ISOMER: Consistent Histogram Construction Using Query Feedback

U. Srivastavd P.J.Haas V.Markl> N.Megidd® M. Kutsck® T. M. Trarf*

1 Stanford University 2 |BM Almaden Research Center 3 IBM Germany 4 IBM Silicon Valley Lab
usriv@stanford.edu {phaas,marklv,megidd@almaden.ibm.com kutschm@de.ibm.com minhtran@us.ibm.com
Abstract corporate database updates, thus exacerbating the oderhea

of this method. Moreover, since proactive methods inspect
Database columns are often correlated, so that cardi- only data and not queries, they generally do not yield the
nality estimates computed by assuming independence oftebest histogram for a given query workload [4].
lead to a poor choice of query plan by the optimizer. Mul- In this paper, we consider an alternative method [1, 4, 6,
tidimensional histograms can help solve this problem, but 11] of building histograms through query feedback (hence-
the traditional approach of building such histograms using forth called thereactive method). For example, consider
a data scan often scales poorly and does not always yielda query having a predicateake = ' Honda’', and sup-
the best histogram for a given workload. An attractive al- pose that the execution engine finds at runtime that 80 tu-
ternative is to gather feedback from the query execution en-ples from theCar table satisfy this predicate. Such a piece
gine about the observed cardinality of predicates and use of information about the observed cardinality of a predicat
this feedback as the basis for a histogram. In this paper weis called a query-feedback record (QFR). As the DBMS ex-
describe ISOMER, a new feedback-based algorithm for col-ecutes queries, QFRs can be collected with relativellittl
lecting optimizer statistics by constructing and mainiagn overhead [17] and used to build and progressively refine a
multidimensional histograms. ISOMER uses the maximum-histogram over time. For example, the above QFR may be
entropy principle to approximate the true data distributio used to refine a histogram omke by creating a bucket for
by a histogram distribution that is as “simple” as possible ' Honda' , and setting its count to 80.
while being consistent with the observed predicate cardi- The reactive method is attractive since it scales ex-
nalities. ISOMER adapts readily to changes in the under- tremely well with the table size, does not contend for
lying data, automatically detecting and eliminating ineon database access, and requires no periodic rebuilding of the
sistent feedback information in an efficient manner. The histogram (updates are automatically incorporated by new
algorithm controls the size of the histogram by retaining QFRs). The histogram buckets may be chosen to best suit
only the most “important” feedback. Our experiments indi- the current workload, thereby efficiently focusing resesrc
cate that, unlike previous methods for feedback-driven his on precisely those queries that matter most to the user. Of
togram maintenance, ISOMER imposes little overhead, iscourse, the reactive method may lead to inaccuracies for
extremely scalable, and yields highly accurate cardigalit parts of the data that have never been queried. However,
estimates while using only a modest amount of storage. such errors can be ameliorated, for example, by starting
with a coarse histogram built proactively [4].
1. Introduction Previous proposals for histogram construction using
query feedback have lacked either accuracy or efficiency.
Some proposals, e.g., STGrid [1], use heuristics to refine
the presence of correlated attributes, cardinality eséma the h|_stogram based on a new QFR, thereby leading to inac-
curacies in the constructed histogram. Other proposals, e.

based on independence assumptions can be grossly NaCCs T Holes [4], require extremely detailed feedback from the

rate [15], leading to a poor choice of query plan. Multidi- : .)
mensional histograms [14, 15] have been proposed for acavery execution engine that can be very expensive to gather

A s . ; ; at runtime. In this paper, we describe ISOMER (Improved
curate cardinality estimation of predicates involvingreer Statistics and Obtimization by Maximum-Entropv Refine-
lated attributes. However, the traditional method of biniid P y Py

these histograms through a data scan (henceforth called tha! ent), a new algorithm for feedback-driven histogram con-

. Struction. In contrast to previous approaches, ISOMER
proactivemethod) does not scale well to large tables. Such ; .
. S g .~ is both accurate as well as efficient. ISOMER uses the
a histogram needs to be periodically rebuilt in order to in-

Query optimization relies heavily on accurate cardinal-
ity estimates for predicates involving multiple attrilsitén

information-theoretic principle ahaximum entropjl0] to Our experiments indicate that for reactive histogram main-
approximate the true data distribution by a histogramidistr tenance, ISOMER is highly efficient, imposes very little
bution that is as “simple” as possible while being consisten overhead during query execution, and can provide much
with the observed cardinalities as specified in the QFRs. Inmore accurate cardinality estimates than previous tech-
this manner, ISOMER avoids incorporating extraneous— niques while using only a modest amount of storage.
and potentially erroneous—assumptions into the histogram. The rest of the paper is organized as follows. After sur-
The reactive approach to histogram maintenance entailsveying related work in the remainder of this section, we lay
a number of interesting challenges: out the basic architecture of ISOMER in Section 2 and in-
troduce its various components. In Section 3, we describe
. L how ISOMER uses the maximum-entropy principle to build
racy, the histogram distribution must always be con- histograms consistent with query feedback. Section 4 de-

sistent with all currently valid QFRs and not incorpo- X ; .
rate any ad hoc assumptions; see Section 3.2. F,revi_scnbes how ISOMER deals with changing data, and Sec-

ous proposals for feedback-driven histogram construc-tlon 5 details how ISOMER keeps the histogram within a

tion [1, 11] have lacked this crucial consistency prop- “n;'lt:{ed s\:/f)/acde budget by d'scafd'”g trTIatlvellty gngnp?_rtané
erty, even when the data is static. QFRs. We describe our experimental results in Section 6,

and conclude in Section 7.

1. Enforcing consistency To ensure histogram accu-

2. Dealing with data changes In the presence of up-
dates, deletes, and inserts, some of the QFRs collected 1 Related Work
in the past may no longer be valid. Such old, invalid
QFRs must be efficiently identified and discarded, and

their effect on the histogram must be undone. Existing work on multidimensional statistics can be

broadly classified as addressing either the problem of de-
3. Meeting a limited space budget Database systems ciding which statistics to build or that of actually buildin
usually limit the size of a histogram to a few disk them. This paper addresses only the latter problem. Many
pages in order to ensure efficiency when the histogramtypes of statistics have been proposed, e.g., histograsis [1
is read at the time of query optimization. Thus, we and wavelet-based synopses [13]; we restrict attention to
assume that there is a limited space budget for his-histograms.
togram storage. In general, adding more QFRs to the For building multidimensional histograms, proactive ap-

histogram while maintaining consistency leads to an proaches that involve a data scan have been proposed, e.g.

increase in the histogram size. To keep the histogramMHist [15], GenHist [9], and others [7, 14, 19]. As men-

size within the space budget, the relatively “important” tioned before, data scans may not effectively focus system

QFRs (those that refine parts of the histogram that areresources on the user’s workload and do not scale well to

not refined by other QFRs) must be identified and re- large tables. In principle, histograms can be constructed

tained, and the less important QFRs discarded. faster using a page-level sample of the data [5], but large

ample sizes—and correspondingly high sampling costs—

an be required to achieve sufficient accuracy when data
values are clustered on pages and/or highly skewed.

