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ABSTRACT
Important emerging sources of big data are large-scale predictive
simulation models used in e-science and, increasingly, in guiding
policy and investment decisions around highly complex issues such
as population health and safety. The Splash project provides a plat-
form for combining existing heterogeneous simulation models and
datasets across a broad range of disciplines to capture the behavior
of complex systems of systems. Splash loosely couples models via
data exchange, where each submodel often produces or expects time
series having huge numbers of time points and many data values per
time point. If the time-series output of one “source” submodel is
used as input for another “target” submodel and the time granularity
of the source is coarser than that of the target, an interpolation oper-
ation is required. Cubic-spline interpolation is the most widely-used
method because of its smoothness properties. Scalable methods are
needed for such data transformations, because the amount of data
produced by a simulation program can be massive when simulating
large, complex systems over long time periods, especially when
the time dimension is modeled at high resolution. We demonstrate
that we can efficiently perform cubic-spline interpolation over a
massive time series in a MapReduce environment using novel algo-
rithms based on adapting the distributed stochastic gradient descent
(DSGD) method of Gemulla et al., originally developed for low-rank
matrix factorization. Specifically, we adapt DSGD to calculate the
coefficients that appear in the cubic-spline interpolation formula
by solving a massive tridiagonal system of linear equations. Our
techniques are potentially applicable to both spline interpolation
and parallel solution of diagonal linear systems in other massively
parallel data-integration and data-analysis applications.

1. INTRODUCTION
Besides the massive data generated by real-world processes such

as sensors and web click-streams, enormous amounts of data are
also generated by large-scale, high-resolution predictive simulation
models. These models are used for e-science [15] and, increasingly,
to guide investment and policy decisions around highly complex
issues such as population health and safety [19]. Especially in the
latter setting, the challenge of dealing with the massive datasets
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produced and consumed by these simulation models is compounded
by an increasing need to bring together multiple models across
a broad range of disciplines. Such model composition is needed
to capture the behavior of complex systems of systems and gain
synergistic understanding of highly complex problems, avoiding
unintended consequences of policy and investment decisions; see,
e.g., [10, 18] in the setting of food, climate, and health.

The current work is motivated by the authors’ research and de-
velopment efforts around the Smarter Planet Platform for Analysis
and Simulation of Health (Splash). Splash [13, 30] is a platform for
combining existing heterogeneous simulation models and datasets
to create composite simulation models of complex systems. To
facilitate interdisciplinary collaboration and model re-use, Splash fa-
cilitates loose coupling of models via data exchange, building upon
and extending existing data integration technology. The component
models run asynchronously and communicate with each other by
reading and writing datasets. In particular, each Splash submodel—
e.g., an agent-based simulation model of regional traffic patterns
or of disease epidemics—typically produces massive time series
having huge numbers of time points and many data values per time
point. The time-series dataset output by one “source” submodel is
then used as subsequent input for another “target” submodel. Splash
applies data transformations as needed for compatibility; the system
exploits user-supplied metadata about the submodels and datasets to
detect source-target mismatches and help the user design the needed
transformations, which are then compiled into code that is invoked
at simulation time.

As discussed in [30], Splash uses Clio++, an enhanced version of
the Clio data integration tool [12], to let a user semi-automatically
design a schema mapping that will “structurally” align the schemas
of one or more source models to the schema of a target model.
Even when the schemas of a source and target time-series dataset
are aligned, however, further time-alignment transformations are
needed if, for example, the time granularity of a source time series
differs from that of the target. Just as the Clio++ GUI allows for
semi-automatic design of structural-alignment mappings, a time-
aligner GUI—see Figure 1—lets a user choose an appropriate time-
alignment mapping for each data item in a time series. The resulting
time-series transformation is represented in a formal “time-align-
ment markup language” (TAML) for future modification or re-use,
and the mapping is automatically compiled into runtime code; see
[24] for details. Note that the structural and time-alignment trans-
formations are orthogonal: the former mapping is concerned with
the structure of the time-series data at each time tick, whereas the
latter transformation is concerned about the number of time ticks
and the data values at each tick.

Scalable methods are needed for both kinds of data transfor-
mations, because the amount of data produced by a simulation



Figure 1: Splash time-alignment GUI [24].

program can be massive when simulating large, complex systems,
especially when the time dimension is modeled at high resolution
over long time periods. Among the platforms available for large-
scale data transformations are MapReduce [7] environments such as
Hadoop [1]. A growing number of real-world enterprises are embrac-
ing MapReduce systems because of their attractive price/performance
characteristics. Even some scientific organizations that have tra-
ditionally relied solely on supercomputers for high performance
computing (HPC) are increasingly discussing the use of MapReduce
systems to connect HPC applications. Splash therefore attempts
to provide time-series data transformation techniques suitable for
MapReduce environments. Currently, Splash will automatically
compile user-specified time-series transformations into JAQL [20]
code that will execute the transformations—at scale and on Hadoop—
during each simulation run of the composite model.

For time-alignment transformations, a common and important sce-
nario occurs when the granularity of a source time series is coarser
than that of the target—e.g., the source model outputs hourly tem-
peratures and the target model needs temperatures every 15 minutes.
In this case, a time-series interpolation operation is required. Cubic-
spline interpolation is perhaps the most widely-used method because
of its smoothness properties. For example, a cubic spline can be
shown [22, Prop. 9.2.3] to approximate a function f and its deriva-
tive f ′ with absolute errors of at most h3/2(

∫
f ′′(x)2 dx)1/2 and

h1/2(
∫
f ′′(x)2 dx)1/2 at any time point as h→ 0, where h is the

maximum distance between successive source time ticks. This re-
sult assumes only that f is twice continuously differentiable; if f (4)

exists and is continuous and the source data ticks are uniformly
spaced, then an error bound of O(h4) can be established. Merit
aside, cubic-spline interpolation needs to be supported because it
is ubiquitous. For example, the EXPAND function for time-series
alignment in the SAS statistical package uses cubic splines as the
default interpolation method [28, Ch. 14]. In this paper we focus
on the problem of cubic-spline interpolation over massive time se-
ries in a MapReduce environment. Besides being important for
Splash, scalable cubic-spline interpolation is needed in other data-
integration and scientific computing applications; see the references
below.

