
ISOMER: Consistent Histogram Construction Using Query Feedback

U. Srivastava1 P. J. Haas2 V. Markl2 N. Megiddo2 M. Kutsch3 T. M. Tran4

1 Stanford University 2 IBM Almaden Research Center 3 IBM Germany 4 IBM Silicon Valley Lab

usriv@stanford.edu {phaas,marklv,megiddo}@almaden.ibm.com kutschm@de.ibm.com minhtran@us.ibm.com

Abstract

Database columns are often correlated, so that cardi-
nality estimates computed by assuming independence often
lead to a poor choice of query plan by the optimizer. Mul-
tidimensional histograms can help solve this problem, but
the traditional approach of building such histograms using
a data scan often scales poorly and does not always yield
the best histogram for a given workload. An attractive al-
ternative is to gather feedback from the query execution en-
gine about the observed cardinality of predicates and use
this feedback as the basis for a histogram. In this paper we
describe ISOMER, a new feedback-based algorithm for col-
lecting optimizer statistics by constructing and maintaining
multidimensional histograms. ISOMER uses the maximum-
entropy principle to approximate the true data distribution
by a histogram distribution that is as “simple” as possible
while being consistent with the observed predicate cardi-
nalities. ISOMER adapts readily to changes in the under-
lying data, automatically detecting and eliminating incon-
sistent feedback information in an efficient manner. The
algorithm controls the size of the histogram by retaining
only the most “important” feedback. Our experiments indi-
cate that, unlike previous methods for feedback-driven his-
togram maintenance, ISOMER imposes little overhead, is
extremely scalable, and yields highly accurate cardinality
estimates while using only a modest amount of storage.

1. Introduction

Query optimization relies heavily on accurate cardinal-
ity estimates for predicates involving multiple attributes. In
the presence of correlated attributes, cardinality estimates
based on independence assumptions can be grossly inaccu-
rate [15], leading to a poor choice of query plan. Multidi-
mensional histograms [14, 15] have been proposed for ac-
curate cardinality estimation of predicates involving corre-
lated attributes. However, the traditional method of building
these histograms through a data scan (henceforth called the
proactivemethod) does not scale well to large tables. Such
a histogram needs to be periodically rebuilt in order to in-

corporate database updates, thus exacerbating the overhead
of this method. Moreover, since proactive methods inspect
only data and not queries, they generally do not yield the
best histogram for a given query workload [4].

In this paper, we consider an alternative method [1, 4, 6,
11] of building histograms through query feedback (hence-
forth called thereactivemethod). For example, consider
a query having a predicatemake = ’Honda’, and sup-
pose that the execution engine finds at runtime that 80 tu-
ples from theCar table satisfy this predicate. Such a piece
of information about the observed cardinality of a predicate
is called a query-feedback record (QFR). As the DBMS ex-
ecutes queries, QFRs can be collected with relatively little
overhead [17] and used to build and progressively refine a
histogram over time. For example, the above QFR may be
used to refine a histogram onmake by creating a bucket for
’Honda’, and setting its count to 80.

The reactive method is attractive since it scales ex-
tremely well with the table size, does not contend for
database access, and requires no periodic rebuilding of the
histogram (updates are automatically incorporated by new
QFRs). The histogram buckets may be chosen to best suit
the current workload, thereby efficiently focusing resources
on precisely those queries that matter most to the user. Of
course, the reactive method may lead to inaccuracies for
parts of the data that have never been queried. However,
such errors can be ameliorated, for example, by starting
with a coarse histogram built proactively [4].

Previous proposals for histogram construction using
query feedback have lacked either accuracy or efficiency.
Some proposals, e.g., STGrid [1], use heuristics to refine
the histogram based on a new QFR, thereby leading to inac-
curacies in the constructed histogram. Other proposals, e.g.,
STHoles [4], require extremely detailed feedback from the
query execution engine that can be very expensive to gather
at runtime. In this paper, we describe ISOMER (Improved
Statistics and Optimization by Maximum-Entropy Refine-
ment), a new algorithm for feedback-driven histogram con-
struction. In contrast to previous approaches, ISOMER
is both accurate as well as efficient. ISOMER uses the

1

information-theoretic principle ofmaximum entropy[10] to
approximate the true data distribution by a histogram distri-
bution that is as “simple” as possible while being consistent
with the observed cardinalities as specified in the QFRs. In
this manner, ISOMER avoids incorporating extraneous—
and potentially erroneous—assumptions into the histogram.