1. ISOMER uses the maximum-entropy principle (Sec- The idea of using query feedback to collect the statis-
tion 3.3) to approximate the true data distribution by tics needed for estimating cardinality was first proposed in
the “simplest” distribution that is consistent with all of [6]. The specific approach relied on fitting a combination
the currently valid QFRs. This approach amounts to of model functions to the data distribution; the choice of
imposing uniformity assumptions (as made by tradi- functions isad hocand can lead to poor estimates when the
tional optimizers) when, and only when, no other sta- data distribution is irregular. Query feedback is also used
tistical information is available. ISOMER efficiently in [17], but only to compute adjustment factors to cardinal-
updates the maximum-entropy approximation in anin- jty estimates for specific predicates, and not to build his-
cremental manner as new QFRs arrive. tograms. STGrid [1] and SASH [11] both use query feed-

back to build histograms, but they often have low accuracy

because their heuristic methods for adding new QFRs to the
histogram do not maintain consistency. ISOMER’s use of

3. An elegant feature of ISOMER is that the maximum- the well founded [16] maximum-entropy principle avoids
entropy solution yields, for free, an “importance” mea- this problem.
sure for each QFR. Thus, to meet a limited space bud- STHoles [4] is another approach that uses query feed-
get, ISOMER simply needs to discard QFRs in in- back to build histograms. The histogram structure of
creasing order of this importance measure. STHoles is superior to other bucketing schemes such as

ISOMER addresses each of the above challenges usini
novel, efficient techniques:

2. ISOMER employs linear programming (LP) to quickly
detect and discard old, invalid QFRs.

MHist [15], and for this reason is used by ISOMER. Un- Query — e PP
fortunately, the original STHoles maintenance algoritiem r | _(Compute fing_ [Eliminate !
quires, for each query and each histogram bucket, the com- % his‘OQ'amjé{ U eehback | \ Offline !
putation of the number of rows in the intersection of the ‘
guery and bucket regions. These detailed row counts, which
are used to decide when and where to split and merge buck-
ets, are usually not obtainable from the original query pred

icates alone. The query engine must therefore insert artifi- Que Feedback 1 ISOMER 1

Detect Store 3
Add new inconsisten ‘
feedback feedback

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

cial predicates that specify the (possibly recursive) btick - --.......__.2%re_______ w (invoked at times of light load)
boundaries. As the number of histograms and the number ~ Présent commercial DBMS

of buckets per histogram grows, the overhead of evaluating

this “artificial feedback” becomes so high as to make the Figure 1. ISOMER Architecture
STHoles maintenance approach impractical. (ISOMER, in
contrast, needs only the actual feedback that naturally oc
curs during query execution—namely, the number of rows
processed at each step during the query plan—which ca
be monitored with low overhead [17].) Finally, STHoles,
unlike ISOMER, does not provide principled methods for
addressing issues of inconsistent feedback and limitsen th
available memory for storing the histogram.

The principle of maximum entropy has been used in[12],
but for the significantly different problem of consistently
estimating the selectivity of conjuncts of predicates such
as se{p1 A p2 A ps A pa), given partial selectivities such as
sel(p1), selp2 A ps), selp2 A p3 A ps), and so forth. le.,
the methods in [12] permit the exploitation of existing mul-
tidimensional statistics (not necessarily from histogggm
whereas the current paper is concerned with the collection
of a specific type of statistic.

togram from the database statistics. It then accessesuhe ne
"QFRs and adds them to the current histogram. This process
mainly involves forming buckets corresponding to the new
erRs, and is explained in Section 3.4.1.

As discussed in Section 3.2 below, a histogram must be
consistent with respect to both new and previous QFRs.
However, because of updates to the data these QFRs may
be contradictory, in which case there does not exist a his-
togram consistent with all QFRs. Thus ISOMER's first task
is to detect and discard old, inconsistent QFRs. For this pur
pose, ISOMER keeps a list of QFRs previously added to the
histogram in aroffline storeas depicted in Figure 1. ISO-
MER reads the previous QFRs from the offline store and
uses linear programming to find and eliminate inconsistent
QFRs. This process is described in Section 4. Note that the
offline store does not have to be read at query-optimization
time and hence does not encroach on the space budget al-
lowed for the histogram. In any case, the size of the offline
2. ISOMER architecture store is not a concern since it cannot grow bigger than the

size of the maintained histogram. Indeed, if there are more

Figure 1 shows the architecture of ISOMER and where QFRs than buckets, then some of these QFRs will be either
it would fit in a modern commercial DBMS. The left por- inconsistent or redundant and hence will be eliminated; see
tion of the figure shows an ordinary DBMS. Here, a query is Section 3.4.2.
first fed to a cost-based query optimizer, which produces a Once ISOMER obtains a consistent set of QFRs,
plan for the query based on the available database statistic the algorithm computes the histogram according to the
Presently, all commercial systems apply the proactive ap-maximum-entropy principle. We describe this computation
proach for maintaining statistics that requires database a in Sections 3.4.2 and 3.4.3. If the histogram is too large to
cess (as shown by the dotted arrow)_ The chosen query p|aﬁ|t within its allotted space, ISOMER SeleCtively discards
is then executed by the runtime engine. We prototyped 1SO-the relatively “unimportant” QFRs in order to reduce the
MER on top of DB2 UDB, which can measure and store histogram size. Intuitively, a particular QFR is unimpaotta
actual predicate cardinalities or QFRs at run time. if the information provided by that QFR is already provided

Due to efficiency concerns, a QFR is not immediately by other QFRs, i.e., if the QFR refines a portion of the his-
used to refine the histogram as soon as it is obtained. In-togram that is already sufficiently refined by other QFRs.
stead, the QFRs are collected in a query feedback store and he process for detecting and discarding unimportant QFRs
used in batches to refine the histogram. During periods ofis described in Section 5.
light load, or during a maintenance window, the database Any inconsistent or unimportant QFR that ISOMER dis-
systems invokes the ISOMER component. On invocation, cards is also removed from the list of QFRs that are cur-
ISOMER uses the QFRs accumulated in the query feedbacKently incorporated into the histogram, and the revised lis
store to refine the histogram. The right portion of the figure iS Written back to the offline store. The final histogram is
shows the various components of ISOMER. computed according to the maximum-entropy principle and

ISOMER begins by reading the currently maintained his- Written back into the database statistics.