A key challenge in cubic-spline interpolation is that a large-scale
tridiagonal linear system Ax = b must first be solved to compute
a set of “spline constants” that appear in the interpolation formula.
A large literature exists on scalable cubic-spline interpolation and

scalable solution of tridiagonal systems. Some of these algorithms
impose requirements that are unreasonable or overly stringent in our
setting, such as that the source observations be equally spaced [23,
25, 29] or that the inverse of the massive matrix A be (somehow)
already computed [4, 25]. Most of the remaining algorithms have
focused primarily on vector machines [23], GPUs [33], or message-
passing parallel architectures such as MPI [11]. When implemented
on a MapReduce platform, these algorithms have large communi-
cation overheads, with much data shuffling between mappers and
reducers. In recent work on tridiagonal solvers for GPUs, Zhang et
al. [33] reviewed a number of prior algorithms and found the Parallel
Cyclic Reduction (PCR) algorithm of Hockney and Jesshope [16]
to have superior properties, and we focus on this algorithm in the
current paper as being exemplary of prior art. Roughly speaking, the
original system of m unknowns is partitioned into two systems of
m/2 unknowns; this partitioning continues recursively, ultimately
yielding log2m systems of two unknowns, which are then solved.
In a MapReduce setting, the algorithm requires log2m map and re-
duce jobs, with expensive many-to-many communication occurring
over the network during each data shuffling phase.

In this paper, we show how the distributed stochastic gradient de-
scent (DSGD) method of Gemulla et al. [8, 9], originally developed
for low-rank matrix factorization, can be adapted to yield novel
algorithms for cubic-spline interpolation of massive time series.
Specifically, we show how DSGD can be adapted to compute spline
constants by solving the system Ax = b. By suitable modification
of the usual Hadoop InputFormat operator, the technique can be
implemented as a sequence of map-only jobs, so that network com-
munication is minimal. These techniques are potentially applicable
to both spline interpolation problems and solution of k-diagonal
and block-diagonal systems in other contexts besides Splash. Our
techniques complement those in [17], which implement a broad
class of time and geospatial transformations for scientific datasets
in an RDBMS.

2. BACKGROUND
We first briefly discuss the general framework for time alignment

used by Splash, and then describe the specific problem of distributed
cubic-spline interpolation. A thorough discussion of time alignment
in Splash can be found in [24].

2.1 A Time-Alignment Framework
We can represent a source dataset comprising a time series as a

sequence S =
〈
(s0, d0), (s1, d1)

)
, . . . , (sm, dm)

〉
, where si is the

time of the ith observation and di is the associated data observed at
time si. Each di can be viewed as a k-tuple for some k ≥ 1. The
“ticks”, or indices, run from 0 to m. Similarly, we can represent a
target dataset as T =

〈
(t0, d̃0), (t1, d̃1), . . . , (tn, d̃n)

〉
. We assume

throughout that the source time points are strictly increasing: s0 <
s1 < · · · < sm. Moreover, the target time points are required to be
evenly spaced and start from simulated time 0, so that ti = i∆ for
some ∆ > 0 and all i ∈ { 0, 1, . . . , n }. This is usually the case in
practice: if there are no requirements at all on the target time points,
then no time alignment is needed, and there is usually no natural
way to define target time points at irregular intervals. (We make no
assumptions about the regularity of the source time points.) Note
that no loss of generality is entailed by assuming that t0 = 0, since
otherwise the data can be uniformly shifted along the time axis. We
also assume that there are no invalid or missing source data values;
i.e., we assume that any such values have been fixed or imputed
prior to the time-alignment step. Finally, we assume for simplicity
that s0 = t0 and sm = tn, so that the source data completely spans
the target-data interval.



In the spirit of [17], all time-alignment operations can be viewed
as applying an “alignment function” over a “window”. Specifically,
suppose that we wish to compute the target data value d̃i at target
time ti for some i ∈ { 1, 2, . . . , n }. Then the window Wi for ti is
simply a subsequence of S that contains the information needed to
perform the computation. Often, the window has the form

Wi =
〈
(sj , dj), (sj+1, dj+1), . . . , (sj+k, dj+k)

〉
,

where sj ≤ ti ≤ sj+k, so that the window comprises data observed
at contiguous times points of S that span the target time point ti.
If the window width |Wi|—that is, the number of

(
si, di

)
pairs in

Wi—is the same for each ti, then the sequence of windows behaves
as a sliding window over S. (The window may progress in “bursts”
in that Wi−1 6= Wi = Wi+1 = · · · = Wi+li 6= Wi+li+1 for one
or more values of i, since a given set of source data points might
suffice for computing multiple target data points.) The desired
aligned data d̃i is computed by applying an appropriate alignment
function to the data in Wi. See [24] for further discussion.

In this paper we focus on time alignments that require cubic-spline
interpolation. (Other types of time alignments that Splash can cap-
ture include aggregation and allocation; they are needed, e.g., when
each data point represents the total rainfall since the last time tick.)
For simplicity, we suppose at first that each source-data observation
di comprises a single attribute value. In principle, an alignment
procedure needs to be performed separately for each attribute. In
practice, multiple alignment operations might be performed during
a single scan over the source data; see also Section 3.5 below.

2.2 Spline Interpolation
The most common types of interpolation are piecewise linear

interpolation and natural cubic-spline interpolation. For linear inter-
polation, the window is defined as Wi =

〈
(sj , dj), (sj+1, dj+1)

〉
,

where j = max {n : sn ≤ ti }. Note that sj ≤ ti < sj+1. Then
the alignment function computes the interpolated data value as

d̃i = dj +
ti − sj
sj+1 − sj

(dj+1 − dj).

Cubic splines are more complex, but have better smoothness prop-
erties. The idea is to define a function d(x) such that (1) d(sj) = dj
for each j, (2) d is a cubic polynomial over each interval [sj , sj+1],
and (3) the second derivative d′′ exists and is continuous throughout
the interval [s0, sm]. We focus on natural cubic splines for which
d′′(s0) = d′′(sm) = 0, so that the interpolating function looks
like a straight line to the left and right of [s0, sm]. Given such
a function, the interpolated target value d̃i at time ti is given as
d̃i = d(ti). In more detail, set hj = sj+1 − sj for 0 ≤ j ≤ m− 1,
and let x = (x1, x2, . . . , xm−1) be the solution to the linear sys-
tem Ax = b, where A and b are given in Figure 2. Next, set
σ0 = σm = 0 and σj = xj for 1 ≤ j ≤ m− 1. Then the window
Wi =

〈
(sj , dj), (sj+1, dj+1)

〉
is defined exactly as for piecewise

linear interpolation, but the alignment function now computes the
interpolated data value as

d̃i =
σj
6hj

(sj+1 − ti)3 +
σj+1

6hj
(ti − sj)3

+
(dj+1

hj
− σj+1hj

6

)
(ti − sj) +

( dj
hj
− σjhj

6

)
(sj+1 − ti).

