution of this problem.

1. There is some tolerance for error in estimating S . Errors in the estimates of S might result in
slightly suboptimal simulation performance, but estimation of θ will still be correct. Indeed, the
analysis of Section 4 shows that the simulation results themselves are asymptotically valid for any
value of α .

2. A composite modeling system such as Splash is oriented toward re-use of models, and important
performance or statistical characteristics of a model can be stored as part of the model’s metadata
(SADL files in the case of Splash).

Thus, for example, the cost of executing pilot runs to estimate the statistics in S can be amortized over
multiple model executions. Moreover, as the model is used in production runs, its behavior can be observed
and used to continually refine the statistics in S , resulting in continually improving performance.

Haas

The problem is roughly analogous to the query-optimization problem in relational database systems.
In this latter setting, the user specifies the desired query result, and the query-optimizer component of the
database system determines a low cost execution plan for the query, based on statistics stored in the system
catalog. This problem has been studied for decades—see, for example, Cormode et al. (2012) and Haas
et al. (2009)—and many of the ideas developed there can potentially be adapted to the current setting. In
the remainder of this section, we outline some possible approaches toward estimating the statistics needed
for the RC method.

Recall the FR-PHI healthcare model that was mentioned in Section 1, and first consider the problem
of estimating c1, the expected execution time of the FR model. One version of this model is a simple
multidimensional lognormal random walk, which takes as input three drift parameters and a small covariance
matrix comprising six “volatility” parameters. Thus the challenge is to determine the function c1(x), where
x represents the vector of input parameters. To this end, we can view c1 as an expected simulation response
and use observations of model execution times (from production runs or exploratory pilot runs or both) to
build a metamodel. This metamodel can be stored along with the model (e.g., in a SADL file) and used
to optimize simulation runs as needed. A broad range of metamodeling techniques are available, ranging
from simple polynomial regression models to sophisticated Gaussian process models—see, e.g., Kleijnen
(2007) and Salemi et al. (2013)—allowing trade-offs between metamodel cost, complexity, and accuracy.
(The computational burden associated with computing statistics for the RC method should not outweigh
the cost savings from using RC.)

To estimate the remaining statistics c2, V1, and V2, which represent expected outputs of the PHI model
(or functions of such outputs), we again view these quantities as functions of their input values, where
in this case the input value corresponds to the random output of the FR model. The complications here
are that the output of the FR model is (i) random and (ii) a time series. Thus, for example, we have
V1 =Var[X2;0,0] =

∫
x∈X V1(x)dF1(x), where V1(x) =Var[X2;0,0 | X1;0 = x], the set X is the space of possible

realizations of the time series X1;0 output by the FR model, and F1 is the distribution of X1;0. One practical
approach to obtaining estimates of V1 from prior observations of model executions is as follows. First, use
dimensionality-reduction techniques to obtain a compact (low dimensional) representation of the output
time series. Many such methods have been proposed in the literature, ranging from a representation via
piecewise-linear approximations (Chen et al. 2007) to more complex schemes such as recursive feature
elimination on common principal components (Yang and Shahabi 2007). Next, construct a multi-dimensional
histogram of the reduced values, comprising buckets B1,B2, . . . ,Bn. Section 3.5 in Cormode et al. (2012)
contains a fairly recent survey of methods for maintaining multidimensional histograms; several of these
methods appear to work well, especially when the dimensionality is not too high (hence the previous
dimensionality-reduction step). Associated with each bucket Bi is the bucket frequency fi, as well as vi,
the value of V1(xi) for a representative point xi whose reduced representation lies in Bi. We can then
approximate V1 as V̂ 1 = ∑

n
i=1 fivi. In some settings, V1 might also depend on a real-valued vector z of

additional input parameters that might include inputs to M1 or M2 or both. In this case we can use a
metamodeling approach, as for c1, to obtain a function V̂ 1(z). The remaining statistics c2 and V2 are handled
analogously.

6 CONCLUSION

Problems with simulation efficiency are compounded for composite models. Our new result-caching
technique is designed to exploit the composite structure of such models to boost simulation efficiency.
The method can complement more traditional efficiency-improvement techniques and can potentially yield
large improvements in simulation performance. The techniques are applicable beyond Splash to any
composite simulation environment where component models communicate by reading and writing datasets,
for example, the Nimrod system of Bethwaite et al. (2010).