3. Incorporating Feedback White(25) — | N(make = ‘Honda’, color = ‘White') = 25/

O color=

After defining the notions of histogram and query feed- | !
back that we use throughout the paper (Section 3.1), we in- OmakaHonda(gO)% J
troduce a running example (Section 3.2) that illustrates th
use of query feedback to build and refine a histogram, the €& (100 Query Feedback
importance of maintaining consistency, and the difficsltie Figure 2. Gathering Query Feedback (QFRs)
that arise therein. We then introduce the maximum-entropy
principle to address these issues (Section 3.3), and explai

N(make = ‘Honda’) = 80

Figure 2 shows a possible plan for executing this query; the

its use in ISOMER (Section 3.4). a_ctual number of tuples at each st_age are s_hown in parenthe-
] sis. The figure also shows the various predicgties which
3.1. Histograms and Feedback N(g) can be collected during query execution; the cardi-

Given a tabler ComprisingN tup|eS, we wish to build a nallty information for these predicates Comprise the QFRS
d-dimensional histogram over attribut8s, ..., Aq of table ~ Gathering of QFRs is already supported by several commer-
T. For each numerical attribuly, denote byl; andu; the cial database systems and has been shown [17] to have very
minimum and maximum values & in the table. We as- low runtime overhead (typically less than 5%).
sume that these values are available from one-dimensional Suppose that we wish to build a two-dimensional his-
database statistics). A categorical attributeéy having ~ togram on the attributesake andcol or by using query
D; distinct values can be treated as numerical by mappingfeedback. Also suppose for simplicity that there are only
each distinct value to a unique integer [hD;], so that two distinct makes (sayHonda’ and’ BM/), and only
li =1 andu; = D;. The space in which the tuple values two distinct colors (say Bl ack’ and’ Wi te’) in the
lieis.o = [l1,u1] X [l2, U] X ... x [lg, ug]. Car relation. Then any multidimensional histogram on

A multidimensionalhistogramis a lossy compressed these attributes has at most four buckets (Figure 3). We
representation of the true distribution of tuples.if that assume that our histogram stores all of these four buckets.

is obtained by partitioning” into k > 1 mutually disjoint The first QFR that we add to the histogram is the total
regions calledbuckets and recording the number of tu- number of tuples in the table. This number can be obtained

ples inT that fall in each bucket. ISOMER actually main- from system catalog statistics. Suppose there are 10Gstuple

tains an a . . . }n theCar table. This QFR can be expressed as:
pproximate histogram that records an estimate o

the number of tuples that fall in each bucket. Denote by n(bs) +n(by) +n(bz) +n(bs) = 100 (1)

b1,by, ..., by the k histogram buckets, b@(b;) the region

of . that is covered by, and byn(b;) the number of tu-

ples estimated to lie ib;. The tuples in each buckbt are

assumed to be uniformly distributed through@b;).

At this point, there are various possible assignments of
values to then(b;)’s that will make the histogram consis-
tent with this single QFR. In the absence of any additional

S : knowledge, we assume, as do traditional optimizers, that
fe(-:-lc?tg::/lkER gggg%@:"y? glst%gggr:n ti?T?eS edei(:]]:’Jeryt/he vqlues are distril_)uted l_,lniformly. Henc_e, the_ histogram ob-
system maintains a list of QFRs of the form tained after adding t_h|s QFR is one in which eatly)
(a1,N(a1)), (a2,N()), - - -, (Gm, N(clm)) for somem > 1, ~ equals 25, as shown in Figure 3(b).

: - We now add the QFRI(make = ' Honda’') =80 to
where each is a predicate of the forfn the histogram. This QFR can be expressed as:

(Xl SC]. SYl)/\/\(Xd’ SCd’ Syd/) n(b2)+n(b4) —80 (2)

and N(q) is the number of tuples that satisty Here
d’ <d andC,,...,Cy are distinct attributes from among
Ay, ..., Aq. We assume that @; is categorical, ther; =yj,
so that the conjunck; < C; <y; is actually an equality
predicate. In the following sections, we denoteR{y) the
subset of the regiory” for which q is true.

To make the histogram consistent with (2) while preserv-
ing uniformity betweem(b,) andn(bs), we setn(by) =
n(bs) = 40. The resulting histogram is shown in Fig-
ure 3(c). At this point, the STGrid [1] approach would con-
sider the process of adding this QFR to be finished, with
Figure 3(c) as the final histogram.
. Notice, however, that the histogram in Figure 3(c) is no
3.2. A Running Example longer consistent with (1). The expressions in (1) and (2)
Consider aCar relation with attributesmake and together imply thain(b;) + n(bs) = 20. To enforce con-

col or, and suppose that a user executes the query sistency with this equation as well as uniformity between
SELECT * FROM Car WHERE n(b;) andn(bs), we setn(b;) = n(bz) = 10. The final con-
make = 'Honda’ AND color = VWhite’ sistent histogram is shown in Figure 3(d).
1The maximum-entropy principle can be applied to general patetic Observe that even though we added information only

but we have initially focused on conjunctive predicatesS®OMER. about Hondas, the histogram now gives a more accurate es-

BMW Honda

Black | n(ly) | n(p) | #cars =100 25 25 | #Hondas =80 25 40 Maintain 10 40 | #Whitecars=30 ~5_ | 65
White | n(by) | n(h,) 25 | 25 25 | 40 | Consistency | 19 | 49 15 | 15
- ~N
(a) (b) (c) (d) (e)

Figure 3. Running Example

timate of the frequency of BMWSs. This improvement is a principle (see, e.g., [16]) provides a well grounded cidtier
direct result of our final histogram adjustment in which we for selecting a unique distribution from among the can-
enforced consistency with both the QFRs. didates. Specifically, the principle prescribes selectibn
In summary, it is reasonable to impose the following re- the candidate? = (py, p2,..., Pn) that has the maximum
qguirements when adding a new QFR to the histogram: entropy valueH (2?), whereH (2) = — 3, piIn(pi). The

1. Consistency After adding a new QFR, the histogram maximum-entropy principle can be justified informally as
should be consistent with all QFRs added so far. follows. From information theory, we know that entropy
measures the uncertainty or uninformativeness in a distri-

bution. For example, the value of the entropy ranges from
- i 0—when a specified outcome occurs with certainty—to a
histogram should not be arbitrary, but must be based y4yimum of I(n) when no information is available and all
on the traditional assumption of uniformity. outcomes are equally likelgp, = --- = pn = 1/n). Thus
So far in this example, it has been easy and intuitive the maximum-entropy principle leads to a choice of the
to apply the uniformity assumption. However, it is not al- simplest, i.e., most uninformative distribution possitiiat
ways clear how to impose uniformity. To illustrate, suppose is consistent with the available information. To choose a
that the next QFR we add to the histogranhigol or - = distribution with lower entropy would amount to assuming
whi t &) = 30. This QFR can be written as: information that we do not have; to choose one with a
n(bz) +n(bs) = 30. (3) higher entropy would ignore the information that we do
have. The maximum-entropy distribution is therefore the
If we employ the néve solution of making the histogram only reasonable choice. A more formal justification of the
consistent with (3) while imposing uniformity ar{bs) and principle can be found in [16]. For a continuous probability
n(bs), we getn(bg) = n(bs) = 15. Further enforcing con- distribution with probability density function (pdfy?(u),
sistency with (1) and (2), we get the final histogram shown the entropy is defined ad(%) = [, 2(u) In(2(u)) du,
in Figure 3(e). This solution clearly does not enforce uni- and the foregoing discussion extends to this setting in an
formity?: although white Hondas and white BMWs are opvious way.
in equal proportion, there are far more black Hondas than For ISOMER, the maximum-entropy principle can also
black BMWs. This non-uniformity among black cars has pe justified as a means of ensuring uniformity. As men-
not been indicated by any added QFR, and is only due totioned above, entropy is maximized for a uniform distri-
our ad-hoc method of enforcing consistency. To enforce pution. Thus, choosing the distribution according to the
consistency while avoiding unsatisfactory results as @ Fi maximum-entropy principle facilitates our goal of main-

ure 3(e), we turn to the information-theoretic principle of taining consistency and uniformity at the same time.
maximum entropy, described next.