See, e.g., [22, Ch. 10] for details.
Suppose for the moment that the σj values have been computed

in a preprocessing step. Note that the information in the window
Wi defined for cubic-spline and linear interpolation in the previous
section is not quite enough to compute the interpolated value d̃i
because we also need the quantities σj and σj+1. We can still fit this

interpolation scheme into our general framework if we augment each
source tuple dj by appending σj as a new attribute; in the following,
we assume that the σj’s have been appended in this manner. A key
observation is that the interpolated target values can be computed
in a completely distributed manner, since the Wi windows can be
processed in parallel to produce tuples of the form (ti, d̃i). After
all such tuples are produced, a parallel sort by ti value can be used
to construct the final target time series. As noted previously, a
given windowWi corresponding to successive source time points sj
and sj+1 can produce multiple (ti, d̃i) pairs if multiple target time
points lie in the interval [sj , sj+1). The remaining (major) question
is how to compute the spline constants σj in a distributed fashion in
MapReduce. This is the focus of the remainder of the paper.

3. COMPUTING SPLINE CONSTANTS
To compute the σj spline parameters, we must solve the linear sys-

tem Ax = b, given previously, in a distributed manner. To develop
an algorithm well suited for MapReduce architectures, we adapt
the distributed stochastic gradient descent algorithm of Gemulla et
al. [8, 9].

3.1 Formulation as an SGD Problem
The first step is to recast the problem as a minimization problem.

Set Li(x) = (Ai·x− bi)2 for 1 ≤ i ≤ m− 1, where Ai· denotes
the ith row of the (m− 1)× (m− 1) matrix A. Solving the linear
system Ax = b is equivalent to minimizing the function L(x) =
L1(x) + · · · + Lm−1(x). In the Splash setting, we can tolerate
approximate solutions that yield values of L that are close, but not
exactly equal, to the minimum possible value: slight deviations from
the optimal solution merely cause a slight decrease in smoothness in
the cubic-spline interpolation function. This suggests the use of an
iterative gradient descent procedure that starts with an initial value
x(0) and repeatedly takes “downhill” steps that decrease the value
of L, using the recursion

x(n+1) = x(n) − εn∇L(x(n)). (1)

Here {εn} is a sequence of decreasing step sizes and ∇L is the
gradient of L with respect to x, so that −∇L(x) represents the
direction of maximum decrease in L, starting from point x. The
step sizes must decrease in order to allow convergence to a solution,
but must decrease slowly enough so that the algorithm does not
get stuck at a solution far from the optimum; a typical sequence
is of the form εn = n−α for some α ∈ (0.5, 1]. In our setting, a
good first approximation x(0) can be obtained by simply ignoring
the off-diagonal terms in the matrix A and solving the resulting
diagonal system to obtain

x
(0)
i =

3

hi−1 + hi

(di+1 − di
hi

− di − di−1

hi−1

)
for 1 ≤ i ≤ m − 1. It is well known [25] that the inverse matrix
A−1 tends to be “diagonally dominant” in that the magnitude of
the matrix entries decreases exponentially with distance from the
main diagonal. Ignoring off-diagonal entries should therefore yield
a reasonable first approximation.

For our specific function L, we have

∇L(x) =

m−1∑
i=1

∇Li(x) (2)

by the linearity of the gradient operator. Denote by ai,j the (i, j)th
component of A and by bi the ith component of b, so that

bi =
di+1 − di

hi
− di − di−1

hi−1
(3)



A =



h0+h1
3

h1
6

0 · · · 0 0 0
h1
6

h1+h2
3

h2
6
· · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · hm−3

6

hm−3+hm−2

3

hm−2

6

0 0 0 · · · 0
hm−2

6

hm−2+hm−1

3

 b =


d2−d1
h1
− d1−d0

h0
d3−d2
h2
− d2−d1

h1

...
dm−dm−1

hm−1
− dm−1−dm−2

hm−2

 .

Figure 2: Matrix and vector components of linear system for cubic-spline constants.

and

ai,j =


hi−1/6 if j = i− 1

(hi−1 + hi)/3 if j = i
hi/6 if j = i+ 1

0 otherwise.

(4)

For convenience, define x0 = xm = 0 and define ai,j = 0 if
i 6∈ { 1, 2, . . . ,m− 1 } or j 6∈ { 1, 2, . . . ,m− 1 }. Then the jth
component of the ith partial gradient is given by

∇jLi(x) = ∇j(Ai·x− bi)2 = ∇j
(m−1∑
k=1

ai,kxk − bi
)2

=

{
ui,j if i− 1 ≤ j ≤ i+ 1

0 otherwise,

(5)

where ui,j = 2ai,j(ai,i−1xi−1 + ai,ixi + ai,i+1xi+1 − bi).
Because the gradient∇L can be expressed as a sum of partial gra-

dients as in (2), the gradient descent procedure can be parallelized in
a MapReduce environment by partitioning the data across process-
ing nodes. Each node sums up the partial gradients for its part of the
data, and the partial gradients are then aggregated at the reducers.
This can be done conveniently by using a query language on top of
MapReduce. Once the gradient has been computed, a master node
will perform the update of the parameter values [6, 14, 26]. Our
version of this algorithm—which uses the sophisticated L-BFGS-B
updating formula [3]—is called DGD in the experimental section.
Drawbacks of this approach include the need to store the entire L
and∇L arrays in memory, and slow empirical convergence rates.

In their seminal 1951 paper, Robbins and Monro [27] showed
that, in terms of the speed of convergence, it is often a better idea
to compute a simple, computationally cheap approximation of the
gradient at each descent step and use the resulting cost savings
to take more steps per unit of computation time. The averaging
operation that is implicit in the stochastic recursion (1) has the
effect of smoothing out the gradient estimates over time, so that
the algorithm converges to a good solution. The resulting class of
“stochastic approximation” algorithms has proved extremely success-
ful in practice; see, e.g., the book of Kushner and Yin [21]. In our
setting, one simple algorithm along these lines is stochastic gradient
descent (SGD). The algorithm is identical to standard gradient de-
scent, but instead of computing a gradient∇L(x) as a sum ofm−1
terms of the form ∇Li(x), the sum is approximated by choosing
a value of i at random, and then scaling up the partial gradient by
a factor of m− 1. That is,∇L(x) is approximated at the nth step
by Yn(x) = (m − 1)∇Lα(n)(x), where each α(n) is sampled
randomly and uniformly from { 1, 2, . . . ,m− 1 }. Thus each Yn
is random, but equal to ∇L in expectation. The recursion is now
given by x(n+1) = x(n)− εnYn(x(n)). Under mild conditions [21],
the random sequence {x(n)} converges to the optimal solution x∗

as n → ∞. The main challenge with the SGD algorithm is that
the algorithm is purely sequential, and so does not lend itself to a

MapReduce implementation.
Gemulla et al. [9] devised a distributed version of SGD in the

context of large-scale matrix factorization. We now extend this work
to show that SGD can be distributed in the cubic-spline setting.