This paper represents a first step in developing the result-caching technique; much work remains.
We are currently evaluating the RC ideas experimentally and developing both exact and approximate

Haas

RC schemes for stochastic composite models in which the data flows can be represented as a directed
acyclic graph (DAG). In these more complex settings, we expect that the replication fractions often will
not be amenable to closed-form solution, and so we are investigating exact and approximate numerical
techniques. In this regard, we observe that the correlation structure between model outputs is similar to
that which arises in the study of sampling-based estimation techniques for database “join” queries (Haas
et al. 1996), so prior analytical methodology may be applicable. An important aspect of this problem is
the identification of a good set of statistics to maintain on composite models in order to allow estimation of
the replication fractions, as discussed in Section 5. We are currently trying to identify the best techniques
to use in practice. Moreover, taking a cue from the query-optimization literature, it may also be possible to
develop sequential execution procedures that start in “naive mode” and gradually switch to more optimal
execution plans as the component models’ behavior is observed and the statistics S refined. Another key
challenge is handling mutually dependent models in which data flows in both directions. We are currently
investigating some “fixed point” and “perturbation” approaches to this problem, which must be solved
prior to development of efficiency-improvement techniques in this broader setting. Overall, the goal is to
move toward broader practical application of composite modeling based on loose coupling of component
models, thereby facilitating interdisciplinary modeling and simulation of highly complex systems.

A PROOF OF THEOREM 1

Assume without loss of generality that θ = 0, since in the general case we can consider the shifted random
variables X2; j,i−θ . SetWn, j =∑

rn, j−1
i=0 X2; j,i for n≥ 0 and j∈ [0..mn), where rn, j is defined as in (1). (We denote

by [a..b) the set of integers {a,a+1, . . . ,b−1} and by [a..b] the set {a,a+1, . . . ,b}.) According to these
definitions, θn = (1/n)∑

mn−1
j=0 Wn, j, where the random variables

{
Wn, j

}
j∈[0..mn)

are mutually independent

for each n with common mean equal to 0. Set Vn, j = Var[Wn, j] = E[W 2
n, j] = rn, jV1 + rn, j(rn, j− 1)V2 for

n≥ 0 and j ∈ [0..mn). Observe that supn, j rn, j ≤ rα +1, so that supn, j Vn, j ≤ (rα +1)V1 + rα(rα +1)V2. If
E[X2

2;0,0]< ∞, then V1,V2 < ∞ and the Vn, j’s are not only finite, but are uniformly bounded as well.
Next, define Sn,0 = σ2

n,0 = 0, and set Sn,k = ∑
k−1
j=0 Wn, j and σ2

n,k = Var[Sn,k] = ∑
k−1
j=0 Vn, j for k ∈ [1..mn].

Also set σ2
n = σ2

n,mn
and Sn = Sn,mn , and define the process {Un(t)}0≤t≤1 for n ≥ 0 by setting Un(t) =

m−1/2
n ∑

mn−1
k=0 (Sn,k/σn)I(σ2

n,k/σ2
n ≤ t < σ2

n,k+1/σ2
n) for t ∈ [0,1) and Un(1) = m−1/2

n Sn/σn, where I is an
indicator function. The process Un has piecewise-constant sample paths.

We establish the CLT in (7) by establishing both the SLLN

C(t)/t a.s.−→ αc1 + c2, (10)

where C(t) =Cbtc, and the functional central limit theorem (FCLT)

n−1/2
σnUn⇒

√
h(α)B, (11)

where the stochastic process B is a standard Brownian motion on [0,1] and ⇒ denotes weak convergence
on the space D[0,1]; see Billingsley (1999). The desired result then follows from Theorem 1 in Glynn and
Whitt (1992). (Note that the function σnUn/n corresponds to the function Yε in Glynn and Whitt (1992);
see Remark 4 in Glynn and Whitt (1992).)
Lemma 1 Suppose that c1 + c2 < ∞. Then (10) holds.

Proof. It suffices to show that Cn/n a.s.−→ αc1 + c2. Suppose that 1/α is not an integer, so that rα =
b1/αc < 1/α . Observe that limn→∞ mn/n = limn→∞dαne/n = α , so that limn→∞ n/mn→ 1/α and hence
bn/mnc= rα for sufficiently large n. Equations (1) and (2) then imply that rn, j = rα + In, j, where

In, j =

{
1 if j < n−mnrα ;
0 otherwise.