The reactive approach to histogram maintenance entails
a number of interesting challenges:

1. Enforcing consistency: To ensure histogram accu-
racy, the histogram distribution must always be con-
sistent with all currently valid QFRs and not incorpo-
rate any ad hoc assumptions; see Section 3.2. Previ-
ous proposals for feedback-driven histogram construc-
tion [1, 11] have lacked this crucial consistency prop-
erty, even when the data is static.

2. Dealing with data changes: In the presence of up-
dates, deletes, and inserts, some of the QFRs collected
in the past may no longer be valid. Such old, invalid
QFRs must be efficiently identified and discarded, and
their effect on the histogram must be undone.

3. Meeting a limited space budget: Database systems
usually limit the size of a histogram to a few disk
pages in order to ensure efficiency when the histogram
is read at the time of query optimization. Thus, we
assume that there is a limited space budget for his-
togram storage. In general, adding more QFRs to the
histogram while maintaining consistency leads to an
increase in the histogram size. To keep the histogram
size within the space budget, the relatively “important”
QFRs (those that refine parts of the histogram that are
not refined by other QFRs) must be identified and re-
tained, and the less important QFRs discarded.

ISOMER addresses each of the above challenges using
novel, efficient techniques:

1. ISOMER uses the maximum-entropy principle (Sec-
tion 3.3) to approximate the true data distribution by
the “simplest” distribution that is consistent with all of
the currently valid QFRs. This approach amounts to
imposing uniformity assumptions (as made by tradi-
tional optimizers) when, and only when, no other sta-
tistical information is available. ISOMER efficiently
updates the maximum-entropy approximation in an in-
cremental manner as new QFRs arrive.

2. ISOMER employs linear programming (LP) to quickly
detect and discard old, invalid QFRs.

3. An elegant feature of ISOMER is that the maximum-
entropy solution yields, for free, an “importance” mea-
sure for each QFR. Thus, to meet a limited space bud-
get, ISOMER simply needs to discard QFRs in in-
creasing order of this importance measure.

Our experiments indicate that for reactive histogram main-
tenance, ISOMER is highly efficient, imposes very little
overhead during query execution, and can provide much
more accurate cardinality estimates than previous tech-
niques while using only a modest amount of storage.

The rest of the paper is organized as follows. After sur-
veying related work in the remainder of this section, we lay
out the basic architecture of ISOMER in Section 2 and in-
troduce its various components. In Section 3, we describe
how ISOMER uses the maximum-entropy principle to build
histograms consistent with query feedback. Section 4 de-
scribes how ISOMER deals with changing data, and Sec-
tion 5 details how ISOMER keeps the histogram within a
limited space budget by discarding relatively unimportant
QFRs. We describe our experimental results in Section 6,
and conclude in Section 7.

1.1. Related Work

Existing work on multidimensional statistics can be
broadly classified as addressing either the problem of de-
ciding which statistics to build or that of actually building
them. This paper addresses only the latter problem. Many
types of statistics have been proposed, e.g., histograms [15]
and wavelet-based synopses [13]; we restrict attention to
histograms.

For building multidimensional histograms, proactive ap-
proaches that involve a data scan have been proposed, e.g.,
MHist [15], GenHist [9], and others [7, 14, 19]. As men-
tioned before, data scans may not effectively focus system
resources on the user’s workload and do not scale well to
large tables. In principle, histograms can be constructed
faster using a page-level sample of the data [5], but large
sample sizes—and correspondingly high sampling costs—
can be required to achieve sufficient accuracy when data
values are clustered on pages and/or highly skewed.

The idea of using query feedback to collect the statis-
tics needed for estimating cardinality was first proposed in
[6]. The specific approach relied on fitting a combination
of model functions to the data distribution; the choice of
functions isad hocand can lead to poor estimates when the
data distribution is irregular. Query feedback is also used
in [17], but only to compute adjustment factors to cardinal-
ity estimates for specific predicates, and not to build his-
tograms. STGrid [1] and SASH [11] both use query feed-
back to build histograms, but they often have low accuracy
because their heuristic methods for adding new QFRs to the
histogram do not maintain consistency. ISOMER’s use of
the well founded [16] maximum-entropy principle avoids
this problem.