2. Uniformity : If there are multiple histograms consis-
tent with all of the QFRs, then the choice of the final

3.4. Maximum Entropy in ISOMER

We first describe the histogram structure used in 1ISO-
Consider ~a discrete probability distribution \MER (Section 3.4.1). We then show in Section 3.4.2 how
(P1,P2,-..,pn) ON n distinct outcomes, i.e., each is gpplication of the maximum-entropy principle leads to an
nonnegative ang i, pi = 1. In many applications, only gptimization problem. Section 3.4.3 describes how this op-
partial information about such a probability distribution timjzation problem is solved in ISOMER.
is available (e.g.p1+ p2 = 0.5). Define a “candidate”
distribution as one that is consistent with all available 3.4.1 Histogram Structure in ISOMER

information about the distribution. In general, there may |SOMER uses the STHoles data structure [4] to represent
be multiple candidate distributions. The maximum-entropy and store multidimensional histograms. In the STHoles his-
2STHoles [4] does not face this problem of enforcing unifoyntie- togram, each buckef has a hyperrectangular boundmg box

cause for a predicaw® it explicitly gathers a count of the intersection of denoted by bo@bi) (g y)7 "_e" bUCkebi 1S b_ounded be-
R(q) with every histogram bucket. Thus, STHoles would gati{eg) and tween two constant values in ea.Ch d|m_en5|0n- Bubket
n(by) individually, making it a high-overhead approach in general however, does not cover the entire region iipx There

3.3. The Maximum-Entropy Principle

(1]

o

Figure 4. Drilling Holes for a New QFR

may be some “holes” inside b@s) that are not covered
by bj. These regions are themselves histogram buckets
and are referred to ahildren of bj. The bounding boxes
of these children are mutually disjoint hyperrectangles an
completely enclosed within bl). The region covered by

b; is formally given by:

C(bj) = box(b;) —

U

bjechildren(by)

box(bj)

Intuitively, in the absence of holeb, would represent a
region of uniform tuple density. However, the STHoles his-
togram identifies regions within that have a different tuple

density, and represents them as separate histogram laucketsOf < given by py

For a multidimensional predicatgthat selects all tuples
lying in a specified regioR(q) C ., an STHoles histogram
comprising bucket®,, by, ... bk estimates the number of
tuples that satisfy this predicate as

Kk vol(R(@)NC(hr))

M@ =3 n0) =01 (Cbn) @

Here volR) denotes the usual euclidean volume of the re-
gionRwhen the data is real-valued; for discrete (i.e., integer
or integer-coded categorical) data, R) denotes the num-
ber of integer points that lie iR.

ISOMER initializes the STHoles histogram to contain
a single bucketb; such that bo#;) = C(b1) = . and
n(b1) = N. At this point, the histogram embodies the sim-
plest possible uniformity assumption. As more QFRs are
added over time, ISOMER learns more about the distribu-
tion of tuples in. and incorporates this information into
the histogram by “drilling” holes it;.

ISOMER’s technique for drilling holes is a simpler ver-
sion of the method given in [4]. Suppose that ISOMER
obtains a QFR about a specified multidimensional predi-
cateq. To make the histogram consistent with this QFR,
ISOMER must first ensure that the histogram contains a
set of buckets that exactly coveq), so that the sum of

e If box(b') C R(q), thenb' is removed from childre(i)
and added to childrébpew).

o If box(b') partially overlapsR(q), then bucket’ (and
recursively its children), are split as shown in Figure 4
to preserve disjointness and a hyperrectangular shape.
The splitting is done one dimension at a time, using an
arbitrary ordering among the dimensions.

3.4.2 Formulation of the Optimization Problem

To apply the maximum-entropy principle in ISOMER, we
associate a probability distributia#?, and hence an entropy
valueH(.27), with every possible histogram. In accordance
with the maximum-entropy principle, ISOMER then maxi-
mizesH (&) over the set of all histograms that are consis-
tent with the current set of QFRs. To defigé andH (%),
consider an STHoles histogram with buckKets. . ., bx hav-

ing bucket countsi(by),...,n(by). If the data is discrete,
then % is a probability distribution over the integer points
=n(b)/[N-V(b})] for ue ., where
V(b) is abbreviated notation for viC(b)), andby, is the
unique buckeb such thau € C(b). This definition follows
from (4) after dividing both sides by the total number of tu-
plesN and takingq to be the point query(As, Ay, ..., Aq) =

u”. The entropyH (%) = — S yc.» Puln(pu) corresponding
to the distribution?” is thus given by

nby) [n(by)

NV (b) '”(N V(by)
b n(b

V(

S (b)
—i;ueg(bi) Nr.]\/(bi) In (N~)) .

Since the inner sum comprisésh;) identical terms that are

independent of,
In ()
£ (n(bi)

i;n(bi)ln V(bi))+|n(N)’

where the last equality uses the identityf ; n(bi) = N.

For real-valued data, we take’ to be the pdf defined by
Z(u) = py for each real-valued point € ., where py

is defined as above; note that this density function is con-
stant within each regio@(b;). A straightforward calcula-

H(2) = - zy

)
bi

K n(b)

N

n(bi)
N-V(bi)

H(2)

®)

Zl-

the tuple counts in these buckets can then be equated t¢ion shows that the entropy (%) = [, 2 (u)In(Z(u)) du

N(q) as in Section 3.2. If such a set of buckets already
exists, no holes need to be drilled. Otherwise, the pro-
cess of drilling holes fog proceeds as shown in Figure 4.
Specifically, ISOMER descends down the bucket tree until
it finds a buckeb such thatR(q) c C(b) butR(q) C(b')

for any b’ € children(b). ISOMER forms a new bucket
brew such that botbnew) = R(q) and processes each bucket
b’ € childrenb) as follows.

e If box(b') NR(q) = 0, then nothing needs to be done.

is given by (5).

We now express the QFRs as constraints on the his-
togram. Suppose that ISOMER has obtained QFRs for
m predicatesq,...,qm. First, ISOMER drills holes for
these QFRs in the histogram as described in Section 3.4.1.
For eachq;, the drilling procedure ensures that the set of
histogram buckets lying withifR(g;) exactly coverR(q;).
Hence the QFR fog; can be written as the constraint

n(b) = N(ai)
biC(b)CR(a)

(6)

N(q1)=100 N(q2)=80
BMW
Black | M . . 14 56
L€ iterative
U AqAa | scalin
white || 23 9 6 24
N(q,)=30

Figure 5. Iterative Scaling Example

The application of the maximum-entropy principle thus
leads to a well posédoptimization problem: for an
STHoles histogram with buckels, ..., by, select nonneg-
ative bucket counts(by),...,n(bx) so as to maximize the
expressiorH (£2) in (5), while satisfying (6) for I<i <m.