3.2 A Stratified SGD Algorithm
We start by defining a “stratified” version of stochastic gradient

descent, called SSGD. Assume for simplicity that m− 1 is divisible
by 3, and define the following strata:

U1 = { 1, 4, 7, . . . ,m− 3 }
U2 = { 2, 5, 8, . . . ,m− 2 }
U3 = { 3, 6, 9, . . . ,m− 1 } .

Then set Ls(x) = 3
∑
i∈Us Li(x) for s = 1, 2, 3, so that L(x) =

(1/3)L1(x) + (1/3)L2(x) + (1/3)L3(x). We refer to L1, L2, and
L3 as stratum loss functions. SSGD proceeds in a manner similar to
ordinary SGD but, at each iteration, the algorithm takes a downhill
step with respect to one of the stratum losses Ls, i.e., approximately
in the direction of the negative gradient −∇Ls(x). Although each
such direction is “wrong” with respect to minimization of the overall
loss L, SSGD will converge (under appropriate regularity condi-
tions) to a good solution for L if the sequence of strata is chosen
“carefully”, which means roughly that over many steps the three
strata will be chosen equally often. The motivation for SSGD is that,
as discussed in the sequel, the SGD algorithm can be run in a highly
parallel manner within each of the three strata.

To develop SSGD, suppose that there is a (potentially random)
stratum sequence {γn}, where each γn takes values in { 1, 2, 3 }
and determines the stratum to use in the nth iteration. Using a noisy
observation Yn of the gradient∇Lγn(x(n)), we obtain the update
rule

x(n+1) = x(n) − εnYn. (6)

Here Yn = (m − 1)∇Lα(n)(x(n)), where α(n) is sampled ran-
domly and uniformly from Uγn . Note that the stratum size is
(m− 1)/3 and that the partial gradient term is 3∇Lα(n)(x(n)), so
that the factor of 3 cancels out. Our key assumption on the stratum
sequence {γn} is that it is regenerative [2, Ch. VI], in that there
exists an increasing sequence of almost-surely finite random indices
0 = β(0) < β(1) < β(2) < · · · that serves to decompose {γn}
into consecutive, independent and identically distributed (i.i.d.) cy-
cles {Ck}, with Ck =

{
γβ(k−1), γβ(k−1)+1, . . . , γβ(k)−1

}
for

k ≥ 1. I.e., at each β(i), the stratum is selected according to a prob-
ability distribution that is independent of past selections, and the
future sequence of selections after step β(i) looks probabilistically
identical to the sequence of selections after step β(0). The length τk
of the kth cycle is given by τk = β(k)−β(k−1). Letting Iγn=s be
the indicator variable for the event that stratum s is chosen in the nth
step, set Xk(s) =

∑β(k)−1

n=β(k−1)

(
Iγn=s − (1/3)

)
for s = 1, 2, 3. It

follows from the regenerative property that the pairs {
(
Xk(s), τk

)
}

are independent and identically distributed (i.i.d.) for each s.



THEOREM 3.1. Suppose that A is non-singular, so that the sys-
tem Ax = b has a unique solution x∗. Also suppose that (i) εn =
O(n−α) for some α ∈ (0.5, 1], (ii) (εn − εn+1)/εn = O(εn), and
(iii) {γn} is regenerative with E[τ

1/α
1 ] < ∞ and E[X1(s)] = 0

for s = 1, 2, 3. Then the sequence {x(n)} defined by (6) converges
to x∗ with probability 1.

Thus, under regularity conditions, we may pick any regenerative
sequence {γn} such thatE[X1(s)] = 0 for all strata. The condition
E[X1(s)] = 0 essentially requires that, for each stratum s, the
expected fraction of visits to s in a cycle equals 1/3. By the strong
law of large numbers for regenerative processes [2, Sec. VI.3], this
condition—in the presence of the finite-moment condition on τ1—is
equivalent to requiring that the long-term fraction of visits to each
stratum equals 1/3. The finite-moment condition is satisfied for
schemes in which the number of successive steps taken within a
stratum is bounded with probability 1, as is typically the case.

The conditions on {εn} are often satisfied in practice, e.g., when
εn = 1/n or when εn = 1/dn/ke for some k > 1 with dxe
denoting the smallest integer greater than or equal to x, so that the
step size remains constant for some fixed number of steps. Similarly,
a wide variety of strata-selection schemes satisfy the conditions of
the theorem. Examples include (1) running precisely c/3 steps on
stratum s in every “chunk” of c steps, and (2) repeatedly picking a
stratum according to some fixed distribution { ps > 0 } and running
c/(3ps) steps on the selected stratum s. Certain schemes in which
the number of steps per stratum is random are also covered by
Theorem 3.1; see [8].

A sketch of the proof is as follows. First consider a modifi-
cation of the recursion in (6) of the form x(n+1) = ΠH [x(n) −
εnY

γn(x(n))], where H ⊂ <m−1 is a (large) hyper-rectangle cen-
tered at x∗ and containing the initial value x(0), and ΠH [x] projects
the point x ∈ <m−1 onto H . The conditions of the theorem ensure
that εn → 0,

∑
n εn =∞, and

∑
n ε

2
n <∞. Moreover, the func-

tions Ls and ∇Ls are bounded, continuous, and differentiable on
H , as are L and ∇L. Letting Fn denote the σ-field generated by
{α(i−1), x(i), γi, i ≤ n }, i.e., what is known at step n (just prior
to generating the value of Yn), we have E[Yn | Fn] = ∇Lγn(x(n))
with probability 1. Finally,

sup
n
E
[
‖Yn‖22

]
≤ sup

n
sup
x∈H

c2
(
Lγn(x)

)2
≤ sup

s
sup
x∈H

c2
(
Ls(x)

)2
<∞,

where c = (m−1)/3. Although the direction of each downhill step
is “wrong” in that the mean direction is −∇Lγn rather than −∇L,
suppose that the directions “average out correctly” in the sense that,
for any x ∈ H ,

lim
n→∞

εn

n−1∑
i=0

[
∇Lγi(x)−∇L(x)

]
= 0 (7)

with probability 1. (For example, if εn were equal to 1/n, then the
nth term would represent the empirical average deviation from the
true gradient over the first n steps.) Then by some general results
from stochastic approximation theory—see the proof of Theorem 1
in [8]—it follows that {x(n)} converges to the set of limit points of
the projected ODE ẋ = −∇L(x)+z for any initial condition, where
z is the “minimum force” needed to keep the solution in H [21,
Sec. 4.3]. Because of the quadratic nature of the loss function, there
is in fact a unique limit point, namely x∗. As shown in [9, Th. 1]
using results from regenerative process theory, the condition in (7)
is implied by the asserted boundedness and differentiability of L,
together with the hypotheses on {εn}.