STHoles [4] is another approach that uses query feed-
back to build histograms. The histogram structure of
STHoles is superior to other bucketing schemes such as

MHist [15], and for this reason is used by ISOMER. Un-
fortunately, the original STHoles maintenance algorithm re-
quires, for each query and each histogram bucket, the com-
putation of the number of rows in the intersection of the
query and bucket regions. These detailed row counts, which
are used to decide when and where to split and merge buck-
ets, are usually not obtainable from the original query pred-
icates alone. The query engine must therefore insert artifi-
cial predicates that specify the (possibly recursive) bucket
boundaries. As the number of histograms and the number
of buckets per histogram grows, the overhead of evaluating
this “artificial feedback” becomes so high as to make the
STHoles maintenance approach impractical. (ISOMER, in
contrast, needs only the actual feedback that naturally oc-
curs during query execution—namely, the number of rows
processed at each step during the query plan—which can
be monitored with low overhead [17].) Finally, STHoles,
unlike ISOMER, does not provide principled methods for
addressing issues of inconsistent feedback and limits on the
available memory for storing the histogram.

The principle of maximum entropy has been used in [12],
but for the significantly different problem of consistently
estimating the selectivity of conjuncts of predicates such
as sel(p1∧ p2∧ p3∧ p4), given partial selectivities such as
sel(p1), sel(p2 ∧ p3), sel(p2 ∧ p3 ∧ p4), and so forth. I.e.,
the methods in [12] permit the exploitation of existing mul-
tidimensional statistics (not necessarily from histograms),
whereas the current paper is concerned with the collection
of a specific type of statistic.

2. ISOMER architecture

Figure 1 shows the architecture of ISOMER and where
it would fit in a modern commercial DBMS. The left por-
tion of the figure shows an ordinary DBMS. Here, a query is
first fed to a cost-based query optimizer, which produces a
plan for the query based on the available database statistics.
Presently, all commercial systems apply the proactive ap-
proach for maintaining statistics that requires database ac-
cess (as shown by the dotted arrow). The chosen query plan
is then executed by the runtime engine. We prototyped ISO-
MER on top of DB2 UDB, which can measure and store
actual predicate cardinalities or QFRs at run time.

Due to efficiency concerns, a QFR is not immediately
used to refine the histogram as soon as it is obtained. In-
stead, the QFRs are collected in a query feedback store and
used in batches to refine the histogram. During periods of
light load, or during a maintenance window, the database
systems invokes the ISOMER component. On invocation,
ISOMER uses the QFRs accumulated in the query feedback
store to refine the histogram. The right portion of the figure
shows the various components of ISOMER.

ISOMER begins by reading the currently maintained his-

Store
(invoked at times of light load)

Store

Offline

Statistics

Environment

ISOMER

Present commercial DBMS

(Proactive)

Database

Query Feedback

Runtime

Optimizer
Query

Query

Compute final
histogram

Eliminate
unimportant

feedback

feedback
inconsistent

Detect Add new
feedback

Figure 1. ISOMER Architecture

togram from the database statistics. It then accesses the new
QFRs and adds them to the current histogram. This process
mainly involves forming buckets corresponding to the new
QFRs, and is explained in Section 3.4.1.

As discussed in Section 3.2 below, a histogram must be
consistent with respect to both new and previous QFRs.
However, because of updates to the data these QFRs may
be contradictory, in which case there does not exist a his-
togram consistent with all QFRs. Thus ISOMER’s first task
is to detect and discard old, inconsistent QFRs. For this pur-
pose, ISOMER keeps a list of QFRs previously added to the
histogram in anoffline storeas depicted in Figure 1. ISO-
MER reads the previous QFRs from the offline store and
uses linear programming to find and eliminate inconsistent
QFRs. This process is described in Section 4. Note that the
offline store does not have to be read at query-optimization
time and hence does not encroach on the space budget al-
lowed for the histogram. In any case, the size of the offline
store is not a concern since it cannot grow bigger than the
size of the maintained histogram. Indeed, if there are more
QFRs than buckets, then some of these QFRs will be either
inconsistent or redundant and hence will be eliminated; see
Section 3.4.2.

Once ISOMER obtains a consistent set of QFRs,
the algorithm computes the histogram according to the
maximum-entropy principle. We describe this computation
in Sections 3.4.2 and 3.4.3. If the histogram is too large to
fit within its allotted space, ISOMER selectively discards
the relatively “unimportant” QFRs in order to reduce the
histogram size. Intuitively, a particular QFR is unimportant
if the information provided by that QFR is already provided
by other QFRs, i.e., if the QFR refines a portion of the his-
togram that is already sufficiently refined by other QFRs.
The process for detecting and discarding unimportant QFRs
is described in Section 5.