3.4.3 Solution of Optimization Problem

To solve the above optimization problem, associate a La-
grange multipliery; (1 <i < m) with theith constraint given

by (6). After removing the constants from the objective
function in (5), the Lagrangian of the optimization problem

is given by:
3 i (G)

S v n(b)—N(qn)— n
i; <b|c(b)ZCR(q.) i;

Differentiate the above expression with respeat(io) and
equate to 0 to get
)-1-0

n(bi)

V(bi)

(0
ilc(b{ER@) V(b)

so that, setting\j = ",

!'| Ai. @)
iIC(b)CR(a)

Combining (7) with (6), we get a system of equations,
where there aren unknownsAs,...,An. This system of
equations can be solved by a procedure known as iterativ
scaling. The details of iterative scaling are omitted due to
lack of space and can be found in [£2].

Example 1 For the example of Section 3.2(l) = 1 for
each i. As before, we add three QFRs giver{By(2), and
(3). Denote these QFRs asg,dp, and g, respectively; see
Figure 5. Since bucket;ts referred to only by g it fol-
lows from(7) that n(b;) = A1/e. Similarly, riby) = A1A2/e,

3There may be some bucketsfor which n(b) = 0 in any consistent
solution. We detect such buckets by solving an appropiiiaet program,
and exclude them from the entropy calculation since theitrgdaution to
the entropy is 0 (limyy)—on(b) In (n(b)) = 0).

4We actually modify the basic algorithm in [12] to permit effiaién-
cremental updating of the maximum entropy solution. The ideapsrsist
the multipliers corresponding to each QFR in the offline stecethat we
only need to recompute the solution for a few specified regidetails
are omitted for brevity.

n(bs) = A1A3/e, and 1fby) = A1A2A3/e. We can therefore
rewrite (1), (2), and(3) as

A1+ A1A2+ A1A3+ A1A2A3 = 100e
A1A2 +A1A2A3 = 80e
A1A3+A1A2A3 = 30e

Solving the above equations, we obtain= 14e, A, = 4,
andAs = 3/7, yielding the final histogram (Figure 5).

This histogram is consistent with all of the added QFRs.
Itis also “the most uniform” in the following sense. It main-
tains the 80-20 ratio between Hondas and BMWs for both
the colors. Similarly, it maintains the 30-70 ratio between
white and black cars for both the makes. Such uniformity is
not obtained by adding QFRs in an ad-hoc manner, e.g., as
in the histogram of Figure 3(e).

4. Dealing with Database Updates

As long as no tuples are updated, inserted, or deleted, all
of the QFRs obtained by ISOMER are consistent with each
other, and there exists at least one valid histogram salutio
that satisfies the set of constraints in (6). However, in the
presence of data changes, the set of QFRs might evolve to a
point at which no histogram can be simultaneously consis-
tent with the entire set.

Example 2 Suppose that ISOMER obtains the two
QFRs Nfeke = "Honda’) = 80 and Ngeke

= ' Honda’ ,col or "White') 30, and
then some updates to the data occur. After
these updates, ISOMER might obtain the QFR
N(nmeke = 'Honda’, col or "Black’) = 60.
Clearly, there exists no histogram solution consistenhwit
all three QFRs.

Given inconsistent QFRs, there exists no solution to the op-
timization problem of Section 3.4.2. Thus, ISOMER must

Sirst discard the QFRs that are no longer valid due to data

changes, leaving a set of consistent QFRs having a valid
histogram solution. However, deciding which QFR is in-
valid is not always straightforward and depends on the type
of data change. In Example 2, if some new black-Honda tu-
ples have been inserted, the first QFR is invalid. However,
if the color of some Hondas has been updated from white to
black, then the second QFR is invalid. In general, both the
first and second QFRs may be invalid.

Since no information is available about the type of data
change, ISOMER uses the notion of thge of a QFR to
decide which QFRs to discard. The intuition is that the older
a QFR, the more likely that it has been invalidated. Thus
ISOMER discards those QFRs that are relatively old and
whose removal leaves behind a consistent set. To quickly
detect such QFRs, the following LP approach is employed.

4.1. A Linear-Programming Solution buckets is essentially the inverse of the process for uigilli
holes described in Section 3.4.1 and is similar to that de-
scribed in [4]. Due to space constraints, we give only a
brief description here.

After theith QFR is discarded, ISOMER examines all

ISOMER associates two “slack” variables with each con-
straint corresponding to the QFRs. The constraints in) ar
rewritten as (for I<i < m)

n(b) -N(qg) =§" -5) “top-level” buckets that coveR(q;), i.€., all buckets such
bIC(B)<R(G) thatC(b) C R(q;), butC(parentb)) ¢ R(q;). Bucketb can
ISOMER also adds the nonnegativity constraints be merged with another bucket in the following cases:
n(b) >0forallb, s§°,§ >0fori=1....m 9) e If bucket b has exactly the same referring set as its

parent, i.e., if{ j|C(b) C R(qj)} = {j|C(parentb)) C
R(qgj)}, thenb can be merged with its parent. This
is because both and parer{b) have the same num-
ber of tuples per unit volume in the maximum-entropy
solution; cf. (7). The children ob now become the
children of parer(b).

o If there is a siblingy of b such that (i)o’ andb have
the same referring set and (i) bdk) U box(b) is hy-
perrectangular, themandb’ can be merged. The chil-
dren ofb are recursively examined to see if they can be
merged with their new siblings, i.e., childrentdf The
new merged bucket is also examined to see if it can be
merged with any of its siblings.

If there is a solution to the set of constraints (8) and (9)
such thats' = 5~ = 0, then the solution satisfies tlith
constraint from (6). Otherwise, " or 5~ is positive, the
ith constraint is not satisfied. Ideally, we would like a solu-
tion that satisfies the maximum number of constraints from
(6), i.e., a solution that minimizes the number of nonzero
slack variables. Unfortunately, determining such a sotuti
is known to be NP-complete [2]. ISOMER instead settles
for minimizing the sum of the slack variables, because this
problem can be solved by linear programming. ISOMER
then discards all QFRs that correspond to constraints hav-
ing nonzero slack. Note that if all the original constraints
from (6) are satisfiable, then there exists a solution in tvhic
all of the slacks equal 0, and hence no QFRs are discarded.)
As noted earlier, we want to preferentially discard older ©- Meeting a Space Budget