The final step is to focus on the actual, non-projected algorithm
and show that, for a sufficiently large hyper-rectangle H centered
on x∗, the {εn} sequence will hit the set H infinitely often with
probability 1, so that we can apply the foregoing arguments to the
process observed at these recurrence times. We follow the Liapunov-
function approach; see, e.g., [21, Sec. 4.5] or [32]. The basic idea
is to identify a non-negative function V (x)—which can be viewed
as the “distance” of x from the point x∗—such that, for sufficiently
large n and for x(n) 6∈ H , the expected one-step drift is negative,
i.e., back toward H . In more detail, let Fn be as above. Then the
drift condition requires that there exists δ > 0 such that, for all
sufficiently large n,

ε−1
n E[V (x(n+1))− V (x(n)) | Fn] ≤ −δ if x(n) 6∈ H

with probability 1. If the drift condition holds, then H has the
desired recurrence property by Theorem 4.5.4 in [21]. (Indeed, the
sequence {x(n)} is “positive recurrent” in that the expected number
of steps between visits to H is finite.) In our setting, we can take
V (x) = ‖x − x∗‖22. To see this, fix x 6∈ H and s ∈ { 1, 2, 3 }.
Assume for ease of notation that x∗ = (0, 0, . . . , 0). Denote by En
expectation conditioned on Fn and, using (2)–(4), write

ε−1
n En[V (x(n+1))− V (x(n)) | x(n) = x, γn = s]

= −2xtEn[Yn | x(n) = x, γn = s]

+ εnEn
[
Y tnYn | x(n) = x, γn = s]

= − 3

m− 1

∑
i∈Us

2θi(θi − bi) + εn
3

m− 1

∑
i∈Us

ciθ
2
i ,

where θi = θi(x) = ai,i−1xi−1 + ai,ixi + ai,i+1xi+1 and ci =
4(a2i,i−1 + a2i,i + a2i,i+1). By choosing H sufficiently large, we
can ensure that x 6∈ H implies that |θi| is sufficiently large so that
2θi(θi − bi) ≥ θ2i for i ∈ Us, which implies that

En[V (x(n+1))− V (x(n)) | x(n) = x, γn = s]

≤ − 3

m− 1

∑
i∈Us

(2− εnci)θ2i

≤ −(2− εnc)θ2∗,

where c = max1≤i≤m−1 ci and

θ∗ = min
1≤i≤m−1

min
x 6∈H
|θi(x)|.

Unconditioning on γn, we have, with probability 1,

E[V (x(n+1))− V (x(n)) | Fn] ≤ −(2− εnc)θ2∗

whenever x(n) 6∈ H . Since εn → 0, we have 2 − εnc ≥ 1 for
sufficiently large n, and the drift condition holds with δ = θ2∗ > 0.

3.3 The DSGD Algorithm
The SSGD algorithm given in the previous subsection leads to

a distributed SGD algorithm for solving the system Ax = b. The
basis of this DSGD algorithm is the observation that SGD can be
run in a highly parallel manner within each stratum.

As before, assume that m− 1 is divisible by 3, and suppose that
we have a d-node shared-nothing environment such as MapReduce.
Again for simplicity, assume that d divides m − 1 and set r =
(m− 1)/d; we assume that r ≥ 3. We distribute the matrix A and
vector b only once across the d nodes, with node q receiving the co-
efficients { ai,j : r(q − 1) ≤ i ≤ rq and i− 1 ≤ j ≤ i+ 1 } and
br(q−1)+1, br(q−1)+2, . . . , brq . Whereas most ai,j coefficients ap-
pear at a unique node, some “boundary” coefficients appear at two
successive nodes.
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Figure 3: Stratum elements and node assignments for x com-
ponents in DSGD algorithm (m − 1 = 18 components, d = 3
nodes). Solid circles denote stratum elements for stratum s =
1, 2, 3.

The individual steps in DSGD are grouped into sub-epochs, each
of which amounts to processing one of the strata; we define an
epoch to comprise a sequence of three sub-epochs. In more detail,
DSGD makes use of a sequence {(ξk, Tk)}, where ξk denotes the
stratum selector used in the kth sub-epoch, and Tk the number of
steps to run on the selected stratum. Note that this sequence of pairs
uniquely determines an SSGD stratum sequence as in Section 3.2:
γ1 = · · · = γT1 = ξ1, γT1+1 = · · · = γT1+T2 = ξ2, and so
on. The {(ξk, Tk)} sequence is chosen such that the underlying
SSGD algorithm, and hence the DSGD algorithm, is guaranteed to
converge. Once a stratum ξk has been selected, we perform Tk SGD
steps on Uξk ; this is done in a parallel and distributed manner, as
follows.

Suppose that ξ1 = 1, so that we first run T1 steps of the SGD
algorithm on stratum s = 1. We distribute x(0) across the d nodes,
with node q receiving components x(0)r(q−1), x

(0)

r(q−1)+1, . . . , x
(0)
rq−1;

see Figure 3. (Node d receives the additional component x(0)m−1.)
We keep the step size fixed at ε during the T1 processing steps of
this stratum.1 Observe that, by (2)–(4), whenever the nth SGD step
randomly selects an index α(n) = i corresponding to a component
x
(n)
i at a node q and then updates x(n) by adding the term −εYn =

−ε(m−1)∇Li(x(n)), the only affected components are x(n)i−1, x(n)i ,
and x(n)i+1, which are also at node q by design; the coefficients of
A and b needed to compute the update also reside at node q. The
crucial observation is that updates for different stratum elements
have completely disjoint effects. For example, suppose that we run
SGD in stratum 1 and that the first four random elements selected
are x7, x4, x10, and x12. The update obtained by the addition of
−ε(m−1)∇L1(x7) to x affects only elements x6, x7, and x8. The
update based on x4 only affects x3, x4, and x5. These two updates,
and indeed all four updates, can thus be applied in any order. More
generally, we obtain the same result after T1 SGD steps in stratum 1
either by executing the T1 steps in sequence or by executing the
steps at the different nodes independently and in parallel and simply
summing the updates; see Theorem 4 in [8] for a formal argument.