Any inconsistent or unimportant QFR that ISOMER dis-
cards is also removed from the list of QFRs that are cur-
rently incorporated into the histogram, and the revised list
is written back to the offline store. The final histogram is
computed according to the maximum-entropy principle and
written back into the database statistics.

3. Incorporating Feedback

After defining the notions of histogram and query feed-
back that we use throughout the paper (Section 3.1), we in-
troduce a running example (Section 3.2) that illustrates the
use of query feedback to build and refine a histogram, the
importance of maintaining consistency, and the difficulties
that arise therein. We then introduce the maximum-entropy
principle to address these issues (Section 3.3), and explain
its use in ISOMER (Section 3.4).

3.1. Histograms and Feedback

Given a tableT comprisingN tuples, we wish to build a
d-dimensional histogram over attributesA1, . . . ,Ad of table
T. For each numerical attributeAi , denote byl i andui the
minimum and maximum values ofAi in the table. We as-
sume that these values are available from one-dimensional
database statistics onAi . A categorical attributeAi having
Di distinct values can be treated as numerical by mapping
each distinct value to a unique integer in[1,Di], so that
l i = 1 andui = Di . The space in which the tuple values
lie is S = [l1,u1]× [l2,u2]× . . .× [ld,ud].

A multidimensionalhistogram is a lossy compressed
representation of the true distribution of tuples inS that
is obtained by partitioningS into k ≥ 1 mutually disjoint
regions calledbuckets, and recording the number of tu-
ples inT that fall in each bucket. ISOMER actually main-
tains an approximate histogram that records an estimate of
the number of tuples that fall in each bucket. Denote by
b1,b2, . . . ,bk the k histogram buckets, byC(bi) the region
of S that is covered bybi , and byn(bi) the number of tu-
ples estimated to lie inbi . The tuples in each bucketbi are
assumed to be uniformly distributed throughoutC(bi).

ISOMER maintains a histogram based onquery
feedback. Specifically, at each time point, the
system maintains a list of QFRs of the form
(

q1,N(q1)
)

,
(

q2,N(q2)
)

, . . . ,
(

qm,N(qm)
)

for somem≥ 1,
where eachq is a predicate of the form1

(x1 ≤C1 ≤ y1)∧·· ·∧ (xd′ ≤Cd′ ≤ yd′)

and N(q) is the number of tuples that satisfyq. Here
d′ ≤ d andC1, . . . ,Cd′ are distinct attributes from among
A1, . . . ,Ad. We assume that ifCj is categorical, thenx j = y j ,
so that the conjunctx j ≤ Cj ≤ y j is actually an equality
predicate. In the following sections, we denote byR(q) the
subset of the regionS for whichq is true.

3.2. A Running Example

Consider aCar relation with attributesmake and
color, and suppose that a user executes the query

SELECT * FROM Car WHERE
make = ’Honda’ AND color = ’White’

1The maximum-entropy principle can be applied to general predicates,
but we have initially focused on conjunctive predicates in ISOMER.

N(make = ‘Honda’, color = ‘White’) = 25color=‘White’

Query Feedback

N(make = ‘Honda’) = 80

Car (100)

(80)

(25)σ

make=‘Honda’σ

Figure 2. Gathering Query Feedback (QFRs)

Figure 2 shows a possible plan for executing this query; the
actual number of tuples at each stage are shown in parenthe-
sis. The figure also shows the various predicatesq for which
N(q) can be collected during query execution; the cardi-
nality information for these predicates comprise the QFRs.
Gathering of QFRs is already supported by several commer-
cial database systems and has been shown [17] to have very
low runtime overhead (typically less than 5%).

Suppose that we wish to build a two-dimensional his-
togram on the attributesmake andcolor by using query
feedback. Also suppose for simplicity that there are only
two distinct makes (say’Honda’ and’BMW’), and only
two distinct colors (say’Black’ and’White’) in the
Car relation. Then any multidimensional histogram on
these attributes has at most four buckets (Figure 3). We
assume that our histogram stores all of these four buckets.