(12)

Haas

Thus, for sufficiently large n, we have ∑
rn, j−1
i=0 T2; j,i = U j + In, jT2; j,rα

, where U j = ∑
rα−1
i=0 T2; j,i, so that

Cn = ∑
mn−1
j=0 T1; j +∑

mn−1
j=0 U j +∑

n−rα mn−1
j=0 T2; j,rα

. Observe that the random variables
{

U j
}

j≥0 are i.i.d., and
their common mean rαc2 is finite under the assumption of the lemma. Similarly, the random variables{

T1; j
}

j≥0 are i.i.d. with finite mean c1, and we can apply the SLLN for i.i.d. random variables to obtain

Cn

n
=

mn

n
1

mn

mn−1

∑
j=0

T1; j +
mn

n
1

mn

mn−1

∑
j=0

U j +
n− rαmn

n
1

n− rαmn

n−rα mn−1

∑
j=0

T2; j,rα

a.s.−→ αc1 +αrαc2 +(1−αrα)c2 = αc1 + c2.

Now suppose that 1/α is an integer, so that rα = b1/αc = 1/α . Because bn/mnc = bn/dαnec ≤
bn/(αn)c= 1/α for all n and limn→∞ n/mn→ 1/α as before, it follows that, for sufficiently large n, we
have bn/mnc= rα if rα divides n and bn/mnc= rα −1 otherwise. In this case we can write ∑

rn, j−1
i=0 T2; j,i =

Û j + În, jT2; j,rα
, where Û j = ∑

rα−2
i=0 T2; j,i and

În, j =

{
I
(

j < n− (rα −1)mn
)

if rα does not divide n;
1 otherwise.

(13)

It follows that Cn = ∑
mn−1
j=0 T1; j +∑

mn−1
j=0 Û j +∑

n−(rα−1)mn−1
j=0 T2; j,rα

, so that Cn/n a.s.−→ αc1 +α(rα − 1)c2 +

[1−α(rα −1)]c2 = αc1 + c2.

Remark 1 An almost identical argument shows that θn/n a.s.−→ 0 as n→ ∞.
The next step is to establish the FCLT in (11). To this end, we prove a couple of preliminary results,

starting with an asymptotic analysis of ∑
mn−1
j=0 W 2

n, j and its expected value σ2
n .

Lemma 2 If E[X2
2;0,0]< ∞, then (1/mn)∑

mn−1
j=0 W 2

n, j
a.s.−→ h(α)/α and σ2

n /mn→ h(α)/α as n→ ∞.

Proof. First suppose that 1/α is not an integer. Arguing as in Lemma 1, we can writeWn, j =G j+In, jX2; j,rα

for sufficiently large n, where G j = ∑
rα−1
i=0 X2; j,i and In, j is defined in (12). Thus

1
mn

mn−1

∑
j=0

W 2
n, j =

1
mn

mn−1

∑
j=0

G2
j +

2
mn

mn−1

∑
j=0

In, jH j +
1

mn

mn−1

∑
j=0

In, jX2
2, j,rα

, (14)

where H j = ∑
rα−1
i=0 X2; j,iX2; j,rα

and we have used the fact that I2
n, j = In, j. The finite-moment assumption of

the lemma implies that V1,V2 < ∞, so that E [G2
j] = rαV1+ rα(rα−1)V2 < ∞. Moreover, the G j’s are i.i.d.,

so that the first term on the right side of (14) converges to rαV1 + rα(rα −1)V2 almost surely as n→ ∞.
For the second term, observe that

1
mn

mn−1

∑
j=0

In, jH j =
1

mn

n−rα mn−1

∑
j=0

H j =
n− rαmn

mn

(
1

n− rαmn

n−rα mn−1

∑
j=0

H j

)
.

The H j’s are i.i.d. with E [H j] = rαV2 < ∞, so that the second term on the right side of (14) converges to
2(α−1− rα)rαV2 almost surely. A similar argument shows that the third term converges to (α−1− rα)V1

almost surely, so that m−1
n ∑

mn−1
j=0 W 2

n, j
a.s.−→ rαV1 + rα(rα −1)V2 +(α−1− rα)(V1 +2rαV2) = h(α)/α .

Now suppose that 1/α is an integer. Again arguing as in Lemma 1, we can write Wn, j = Ĝ j+ În, jX2; j,rα−1

for sufficiently large n, where Ĝ j = ∑
rα−2
i=0 X2; j,i and În, j is defined in (13). Set Ĥ j = ∑

rα−2
i=0 X2; j,iX2; j,rα−1

Haas

and observe that, for n sufficiently large,

1
mn

mn−1

∑
j=0

W 2
n, j =

1
mn

mn−1

∑
j=0

Ĝ2
j +

2
mn

mn−1

∑
j=0

În, jĤ j +
1

mn

mn−1

∑
j=0

În, jX2
2, j,rα−1

a.s.−→ [(rα −1)V1 +(rα −1)(rα −2)V2]+ [(rα −1)V2]+V1

= rαV1 + rα(rα −1)V2.

Using the fact that rα = 1/α , it is easy to verify that the rightmost expression is equal to h(α)/α , establishing
the first assertion of the lemma.