For the stratification scheme of Figure 3 it is in fact the case that
we can apply the SGD updates within a node in arbitrary order. Thus,
if the sequential algorithm chooses components in U1 at random, we
can correctly “simulate” the algorithm by first generating a random
vector W ≈ Multinomial

(
T1, (1/d, 1/d, . . . , 1/d)

)
to determine

the number of samples to take at each node; then, in parallel at each
node q, we draw a sample of Wq components with replacement
and process updates corresponding to these components in arbitrary
order. The computation of Wq can be performed in a distributed

1We can handle schemes where the step size changes from step
to step rather than at each sub-epoch, but this requires complex
bookkeeping and random number synchronization.
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Figure 4: Stratum elements and node assignments for x compo-
nents in alternative DSGD algorithm (m− 1 = 18 components,
d = 3 nodes). Solid circles denote stratum elements for stratum
s = 1, 2, 3.

manner by specifying a pseudorandom number generator (PRNG)
and running an independent instance of the PRNG at each node,
with all PRNGs initialized using the same pseudorandom number
seed. An even simpler scheme—which we use in our experiments—
samples every element in stratum 1 exactly once. Elements are
selected according to a sequence that is randomly and uniformly
selected from among all possible ni! such sequences, where ni is the
number of elements at node i that belong to stratum 1. This approach
balances randomness with thorough coverage of the elements in
the stratum, and was found to work well in the setting of matrix
factorization [9].

The SGD algorithm is run on the other two strata in an analo-
gous manner, with a slight reshuffling of the data required at each
change of stratum. If, for example, we have taken T1 SGD steps
(in parallel) on stratum 1, and now wish to take T2 steps on stra-
tum 2, each node q > 1 needs to transmit the leftmost component
x
(T1)

r(q−1) to node (q − 1). After such a transfer, each node q now

contains the components x(T1)

r(q−1)+1, x
(T1)

r(q−1)+2, . . . , x
(T1)
rq . Similar

data transfers are required at each sub-epoch. As discussed in Sec-
tion 4.1 below, the Hadoop implementation of DSGD “hides” these
transfers within the standard initialization processing for a map job,
minimizing network traffic.

Analogously to our desire to trade randomness and thoroughness
when running SGD within a stratum, we also want to trade off these
two factors when selecting the strata themselves. At one end of the
spectrum, we can visit the strata randomly, in an i.i.d. manner, i.e.,
so that the sequence {ξk} is i.i.d.. Then the start of each sub-epoch
corresponds to a regeneration point, so that Theorem 3.1 applies and
convergence is assured. Our preferred approach is to systematically
visit each of the three strata during each epoch. The sequence in
which to visit the strata is chosen at random from the set of the
3! = 6 possible sequences. In this case, the regeneration points
correspond to the epochs rather than the sub-epochs.2 As with the
previous intra-stratum sampling scheme, this latter approach was
found to work well in the setting of matrix factorization [9].

3.4 An Alternative DSGD Algorithm
An alternate version of the algorithm of the previous section can

be obtained by choosing a different set of strata. As before, assume
that m − 1 is divisible by 3, and that we have d nodes, where d

2The convergence argument in these cases is actually slightly
subtle: when applying Theorem 3.1 we take each index i ∈
{ 1, 2, . . . ,m− 1 } as its own stratum to ensure the conditional
unbiasedness property of the gradient estimates, and observe that
the regeneration points—which were defined with respect to the
three “big” strata—also correspond to regeneration points with re-
spect to the m− 1 small strata.



divides m− 1. Set r = (m− 1)/d and

U1 =

d⋃
q=1

{ r(q − 1) + 1, r(q − 1) + 2, . . . , rq − 2 }

U2 =

d⋃
q=1

{ r(q − 1) + 2, r(q − 1) + 3, . . . , rq − 1 }

U3 =

d⋃
q=1

{ r(q − 1) + 3, r(q − 1) + 4, . . . , rq } .

In general, these three strata overlap; see Figure 4. The resulting
DSGD algorithm is almost identical to the previous version. The
A and b coefficients are distributed in the same manner, as are the
components of x. Updates at distinct nodes can still be performed
independently and in parallel. The main difference is that, within a
node, updates to the various x components are no longer disjoint,
so that the order in which updates are processed can no longer be
arbitrary. However, we can still systematically sample each stratum
element during a sub-epoch and systematically sample each stratum
during an epoch, as described previously.

3.5 Multivariate Time Series
Our approach generalizes to multivariate time series, but there

are more options for choosing strata in this setting. Supposing that
each data value di is a vector of length v > 1, we now solve a
system of the form AX = B, where X,B ∈ <(m−1)×v . The loss
function is now given by L(X) =

∑m−1
i=1

∑v
j=1 Li,j(X), where

Li,j(X) = (Ai·X·j − Bi,j)
2. A stratum might take the form

Us × { 1, 2, . . . , v }, where Us is a set of i values as in previous
sections, or the set { 1, 2, . . . , v }might be decomposed into a set of
q overlapping or non-overlapping strata Z1, . . . , Zq and the overall
strata might comprise all sets of the form Us × Zt. The preferred
stratification scheme may depend on the relative sizes of m and v.
We will explore these issues in future work.

4. INTERPOLATION IN MAPREDUCE
The DSGD algorithm, particularly the alternative version of Sec-

tion 3.4, is well-suited to MapReduce. In this section we describe
our Hadoop implementation of DSGD and explain how our modifi-
cation of the standard InputFormat operator leads to a map-only
implementation with low network communication overheads. We
also describe several other practical implementation details.

4.1 Hadoop Implementation
In Hadoop, data is physically divided into disjoint blocks that

have a default size of 64 Mb and are distributed across networked
machines. The data is also logically divided into splits by the
Hadoop InputFormat operator, and each mapper is assigned
exactly one split to process. A split roughly contains one block’s
worth of data; typically, splits are disjoint, and the last few bytes of
data in a split may physically reside in a different block. During the
map phase of a MapReduce job, the mapper first obtains, over the
network, any missing bytes in its split, then reads and processes the
data in the split, and finally writes its output to local files. In the
reduce phase, these local files are shuffled over the network to a set
of reducers, who complete the data processing; the vast majority of
the network traffic is generated in the reduce phase.

We implement the DSGD algorithm as a sequence of map-only
jobs to minimize network communication costs. Each abstract
“processing node” referred to in Section 3 corresponds to a mapper
in Hadoop. Communication of data between mappers is effected by
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Figure 5: Split boundaries for the three DSGD strata.

configuring the InputFormat to allow adjacent splits to overlap
each other by a couple of rows.

Specifically, consider the version of DSGD that uses the strata
given in Figure 4, and suppose that the first three strata visited by the
algorithm are stratum 1, stratum 2, and then stratum 3. The contents
of the first two overlapping splits are illustrated in Figure 5; the dark
shaded area indicates that rows 6 and 7 belong to both splits. The
ith row contains the nonzero coefficients in the ith row of matrix A,
along with bi and the initial value of xi. Note that, except for i = 1,
we do not need to explicitly store the coefficient ai,i since it can be
computed from the adjacent coefficients as ai,i = 2(ai,i−1+ai,i+1).
Also note that there is only one physical copy of each of these rows:
row 7 and part of row 6 are located in the block that primarily
belongs to mapper 2, and the other part of row 6 is located in the
block that primarily belongs to mapper 1.