The first QFR that we add to the histogram is the total
number of tuples in the table. This number can be obtained
from system catalog statistics. Suppose there are 100 tuples
in theCar table. This QFR can be expressed as:

n(b1)+n(b2)+n(b3)+n(b4) = 100 (1)

At this point, there are various possible assignments of
values to then(bi)’s that will make the histogram consis-
tent with this single QFR. In the absence of any additional
knowledge, we assume, as do traditional optimizers, that
values are distributed uniformly. Hence, the histogram ob-
tained after adding this QFR is one in which eachn(bi)
equals 25, as shown in Figure 3(b).

We now add the QFRN(make = ’Honda’) = 80 to
the histogram. This QFR can be expressed as:

n(b2)+n(b4) = 80 (2)

To make the histogram consistent with (2) while preserv-
ing uniformity betweenn(b2) and n(b4), we setn(b2) =
n(b4) = 40. The resulting histogram is shown in Fig-
ure 3(c). At this point, the STGrid [1] approach would con-
sider the process of adding this QFR to be finished, with
Figure 3(c) as the final histogram.

Notice, however, that the histogram in Figure 3(c) is no
longer consistent with (1). The expressions in (1) and (2)
together imply thatn(b1) + n(b3) = 20. To enforce con-
sistency with this equation as well as uniformity between
n(b1) andn(b3), we setn(b1) = n(b3) = 10. The final con-
sistent histogram is shown in Figure 3(d).

Observe that even though we added information only
about Hondas, the histogram now gives a more accurate es-

n(b)

2

n(b)

n(b) n(b)1 #White cars = 30#Cars = 100 #Hondas = 80

152525

2525

3 15

655

40

40

10

10

4025

4025

HondaBMW

4
Consistency

(e)(c) (d)(b)(a)

MaintainBlack

White

Figure 3. Running Example

timate of the frequency of BMWs. This improvement is a
direct result of our final histogram adjustment in which we
enforced consistency with both the QFRs.

In summary, it is reasonable to impose the following re-
quirements when adding a new QFR to the histogram:

1. Consistency: After adding a new QFR, the histogram
should be consistent with all QFRs added so far.

2. Uniformity : If there are multiple histograms consis-
tent with all of the QFRs, then the choice of the final
histogram should not be arbitrary, but must be based
on the traditional assumption of uniformity.

So far in this example, it has been easy and intuitive
to apply the uniformity assumption. However, it is not al-
ways clear how to impose uniformity. To illustrate, suppose
that the next QFR we add to the histogram isN(color =
’white’) = 30. This QFR can be written as:

n(b3)+n(b4) = 30. (3)

If we employ the näıve solution of making the histogram
consistent with (3) while imposing uniformity onn(b3) and
n(b4), we getn(b3) = n(b4) = 15. Further enforcing con-
sistency with (1) and (2), we get the final histogram shown
in Figure 3(e). This solution clearly does not enforce uni-
formity2: although white Hondas and white BMWs are
in equal proportion, there are far more black Hondas than
black BMWs. This non-uniformity among black cars has
not been indicated by any added QFR, and is only due to
our ad-hoc method of enforcing consistency. To enforce
consistency while avoiding unsatisfactory results as in Fig-
ure 3(e), we turn to the information-theoretic principle of
maximum entropy, described next.

3.3. The Maximum-Entropy Principle

Consider a discrete probability distribution
(p1, p2, . . . , pn) on n distinct outcomes, i.e., eachpi is
nonnegative and∑n

i=1 pi = 1. In many applications, only
partial information about such a probability distribution
is available (e.g.,p1 + p2 = 0.5). Define a “candidate”
distribution as one that is consistent with all available
information about the distribution. In general, there may
be multiple candidate distributions. The maximum-entropy

2STHoles [4] does not face this problem of enforcing uniformity be-
cause for a predicateq, it explicitly gathers a count of the intersection of
R(q) with every histogram bucket. Thus, STHoles would gathern(b3) and
n(b4) individually, making it a high-overhead approach in general.