To prove the second assertion, set Q j = (rα + 1)2
∑

rα

i=0 X2
2, j,i for j ≥ 0. With probability 1, we have

for any n ≥ 0 that W 2
n, j =

(
∑

rn, j−1
i=0 X2; j,i

)2 ≤
(
rn, j max0≤i<rn, j |X2; j,i|

)2 ≤ (rα + 1)2 max0≤i≤rα
X2

2, j,i ≤ Q j.
Set Γn = (1/mn)∑

mn−1
j=0 W 2

n, j and Γ∗n = (1/mn)∑
mn−1
j=0 Q j for n ≥ 0. Observe that the Q j’s are i.i.d. with

E[Q j] = (rα +1)3V1 < ∞, so that limn→∞ Γ∗n = E [Q1] almost surely. Moreover, E [Γ∗n]≡ E [Q1] for n≥ 0,
so that limn→∞ E [Γ∗n] = E [limn→∞ Γ∗n], which implies (Chung 2001, Th. 4.5.4) that the sequence {Γ∗n}n≥0
is uniformly integrable, that is, limx→∞ E [Γ∗nI(Γ∗n > x)] = 0. Because 0 ≤ Γn ≤ Γ∗n for all n, it follows
that {Γn}n≥0 is also uniformly integrable. Since Γn

a.s.−→ h(α)/α by the first assertion of the lemma,
Theorem 4.5.4 in Chung (2001) implies that E [Γn]→ h(α)/α , that is, σ2

n /mn→ h(α)/α .

Remark 2 It follows immediately from Lemma 2 that (mn/n)
[
(1/mn)∑

mn−1
j=0 W 2

n, j
] a.s.−→α

[
h(α)/α

]
= h(α).

Since θn
a.s.−→ 0 as n→ ∞ by Remark 1, it follows that hn(α)

a.s.−→ h(α), where hn(α) is defined as in (8).
Thus hn(α) is a strongly consistent estimator of h(α).

We next establish a “Lindeberg condition” that will be sufficient for the FCLT to hold.
Lemma 3 If E[X2

2;0,0]< ∞, then

lim
n→∞

1
σ2

n

mn−1

∑
j=0

E
[
W 2

n, jI(|Wn, j| ≥ εσn)
]
= 0 (15)

for any ε > 0.

Proof. Fix ε > 0 and define
{

Q j
}

j≥0 as above. Recall that the Q j’s are i.i.d. with finite mean, so that,
for a given value of n and j ∈ [0..mn),

E
[
W 2

n, jI(|Wn, j| ≥ εσn)
]
= E

[
W 2

n, jI(W
2
n, j ≥ ε

2
σ

2
n)
]
≤ E

[
Q jI(Q j ≥ ε

2
σ

2
n)
]
= E

[
Q1I(Q1 ≥ ε

2
σ

2
n)
]
.

Because h(α)> 0 by assumption, Lemma 2 implies that limn→∞ σ2
n = ∞, so that I(Q1 ≥ ε2σ2

n)
a.s.−→ 0. Thus,

because Q1 is nonnegative with E [Q1]< ∞, we have limn→∞ E
[

Q1I(Q1 ≥ ε2σ2
n)
]
= 0 by the dominated

convergence theorem (Chung 2001, p. 44). Again using the fact that h(α)> 0, so that 1/h(α)< ∞, we have,
using Lemma 2, limn→∞(1/σ2

n)∑
mn−1
j=0 E

[
W 2

n, jI(|Wn, j| ≥ εσn)
]
≤ limn→∞(mn/σ2

n)E
[

Q1I(Q1 ≥ ε2σ2
n)
]
=(

α/h(α)
)
·0 = 0, proving the result.

Proof of Theorem 1. In light of (10) and of Theorem 1 in Glynn and Whitt (1992), it suffices to establish
the FCLT in (11). Because

{
Wn, j

}
n≥0, j∈[0..mn)

is a triangular array of row-wise independent random variables

such that σ2
n < ∞ for n≥ 0 and (15) holds for all ε > 0, an appeal to the FCLT for such arrays (Billingsley

1999, p.147) shows that Un ⇒ B. Using Lemma 2, we have n−1/2σnUn = (σ2
n /mn)

1/2(mn/n)1/2Un ⇒(
h(α)/α

)1/2 ·α1/2 ·B =
√

h(α)B, proving (11).

Remark 3 For x = {x(t)}t∈[0,1], denote by π1 the projection that maps x to x(1). By applying π1 to (11)
via the continuous mapping theorem (Billingsley 1999, p. 134), we obtain (9).