Qk;:IRS'IS(I)nI\thesdhOf ::ninimi_zing_ the sum ﬁf jlaCk V?riﬁ Database systems usually limit the size of a histogram
anles, therefore minimizes a weighted sum of the ;, 4o 14 ensure efficiency when the histogram is read at

slack variables, where the slack corresponding to a QFR ISoptimization time. Thus, we assume that there is limited

weighted inversely by the age of the QFR. Thus, a QFR . . -
that is not satisfied and has nonzero slack incurs a smalleSPace available for histogram storage. The addition of new
objective-function penalty if it is old than if it is new. Teu ~ QFRS causes the size of ISOMER's STHoles histogram to

an optimal solution is more likely to permit slack in older 9grow as new holes are drilled. Whenever the histogram
QFRs, so that such QFRs are preferentially discarded. Thesize exceeds the space budget, ISOMER reduces the his-
age of theith QFR is given bym—i-+ 1. Thus ISOMER togram size by discarding “unimportant” QFRs. Intuitively
solves the following linear program to detect inconsistent a QFR is unimportant if it provides little information over

constraints: Minimize and above what is already provided by other QFRs. Dis-
m 1 B carding unimportant QFRs reduces the total histogram size
(8 +s) iqgeri i i
i; m—i+1 S TS by triggering the merging of buckets (Section 4.2).

subject to (8) and (9). I§" or s~ is nonzero in the result- Example 3 In the example of Section 3.2, suppose that
ing solution, then théth QFR is discarded. In our imple- W€ have space to store only two histogram buck-
mentation, we have used the highly optimized open source€tS: After adding the QFRs N 100 and N(make =
Coin LP solver [18]. Discarding QFRs enables ISOMER to ~ onda’) = 80, the resulting histogram has two buck-
merge buckets as described in the next subsection. ets, and is shown in Figure 6(a). Each bucket has vol-
Our overall method for eliminating invalidated QFRs is UMe equal to 2, and buckep lis a hole in the top-level

clearly a heuristic. However, as shown in Section 6, it works Pucket k. Suppose that we now add the third QFR,
effectively and efficiently in practice. In future work, we N(TBke ="BMA, color = "white’)=10 1SO-
hope to enhance ISOMER with a more principled method MER drills a hole corresponding to this QFR, and the re-

for eliminating inconsistent QFRs. sulting histogram, shown in Figure 6(b), has three buckets,
violating the space budget. Notice, however, that the ad-
4.2. Merging Histogram Buckets dition of this third QFR yields no extra information: be-

cause tuples are assumed to be uniformly distributed within
Once ISOMER has decided to discard a particular QFR, a bucket, the histogram in Figure 6(b) is already implied by
the total histogram size can potentially be reduced by merg-the histogram in Figure 6(a). Thus the third QFR is unim-
ing two or more histogram buckets. The process of merging portant, and can be discarded.

= = A,=4
A=108 guw Honda A=10e 2
Black) n(b,)=10
#white BMW's n(b.)=80
n(b,)=20| n(b,)=80 —10 (by)=
White n(by)=10
=4 A=l

(a) (b)
Figure 6. Unimportant QFR Example

How can the unimportant QFRs be efficiently deter-
mined? Note that the age of a QFR—which ISOMER uses
as a criteria for deciding which QFRs are invalid—is not
relevant for deciding importance. E.g., in Example 3, ISO-
MER can receive many instances of the third QFR in suc-
cession, thus making the second QFR very old. However,
the second QFR is still more important than the third QFR.

An elegant aspect of ISOMER is that the maximum-
entropy solution yields, for free, an importance measure
for each QFR. This leads to a very efficient procedure for
detecting and discarding unimportant QFRs. Specifically,
ISOMER uses the quantityn(A;)| as the importance mea-
sure for theith QFR, where); is the multiplier defined in
(7). To justify this choice intuitively, we note thatAf = 1,
then removal of thdth QFR does not affect the bucket
counts, so that the final maximum-entropy solution is un-
altered. For instancels = 1 in the final solution in Ex-
ample 3—see Figure 6(b)—and we concluded that the third
QFR was unimportant. By the same token, if the multiplier
corresponding to a QFR is close to 1, then removal of that
QFR will affect the final solution less than if we remove a
QFR whose multiplier is much greater than 1. Thus,ithe
QFR is unimportant i\ ~ 1, i.e., if [In(A;)| =~ 0.

An alternative justification for our definition follows
from the fact that|In(A;)| = |yi|, wherey; is the La-
grange multiplier corresponding to thi# constraint in the
maximum-entropy optimization problem (Section 3.4.3). It
is well known from optimization theory [3] that the La-
grange multiplier for a constraint measures the degree to
which the constraint affects the optimum value of the ob-
jective function. Thugy;| measures how much thih con-
straint affects the entropy, i.e., the amount of infornmatio
the distribution. In other wordsy;| = |In(A;)| is a measure
of the amount of information carried by tli constraint,
and hence a measure of the importance ofth&FR.

Thus, whenever the histogram exceeds the space budge
ISOMER proceeds by examining the current maximum-
entropy solution and, for eadh computes the importance
measure for théth QFR as|In(A;)|. ISOMER then dis-
cards the QFR with the least importance according to this

measure and merges buckets as described in Section 4.2

ISOMER then incrementally computes the new maximum-

6. Experiments

In this section, we provide an experimental validation of
ISOMER. We prototyped ISOMER on top of DB2 UDB,
which supports gathering of query feedback. The experi-
ments were conducted on an Intel 2.3GHz processor with
1GB RAM. We used ISOMER to maintain a multidimen-
sional histogram using query feedback and compared ISO-
MER’s cardinality estimates against estimates obtained by
a state-of-the-art commercial optimizer. The only form of
multidimensional statistics presently supported by thi op
mizer is a count of the number of distinct values in a group
of columns. We also compared the ISOMER estimates with
those obtained by STGrid, since both algorithms use the
same type of feedback. We did not compare ISOMER with
STHoles, because the feedback collection strategy used by
STHoles has a very high overhead that makes the approach
impractical, particularly when index scans are used during
guery processing; see Section 1.1.

Our experiments demonstrate the following:

1. ISOMER provides significantly better cardinality esti-
mates than either the commercial optimizer technique
or STGrid.

For static data, the cardinality estimates provided by
ISOMER consistently improve and then stabilize as

QFRs are added to the histogram, i.e., there is no os-
cillation in accuracy when more QFRs are added (and
others removed to keep within the space budget).

2.

3. For changing data, ISOMER learns the new data dis-
tribution much faster (i.e., with the addition of many
fewer QFRs) than STGrid and provides significantly

better cardinality estimates.
4. The overall overhead of ISOMER is low.

For our experiments we used a DMV (Department of
Motor Vehicles) database that was derived from a real-
world application. For our experiment, we focused on the
Car s table which has several correlated columns such as
nmake, nodel , col or, andyear . The maximum number
of distinct values in any column was approximately 150.

We generated a collection of queries referred to as train-
ing queries, issued them to the query execution engine, and
collected QFRs for the predicates in these queries. We used
fsoMER (or STGrid for comparison) to maintain a multidi-
mensional histogram on the set of referenced attributes. Th
histogram was initialized using one-dimensional database
statistics on the attributes and by assuming independence
between the attributes. QFRs collected during execution of
he training queries were then used to refine this histogram
while allowing a maximum ok buckets, wherd& was an

entropy solution and repeats the above procedure until theexperimental parameter.

histogram is sufficiently small.