During processing of stratum 1—see Figure 5(a)—mapper 1 re-
trieves data for rows 6 and 7 over the network, and then updates
the values of x1–x4 using the data in rows 1–5. Similarly, after
obtaining its missing “boundary data”, mapper 2 updates the values
of x7–x10 using the data in rows 6–11. In the figure, the dashed
rectangles indicate the xi values that are updated. (For this first
iteration, the data fetched over the network is not actually used in
the computations.) Because of the design of the strata, there are no
read/write conflicts between mappers 1 and 2. The new version of
split 1 is output by mapper 1 as part 1 and the updated split 2 is
output by mapper 2 as part 2. The next map job processes stratum 2;
see Figure 5(b). Mapper 1 updates x2–x5 based on rows 1–6 and
mapper 2 updates x8–x11 based on rows 7–12. When processing
stratum 3 as in Figure 5(c), mapper 1 first obtains part of row 6 and
row 7 over the network, before updating x3–x6 based on rows 2–7.
Row 7 has previously been updated by mapper 2, and this modifi-
cation is therefore “passed” by mapper 2 to mapper 1 during this
initialization phase of the map-processing step. Similarly, after ob-



taining its upper-boundary data, mapper 2 updates x9–x12 based on
rows 8–13.

The key observation is that the only actual data transfer over a
network occurs during the standard initialization phase of each map
job, and less than 2M rows are transferred overall, where M is
the number of mappers. Thus the network overhead for DSGD is
minimal relative to algorithms that require reduce phases.

4.2 Other Practical Considerations
The stochastic approximation literature often works with step

size sequences roughly of form εn = 1/nα with α ∈ (0.5, 1] as
discussed previously. Theorem 3.1 guarantees asymptotic conver-
gence for such choices. To achieve faster convergence over the
finite number of steps that are actually executed, we use an adaptive
method for choosing the step size sequence. We exploit the fact
that—in contrast to SGD in general—we can determine the current
loss after every epoch, and thus can check whether the loss has
decreased or increased from the previous epoch. We then employ a
heuristic called bold driver, which is often used for gradient descent.
Starting from an initial step size ε0, we (1) increase the step size
by a small percentage (say, 5%) whenever the loss decreases over
an epoch, and (2) drastically decrease the step size (say, by 50%) if
the loss increases. Within each epoch, the step size remains fixed.
Given a reasonable choice of ε0, the bold driver method worked
extremely well in our experiments. To pick ε0, we leverage the fact
that many compute nodes are available, replicating a small subse-
quence of the data to each node and trying different step sizes in
parallel. Specifically, we try step sizes 1, 1/2, 1/4, . . . , 1/2d−1;
the step size that gives the best result is selected as ε0. As long as
the loss decreases, we repeat a variation of this process after every
epoch, trying step sizes within a factor of [1/2, 2] of the current step
size. Eventually, the step size will become too large and the loss
will increase. Intuitively, this happens when the iterate has moved
closer to the global solution than to the local solution. At this point,
we switch to the bold-driver method for the rest of the process.

5. EXPERIMENTS
We conducted a set of experiments to study the convergence rate,

solution quality, and scalability of the two DSGD variants relative
to alternative methods. Overall, the convergence rate and quality of
the cubic-spline solution for DSGD was on par or better than the
alternatives, and DSGD appeared to scale well.

5.1 Setup
We implemented DSGD with strata as in Figure 3 and the alter-

native DSGD algorithm (ADGSD) with strata as in Figure 4, along
with the DGD and PCR algorithms as in Sections 3.1 and 1. We
used two different implementations, one for initial in-memory ex-
periments, using R, and one for scaling experiments over very large
datasets, using Hadoop. The in-memory implementation targets
datasets that are small enough to fit in main memory. The goal
here was to obtain baseline results on convergence rate and spline
quality, independent of the particularities of Hadoop. The second
implementation, based on Hadoop, runs on a cluster of IBM x3650
M2 racks with 8 nodes interconnected with a high-speed 10Gbit net-
work. Each node has 8 Intel Xeon E5560 cores running at 2.8GHz,
64GB of main memory and 8 SATA attached disks. One node was
reserved as the namenode.

We used two time series of IBM stock prices since 1990 for our
experiments on real-world data. The Open and Volume time series
comprise daily opening prices and trading volumes. For scaling
experiments, we generated massive synthetic datasets by repeatedly
replicating the original time-series data. For each of the Open and

Volume time series, we created two kinds of source-target time-series
pairs, corresponding to two different spacings of source time ticks.
We generated the first type of source time series by taking the first
half of the original time series and then, from this subsequence,
retaining only those data points corresponding to odd-numbered
time ticks. We then constructed a corresponding target time series,
denoted TargetTS1, by interpolating data points to replace the ones
that were not retained. We also generated a second type of source
time series by taking all of the original data and then retaining every
fourth time tick. We again interpolated values for the non-retained
data points to generate the corresponding target time series, denoted
TargetTS2. For an original time series of length m, both types of
source time series comprise m/4 data points. Thus the number of
spline coefficients to compute is the same, allowing fair performance
comparisons. (Note that the time to compute the spline constants is
independent of the number of interpolated target points.)

5.2 Convergence Rate and Spline Quality
We evaluated the relative convergence rates of the loss function for

sequential (i.e., non-distributed) versions of SGD, DSGD, ADSGD,
and DGD, using the R implementation. We also checked the post-
convergence quality of the resulting spline interpolations relative
to the non-iterative PCR and Thomas [31] algorithms. The latter
algorithm is simply Gaussian elimination, tailored to the exploit the
tridiagonal matrix structure; it requires only two scans over the data,
but is inherently sequential—see [5, pp. 153–156].

We measured the convergence rate by recording the loss-function
value—i.e., ‖Ax− b‖22—after each “iteration”, where an iteration
corresponds to a full scan over the base data. (Note that DSGD
processes three strata per iteration, where each stratum contains
roughly one third of the data, whereas ADSGD processes only one
stratum per iteration, where each stratum contains virtually all of
the base data.) We emphasize that for this comparison, all of the
techniques require roughly the same time per iteration, because the
processing time is dominated by the I/O required to perform the
full scan. Representative results are depicted in Figure 6. Observe
that SGD, DSGD and ADSGD typically converge faster than DGD.
The Open time series is much “smoother” than the Volume time
series, and we observe that the lack of smoothness significantly
decreases the convergence rate of the deterministic DGD algorithm.
In contrast, the lack of smoothness has almost no effect on the family
of stochastic SGD, DSGD, and ADSGD algorithms. We used the
bold-driver technique for adjusting the step-sizes as described in
Section 4.2, and an interesting observation is that an initial value of
0.2 for the initial step size resulted in consistently good performance
for all time series studied. This phenomenon is probably due to the
high quality of the initial guess for x(0), as described in Section 3.1.