principle (see, e.g., [16]) provides a well grounded criterion
for selecting a unique distribution from among the can-
didates. Specifically, the principle prescribes selectionof
the candidateP = (p1, p2, . . . , pn) that has the maximum
entropy valueH(P), whereH(P) = −∑n

i=1 pi ln(pi). The
maximum-entropy principle can be justified informally as
follows. From information theory, we know that entropy
measures the uncertainty or uninformativeness in a distri-
bution. For example, the value of the entropy ranges from
0—when a specified outcome occurs with certainty—to a
maximum of ln(n) when no information is available and all
outcomes are equally likely(p1 = · · · = pn = 1/n). Thus
the maximum-entropy principle leads to a choice of the
simplest, i.e., most uninformative distribution possiblethat
is consistent with the available information. To choose a
distribution with lower entropy would amount to assuming
information that we do not have; to choose one with a
higher entropy would ignore the information that we do
have. The maximum-entropy distribution is therefore the
only reasonable choice. A more formal justification of the
principle can be found in [16]. For a continuous probability
distribution with probability density function (pdf)P(u),
the entropy is defined asH(P) =

∫

S
P(u) ln

(

P(u)
)

du,
and the foregoing discussion extends to this setting in an
obvious way.

For ISOMER, the maximum-entropy principle can also
be justified as a means of ensuring uniformity. As men-
tioned above, entropy is maximized for a uniform distri-
bution. Thus, choosing the distribution according to the
maximum-entropy principle facilitates our goal of main-
taining consistency and uniformity at the same time.

3.4. Maximum Entropy in ISOMER

We first describe the histogram structure used in ISO-
MER (Section 3.4.1). We then show in Section 3.4.2 how
application of the maximum-entropy principle leads to an
optimization problem. Section 3.4.3 describes how this op-
timization problem is solved in ISOMER.

3.4.1 Histogram Structure in ISOMER

ISOMER uses the STHoles data structure [4] to represent
and store multidimensional histograms. In the STHoles his-
togram, each bucketbi has a hyperrectangular bounding box
denoted by box(bi) (⊆ S), i.e., bucketbi is bounded be-
tween two constant values in each dimension. Bucketbi ,
however, does not cover the entire region box(bi). There

R(q)

q

New
feedback

Figure 4. Drilling Holes for a New QFR

may be some “holes” inside box(bi) that are not covered
by bi . These regions are themselves histogram buckets,
and are referred to aschildren of bi . The bounding boxes
of these children are mutually disjoint hyperrectangles and
completely enclosed within box(bi). The region covered by
bi is formally given by:

C(bi) = box(bi)−
⋃

b j∈children(bi)

box(b j)

Intuitively, in the absence of holes,bi would represent a
region of uniform tuple density. However, the STHoles his-
togram identifies regions withinbi that have a different tuple
density, and represents them as separate histogram buckets.

For a multidimensional predicateq that selects all tuples
lying in a specified regionR(q)⊆S , an STHoles histogram
comprising bucketsb1,b2, . . . ,bk estimates the number of
tuples that satisfy this predicate as

N̂(q) =
k

∑
i=1

n(bi)
vol

(

R(q)∩C(bi)
)

vol
(

C(bi)
) . (4)

Here vol(R) denotes the usual euclidean volume of the re-
gionRwhen the data is real-valued; for discrete (i.e., integer
or integer-coded categorical) data, vol(R) denotes the num-
ber of integer points that lie inR.

ISOMER initializes the STHoles histogram to contain
a single bucketb1 such that box(b1) = C(b1) = S and
n(b1) = N. At this point, the histogram embodies the sim-
plest possible uniformity assumption. As more QFRs are
added over time, ISOMER learns more about the distribu-
tion of tuples inS and incorporates this information into
the histogram by “drilling” holes inb1.

ISOMER’s technique for drilling holes is a simpler ver-
sion of the method given in [4]. Suppose that ISOMER
obtains a QFR about a specified multidimensional predi-
cateq. To make the histogram consistent with this QFR,
ISOMER must first ensure that the histogram contains a
set of buckets that exactly coverR(q), so that the sum of
the tuple counts in these buckets can then be equated to
N(q) as in Section 3.2. If such a set of buckets already
exists, no holes need to be drilled. Otherwise, the pro-
cess of drilling holes forq proceeds as shown in Figure 4.
Specifically, ISOMER descends down the bucket tree until
it finds a bucketb such thatR(q) ⊂ C(b) but R(q) * C(b′)
for any b′ ∈ children(b). ISOMER forms a new bucket
bnew such that box(bnew) = R(q) and processes each bucket
b′ ∈ children(b) as follows.

• If box(b′)∩R(q) = /0, then nothing needs to be done.

• If box(b′)⊂ R(q), thenb′ is removed from children(b)
and added to children(bnew).