To test the accuracy of the maintained histogram, we
generated a collection of 200 test queries from the same

o
-
° o
I e

”X

o

[~ ISOMER
= STGrid
|+ Optimizer|

S

Average Relative Error
°

© © 9o 9 o o ¢

o
o =

o

06 [~—ISOMER
g 05 -=-STGrid
g 04 | Optimizer
£ o3
2
<02 \\

0 100 200 300 400 500 0 100 200 300 400 500 600
Number of Queries Number of Queries

Figure 7. Error of 2D Histogram on nodel and Figure 8. Error of 3D Histogram on nake,
year nodel and col or

distribution as that of the training queries. We periodjcal was allowed to have a maximum kf= 175 buckets. It can
tested the histogram’s accuracy by comparing the actual ande seen that ISOMER significantly outperforms STGrid by
estimated cardinalities for each predicate in the testigsier providing much more accurate cardinality estimates. Also
We measured the relative error in the estimation as note that the error of ISOMER consistently decreases and
IN(6) — R(q)] then stabilizes, but never increases with the addition _crbmo _
max 100N(q))’ QFRs. AIthough STGrid alsp seems to possess this desir-
able property in case of static data, we show in the sequel

whereN(q) andN(q) are the actual and estimated number that, for dynamic data, the error of STGrid may actually
of tuples respectively that satisfy the predicgtén our for- increasewith addition of more QFRs. As expected, the
mula, the quantity 100 is a sanity constant [8] that prevents Optimizer performs poorly, mainly because of the limited
the relative error from b|OW|ng up in case of h|gh|y selec- multidimensional statistics it Supports. That iS, the 'Optl
tive predicates, i.e., predicates for whiskq) is either very mizer keeps only a count of the number of distinct values
small or equal to 0. We measured the overall accuracy of thefor a group of columns, which is not useful for predicting
histogram by the average relative error across all preeticat the cardinality of range predicates on the numerical atteib

in the test queries. year . Thus, the optimizer estimates are simply based on

We discuss the accuracy of ISOMER on static data in the independence assumption.
Section 6.1 and then consider updates in Section 6.2. We

study the running time of ISOMER in Section 6.3. 6'1'2, 3D H!stograms]]) i
In this experiment, we built a three-dimensional histogram

6.1. Accuracy on Static Data on the highly correlated attributesake, nodel , and
col or . Both the training and test queries were of the form

6.1.1 2D Histograms SELECT * FROM Car WHERE mmke = x AND
To demonstrate the ability of ISOMER to handle both nu- nodel =y AND color = z

merical and categorical attributes, we used ISOMER to
build a two-dimensional histogram on the attributesiel
(categorical) angear (numerical) of theCar table. Both
test and training queries were of the form

Relative Error=

wherex, y, andz are variables. The query-generation pro-
cess was similar to that described in Section 6.1.1. First,
a makex was chosen from the various makes according to
the data distribution. Then from the various models cor-
SELECT * FROM Car WHERE nodel = x responding to make, a particular model was chosen,
AND year BETWEEN y; AND y; again according to the data distribution. Finally a cator
wherex, y1, andy, are variables. The queries were gen- was chosen from the various colors corresponding to the
erated according to the data distribution. Fisstyas cho- (make, model) combinatiofx,y). ISOMER obtained QFRs
sen randomly from all possible models; the probability for for predicates of dimension 1, 2, and 3.
choosing a given model was proportional to the model's fre- Figure 8 plots the error of the various approaches against
guency in the database. Thgnandy, (y1 < y»2) were cho- the number of training queries. Each histogram was al-
sen randomly from between the minimum and maximum lowed to have a maximum & = 250 buckets. ISOMER
years that occur with moded Note that the execution of again outperforms STGrid by an even greater margin than
such queries gave us QFRs not only for two-dimensional in the 2D case, for two reasons. First, there are no partially
predicates, but also for one-dimensional predicatesgesinc overlapping buckets, because all attributes are catejoric
predicates are applied one by one. Thus, we obtained QFR&nd hence the only predicates are equality predicates. Thus
such asdN(npbdel = x) andN(model =x, y; <year < no bucket splits take place in ISOMER, so that a larger
y2). number of QFRs can be added to the histogram before the
Figure 7 plots the error of the various approaches as aspace budget is reached, thereby boosting accuracy. Sec-
function of the number of training queries. Each histogram ond, STGrid performs poorly because it merely adjusts the

P

S

o
®
o

507

2 06 \

g

T 05 __.*___H‘_- [~-ISOMER
° -=-STGrid

° =+ Optimizer

®

[~ ISOMER
-a-STGrid
A x| [a=Optimizer

Average Relative Error
o o o
>

e

Z 02

o
o

°
°

0 50 100 150 200 250 300 0 500 1000 1500 2000

Number of Buckets Number of Queries

Figure 9. Error vs allowed number of buckets Figure 10. Updating: uniform to correlated

tuple counts in the buckets based on QFRs and does not usghanged the data distribution from uniform to correlated.
the QFRs to restructure the buckets. This lack of restructur SPecifically, we started out with a database consisting com-
ing is a problem because buckets are determined from thePletely of uniform tuples. The optimizer gathered statis-
initial one-dimensional statistics, that ignore the ctatien tics over this database; these initial statistics remaiixed
between attributes. Sinaeake, nodel , andcol or are throughout the experiment. The training queries were exe-
much more strongly correlated thandel andyear , the cuted and the gathered QFRs used to refine the histogram

performance of STGrid for this 3D histogram is worse than OVer time. After every 300 training queries, 20% of the
for the 2D histogram in Section 6.1.1. tuples were updated from uniform to correlated tuples.

This process was repeated 5 times, after which the entire

database consisted only of correlated tuples.
6.1.3 Effect of Space Budget Figure 10 plots the error of the various approaches
To study the effect of the space budget on histogram accu-2gainst the number of queries executed. The spikes in the
racy, we used a 2D histogram omdel andyear as in error curve that occur after roughly every 300 queries cor-
Section 6.1.1. respond to the times at which the database is updated. All

Figure 9 plots the error of the ISOMER and STGrid his- the histograms start off very accurately because the data is

tograms against the maximum number of buckets allowed,uniform with independent attributes. For all approaches,
along with the optimizer error (the optimizer presently the errorincreases when the data is updated. For ISOMER,
maintains a hardcoded, fixed number of buckets). The errorhowever, the histogram evolves as queries are issued agains
was measured after 400 training queries had been executethe new data distribution, and the error decreases agaé. Th
and the corresponding QFRs used to refine the histogram_STGrid error also decreases to some extent as the histogram
As expected, the error of both ISOMER as well as STGrid is refined after updates. However, the improvement de-
decreases as more buckets are allowed to be stored. Howcreases as data becomes correlated. In fact, when more than
ever, ISOMER improves much more rapidly than STGrid as 80% of the tuples have been updated, the addition of new
the space budget increases and outperforms STGrid at ever@FRs tends tancreasethe overall error in STGrid. This

value of the space budget. is mainly due to the heuristic nature of STGrid, that does
not preserve consistency when using new QFRs to refine
6.2. Accuracy on Changing Data the histogram. As expected, the optimizer error increases

at each database update and never decreases, since the opti-
mizer statistics are never refined.
ISOMER is not able to attain its original accuracy after

as in Section 6.1.1. We interspersed the execution of train-LJpOIateS have occurred. However, this phenomenon is ex-

ing queries with the issuing of updates to the database. Topected becausg ISO'\fAEhR |dmp03§s t_ge _unlfo[)mny aﬁ?“hmp'
specify the type of updates issued, we first define the nOtionIt:cT(sri]n?;rymraet?cl)%nsI—(i)er:ci | ggMEérlisug%r;: q ?cl)thv(\; rﬁorg
of acorrelated tupleand auniform tuple A correlated tuple o

is a tuple drawn from the real data distribution; it has adl th accurate on uniform than on correlated data.