In contrast to the gradient descent algorithms, the PCR algorithm
is not an iterative approximation algorithm and does not provide any
useful intermediate results. Recall that PCR requires log2m scans
over the data, where m is the number of source time ticks. In this
experiment, PCR required 13 scans to complete. SGD, DSGD and
ADSGD all converged after 10 iterations (i.e., after 10 scans).

We assessed the post-convergence quality of the spline interpola-
tions for each source time series by computing interpolation errors.
Our error metric was the normalized root mean square deviation
(NRMSD) of the differences between the actual and interpolated val-
ues in the source and target time series. As a baseline for comparison,
we also computed error values for the PCR and Thomas algorithms.
As can be seen from Table 1, all of the iterative algorithms achieved
essentially the same solution quality upon loss-function convergence
as the baseline PCR and Thomas algorithms. The algorithms had
lower error on the relatively smooth Open time series than on the
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Figure 6: Convergence Comparison (using R)

Method
NRMSD(%)

TargetTS1 TargetTS2
Open Volume Open Volume

DGD 0.901 6.28 0.971 5.71
SGD 0.901 6.28 0.971 5.71

DSGD 0.901 6.28 0.971 5.71
ADSGD 0.901 6.28 0.971 5.71
Thomas 0.901 6.28 0.971 5.71

PCR 0.901 6.28 0.971 5.71

Table 1: Quality of interpolating cubic spline

noisier Volume time series.

5.3 Scalability
We tested scalability using the Hadoop environment, focusing on

the ADSGD and PCR algorithms because DGD runs out of memory
and the Thomas algorithm cannot be parallelized. DSGD can be
implemented in Hadoop, but not as efficiently as ADSGD, because
the time to process one DSGD stratum (which contains roughly one
third of the base data) roughly equals the time to process all of the
data. This is because Hadoop does not offer an efficient way to avoid
I/O of those tuples that DSGD does not touch. In essence, a Hadoop
implementation of DSGD would require three scans over the base
data in order to process the data once. One way to avoid this problem
would be to first execute a MapReduce job that separates the input
base data into three files, one for each stratum, and then execute one
map job per file, for a total of three map jobs per iteration. This
approach, however, would magnify the overheads of Hadoop task
spawning and require a full MapReduce job for the preprocessing
step. In contrast, ADSGD avoids this complication altogether, since
one stratum corresponds roughly to all the base data (except at most
two boundary tuples per split).

We found ADSGD to have good scalability properties on Hadoop.
Figure 7(a) shows the wall-clock time per ADSGD iteration for
varying numbers of concurrent tasks and varying data sizes—the
latter measured in GBs as well as the number of equations in the
Ax = b system (which essentially equals the number of source time
ticks). For comparison, we also depict the performance of PCR.
Unlike ADSGD, the PCR algorithm requires a shuffle/reduce phase,
which degrades performance. As can be seen, ADSGD is two to
three times faster per iteration than PCR on average. Recall that the
number of PCR scans over the data increases logarithmically with
the number of source ticks; for example, it required 30 full scans

for the 96GB (one billion time ticks) dataset. In contrast, ADSGD
only required 10 iterations to converge, and hence 10 full scans. The
speed-up of both approaches is roughly linear up to 28 concurrent
tasks; after that the speed-up performance degrades. The reason
is that the amount of data each task has to process becomes quite
small, and the actual time to execute ADSGD or PCR is dominated
by Hadoop overheads, primarily the time required to spawn tasks.
These limits to speed-up are standard for Hadoop processing.

Figure 7(b) depicts the scale-out performance when the dataset
size and the number of concurrent tasks are repeatedly doubled.
The processing initially remains almost constant as the dataset size
and number of concurrent tasks are each scaled up by a factor of
two. ADSGD has much better scale-out performance than PCR,
because PCR requires a reduce phase that shuffles essentially all of
the data over the fixed-bandwidth network. As we move to larger
datasets, PCR’s performance is limited by the network bandwidth.
At 8 billion source time ticks, for example, PCR shuffled 2.1TB
of data over the network (about three times the base data, since
every equation requires itself plus two others during the reduce
phase), whereas ADSGD did not shuffle any data. Note that we
used a rather fast and expensive network in our experiments; for
cheaper commodity network components, the superior performance
of ADSGD over PCR would be even more noticeable.

6. CONCLUSIONS
We have indicated the need for transforming massive time-series

data at scale when composing large-scale, high-resolution simu-
lation models, as in Splash, and in other data-integration settings.
Our novel DSGD algorithm allows scalable cubic-spline interpola-
tion of time series and is well suited to MapReduce environments;
specifically, our map-only Hadoop implementation minimizes net-
work communication. Our experiments show that DSGD can yield
high-quality interpolations at scale, and has superior empirical per-
formance with respect to the well regarded PCR algorithm.

In future work, we plan to conduct a comprehensive experimental
comparison of our DSGD algorithm with other parallel algorithms
for spline interpolation. We will also investigate the extension of
our methods to multivariate settings and to other useful sparse linear
systems of equations.

7. ACKNOWLEDGMENTS
We would like to thank Yinan Li, Wang-Chiew Tan, and Ignacio

Terrizzano for their contributions to the Splash time-alignment com-



x1
x1

x0.59
x0.67

x0.36
x0.62

x1

x1

x0.61

x0.66

x0.36

x0.5

x1

x1

x0.57

x0.68

x0.38

x0.51

x1

x1

x0.52

x0.67

x0.36

x0.5

096GB(1 bil eq) 192GB(2 bil eq)

384GB(4 bil eq) 768GB(8 bil eq)

0

5000

10000

15000

20000

25000

0

5000

10000

15000

20000

25000

14 28 56 14 28 56

#concurrent tasks

W
al

l 
cl

o
ck

 t
im

e 
p
er

 I
te

ra
ti

o
n
 (

se
c)

ADSGD PCR

(a) Speed-Up

0

2000

4000

6000

8000

10000

x1

x1

x1.25

x1.47

x1.79

x2.27

192GB(2 bil eq)@14 384GB(4 bil eq)@28 768GB(8 bil eq)@56

Problem size@#concurrent tasks

W
al

l 
cl

o
ck

 t
im

e 
p
er

 I
te

ra
ti

o
n
 (

se
c)

ADSGD PCR

(b) Scale-Out
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