Haas

REFERENCES

Altintas, I., C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock. 2004. “Kepler: an extensible
system for design and execution of scientific workflows”. In Proc. 16th Intl. Conf. Scientific Statist.
Database Mgmt. (SSDBM), 423–424.

Bethwaite, B., D. Abramson, F. Bohnert, S. Garic, C. Enticott, and T. Peachey. 2010. “Mixing Grids and
Clouds: High-Throughput Science Using the Nimrod Tool Family”. In Cloud Computing: Principles,
Systems and Applications, 219–237. London: Springer.

Billingsley, P. 1999. Convergence of Probability Measures. second ed. New York: Wiley.
Chen, Q., L. Chen, X. Lian, Y. Liu, and J. X. Yu. 2007. “Indexable PLA for Efficient Similarity Search”.

In Proc. 33rd Intl. Conf. Very Large Data Bases (VLDB), 435–446.
Chung, K. L. 2001. A Course in Probability Theory. third ed. San Diego: Academic Press.
Cormode, G., M. N. Garofalakis, P. J. Haas, and C. Jermaine. 2012. “Synopses for Massive Data: Samples,

Histograms, Wavelets, Sketches”. Foundations and Trends in Databases 4 (1–3): 1–294.
Dean, J., and S. Ghemawat. 2004. “MapReduce: simplified data processing on large clusters”. In Proc. 6th

Symp. Operating Sys. Design Implementation (OSDI), 137–150.
Fox, B. L., and P. W. Glynn. 1990. “Discrete-time conversion for simulating finite-horizon Markov processes”.

SIAM J. Appl. Math 50 (5): 1457–1473.
Glynn, P. W., and W. Whitt. 1992. “The Asymptotic Efficiency of Simulation Estimators”. Oper. Res. 40

(3): 505–520.
Haas, P. J., N. C. Barberis, P. Phoungphol, I. Terrizzano, W.-C. Tan, P. G. Selinger, and P. P.Maglio. 2012.

“Splash: Simulation optimization in complex systems of systems”. In Proc. 50th Allerton Conf. on
Commun. Control Comput., 414–425.

Haas, P. J., I. F. Ilyas, G. M. Lohman, and V. Markl. 2009. “Discovering and Exploiting Statistical Properties
for Query Optimization in Relational Databases: A Survey”. Statist. Anal. Data Mining 1 (4): 223–250.

Haas, P. J., J. F. Naughton, S. Seshadri, and A. N. Swami. 1996. “Selectivity and Cost Estimation for Joins
Based on Random Sampling”. J. Comput. Syst. Sci. 52 (3): 550–569.

Hammersley, J. M., and D. C. Handscomb. 1964. Monte Carlo Methods. Chapman and Hall.
Kleijnen, J. P. C. 2007. Design and Analysis of Simulation Experiments. Springer.
Park, H., T. Clear, W. B. Rouse, R. C. Basole, M. L. Braunstein, K. L. Brigham, and L. Cunningham. 2012.

“Multi-level simulations of health delivery systems: A prospective tool for policy, strategy, planning
and management”. Service Science 4 (3): 253–268.

Salemi, P., J. Staum, and B. L. Nelson. 2013. “Generalized integrated brownian fields for simulation
metamodeling”. In Proceedings of the 2013 Winter Simulation Conference, edited by R. Pasupathy,
S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, 543–554. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers, Inc.

Tan, W. C., P. J. Haas, R. L. Mak, C. A. Kieliszewski, P. G. Selinger, P. P. Maglio, S. Glissmann, M. Cefkin,
and Y. Li. 2012. “Splash: a platform for analysis and simulation of health”. In Proc. ACM Intl. Health
Informatics Symp. (IHI), 543–552.

Yang, K., and C. Shahabi. 2007. “An efficient k nearest neighbor search for multivariate time series”. Inf.
Comput. 205 (1): 65–98.

AUTHOR BIOGRAPHIES

PETER J. HAAS is a Research Staff Member at the IBM Almaden Research Center and a Consulting Profes-
sor of Management Science and Engineering at Stanford University. His email address is phaas@us.ibm.com
and his web page is http://researcher.watson.ibm.com/researcher/view.php?person=us-phaas.

mailto://phaas@us.ibm.com
http://researcher.watson.ibm.com/researcher/view.php?person=us-phaas

	INTRODUCTION
	RESULT CACHING FOR TWO MODELS IN SERIES
	OPTIMIZING STATISTICAL EFFICIENCY
	POINT AND INTERVAL ESTIMATION
	SETTING THE REPLICATION FRACTION
	CONCLUSION
	PROOF OF THEOREM 1