correlations that the real database has. For example, sincg 3. Running Time

make and nodel are correlated, a correlated tuple can .] .
have thg make, model) value(Honda, G vic) but The results in Sections 6.1 and 6.2 show that in contrast

never(Toyota, Givic). Incontrast, a uniformtupleis © STGrid, ISOMER is robust and highly accurate across
generated by choosing the value of each attribute randomlyvarious data distributions and update scenarios. Neverthe
and independently from the attribute’s domain. For exam- €SS, the STGrid approachiis very efficient because it uses a
ple, unlike a correlated tuple, the value of a uniform tuple Simple heuristic to refine the histogram. Although ISOMER

can be any make, nodel) combinatipn.)) 5We obtained similar results, not reported here, when chartbmdis-
We report the results of an experiment in which we tribution from correlated to uniform.

To study the ability of ISOMER to deal with changing
data, we worked with a 2D histogram andel andyear

@ number of attributes, ISOMER can be combined with tech-

N / nigues based on graphical models [7, 11]; such techniques

2 / divide the set of attributes into correlated subsets andmai

- tain multidimensional statistics only for these subse&-S

10 / ond, ISOMER can be extended to build histograms even on
attributes in different tables, by using statistical views

o o w0 w0 4o nally, ISOMER can be combined with a proactive approach

tumber of Bueke in order to increase its robustness for queries that refer to

Figure 11. ISOMER running time vs number data that has not been previously queried.
of buckets

Time (sec)
n
3

is not as efficient as STGrid, we show in this section that the References

robustness of ISOMER comes at an affordable cost. . . .

ISOMER's cost has two components. The first com- [1] A. 'Al_)ouln_aga and S. _Chaudhurl.. Self-tuning histograms:
. . . building histograms without looking at data. BIGMOD

ponent is the cost of collecting QFRs, which has been 1999

shown [17] to be low (less than 5% overhead). Because this [2] E. Amaldiand V. Kann. The complexity and approximability

cost is incurred by any reactive approach, we do not con- of finding maximum feasible subsystems of linear relations.

sider it further. The second component of the ISOMER cost Theoretical Computer Scienggages 181-210, 1995.

is the cost of refining the histogram using QFRs; this cost is [3] S. Boyd and L. Vandenbergh&onvex OptimizationCam-

incurred whenever ISOMER is invoked. To study this latter bridge University Press, 2004.

¢ ¢ K with a 2D hist el [4] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: A multi-
cost component, we work with a IStogram € dimensional workload-aware histogram.SitGMOD 2001

andyear as in Section 6.2 and_use.changing data. [5] S. Chaudhuri, R. Motwani, and V. Narasayya. Random sam-
Figure 11 plots the total running time of ISOMER to add pling for histogram construction: How much is enough? In
4000 QFRs against the maximum number of buckets al- SIGMOD 1998

lowed in the histogram (A comparison with STGrid is not [6] C. Chen and N. Roussopoulos. Adaptive selectivity estima-
i i i i i i tion using query feedback. BIGMOD 1994

shown, since its running time Is'es.sentlally O) Note that [7] A. Deshpande, M. Garofalakis, and R. Rastogi. Indepen-

although the worst case complexity is quadratic in the num-

) - g dence is good: dependency-based histogram synopses for
ber of buckets (since all sibling pairs may be compared for high-dimeglsional d£a. IBIGK//IOD 2001 9 ynop

bucket merging; Section 4.2), the actual running time is [8] S. Guha, K. Shim, and J. Woo. REHIST: Relative Error His-
only slightly superlinear and remains well under a minute togram Construction Algorithms. MLDB 2004 o

even for a moderately sized histogram with 350 buckets. [9] D. Gunopulos, G. Kollios, V. Tsotras, and C. Domeniconi.
In general, the number of buckets depends in a compli- ApprOX|mat|r.1g multi-dimensional aggregate range queries
cated manner on the number of distinct data values and th?lO] over real attributes. 18IGMOD 2000

N E. Jaynes. Information theory and statistical mechanics.
smoothness of the data distribution. We found that most of Physical Reviewsl957.

this time is spent in the process of reducing the histogram(11] L. Lim, M. Wang, and J. Vitter. SASH: A self-adaptive his-
size to within the space budget, because the maximum- togram set for dynamically changing workloads. V\hDB
entropy solution has to be recomputed every time a QFR is 2003

discarded. We are exploring the use of the faster Newton-[12] V. Markl et al. Consistently estimating the selectivity of con-

. ; . . juncts of predicates. INLDB 2005
R"_"F’TO“ methhOd _for S(;)lw?g _the max:rr]num entlrlopy qpt| [13] V. Matias, J. Vitter, and M. Wang. Wavelet-based histograms
mization problem in order to improve the overall running for selectivity estimation. ISIGMOD 1998

time of ISOMER. [14] M. Muralikrishna and D. DeWitt. Equi-depth histograms for
. estimating selectivity factors for multidimensional queries. In
7. Conclusions SIGMOD 1988

. . . [15] V. Poosala and Y. loannidis. Selectivity estimation without
We have described ISOMER, an algorithm for main- the attribute value independence assumptio®’/UBB 1997

taining multidimensional histograms using query feedback [16] J. Shore and R. Johnson. Axiomatic derivation of the princi-

ISOMER uses the information-theoretic principle of max- ple of maximum entropy and the principle of minimum cross-
imum entropy to refine the histogram based on query entropy. IEEE Trans. Information Theor26(1):26—-37, Jan.
feedback gathered over time. Unlike previous propos- 1980.

als for feedback-driven histogram maintenance, which lack [17] glé ZS,S“'I'_gler'n?qé L(‘))S?‘n?“éy I'\nﬁgg éz‘gglM' Kandil. LEO -
) . .. i imizer.
either robustness (e.g.', STGrid [1]), or eff!c!ency (€9, [18] Computational Infrastructure for Operations Research .
STHoles [4]), ISOMER is both_reasonably efficient and ro- http://www.coin-or.org/.
bust to changes in the underlying data. [19] N. Thaper, S. Guha, P. Indyk, and N. Koudas. Dynamic mul-
ISOMER can be extended in several ways to increase tidimensional histograms. IBIGMOD 2002

its utility in a database system. First, to handle a large