• If box(b′) partially overlapsR(q), then bucketb′ (and
recursively its children), are split as shown in Figure 4
to preserve disjointness and a hyperrectangular shape.
The splitting is done one dimension at a time, using an
arbitrary ordering among the dimensions.

3.4.2 Formulation of the Optimization Problem

To apply the maximum-entropy principle in ISOMER, we
associate a probability distributionP, and hence an entropy
valueH(P), with every possible histogram. In accordance
with the maximum-entropy principle, ISOMER then maxi-
mizesH(P) over the set of all histograms that are consis-
tent with the current set of QFRs. To defineP andH(P),
consider an STHoles histogram with bucketsb1, . . . ,bk hav-
ing bucket countsn(b1), . . . ,n(bk). If the data is discrete,
thenP is a probability distribution over the integer points
of S given by pu = n(b∗u)/[N ·V(b∗u)] for u ∈ S , where
V(b) is abbreviated notation for vol

(

C(b)
)

, andb∗u is the
unique bucketb such thatu∈C(b). This definition follows
from (4) after dividing both sides by the total number of tu-
plesN and takingq to be the point query “(A1,A2, . . . ,Ad) =
u”. The entropyH(P) = −∑u∈S pu ln(pu) corresponding
to the distributionP is thus given by

H(P) = − ∑
u∈S

n(b∗u)
N ·V(b∗u)

ln

(

n(b∗u)
N ·V(b∗u)

)

= −
k

∑
i=1

∑
u∈C(bi)

n(bi)

N ·V(bi)
ln

(

n(bi)

N ·V(bi)

)

.

Since the inner sum comprisesV(bi) identical terms that are
independent ofu,

H(P) = −
k

∑
i=1

n(bi)

N
ln

(

n(bi)

N ·V(bi)

)

= −
1
N

k

∑
i=1

n(bi) ln

(

n(bi)

V(bi)

)

+ ln(N),

(5)

where the last equality uses the identity∑k
i=1n(bi) = N.

For real-valued data, we takeP to be the pdf defined by
P(u) = pu for each real-valued pointu ∈ S , where pu

is defined as above; note that this density function is con-
stant within each regionC(bi). A straightforward calcula-
tion shows that the entropyH(P) =

∫

S
P(u) ln

(

P(u)
)

du
is given by (5).

We now express the QFRs as constraints on the his-
togram. Suppose that ISOMER has obtained QFRs for
m predicatesq1, . . . ,qm. First, ISOMER drills holes for
these QFRs in the histogram as described in Section 3.4.1.
For eachqi , the drilling procedure ensures that the set of
histogram buckets lying withinR(qi) exactly coverR(qi).
Hence the QFR forqi can be written as the constraint

∑
b|C(b)⊆R(qi)

n(b) = N(qi) (6)

λ

λ λ

λ λ1 21

1 1 2 33

e e

ee

iterative
scaling

BMW Honda
N(q)=100

1
N(q)=80

N(q)=303

λ

5614

6 24

Black

White

2

λ λ

Figure 5. Iterative Scaling Example

The application of the maximum-entropy principle thus
leads to a well posed3 optimization problem: for an
STHoles histogram with bucketsb1, . . . ,bk, select nonneg-
ative bucket countsn(b1), . . . ,n(bk) so as to maximize the
expressionH(P) in (5), while satisfying (6) for 1≤ i ≤ m.

3.4.3 Solution of Optimization Problem
To solve the above optimization problem, associate a La-
grange multiplieryi (1≤ i ≤m) with theith constraint given
by (6). After removing the constants from the objective
function in (5), the Lagrangian of the optimization problem
is given by:

m

∑
i=1

yi

(

∑
b|C(b)⊆R(qi)

n(b)−N(qi)

)

−
k

∑
i=1

n(bi) ln

(

n(bi)

V(bi)

)

Differentiate the above expression with respect ton(b) and
equate to 0 to get

∑
i|C(b)⊆R(qi)

yi − ln

(

n(b)

V(b)

)

−1 = 0,

so that, settingλi = eyi ,

n(b) =
V(b)

e ∏
i|C(b)⊆R(qi)

λi . (7)

Combining (7) with (6), we get a system ofm equations,
where there arem unknownsλ1, . . . ,λm. This system of
equations can be solved by a procedure known as iterative
scaling. The details of iterative scaling are omitted due to
lack of space and can be found in [12].4

Example 1 For the example of Section 3.2, V(bi) = 1 for
each i. As before, we add three QFRs given by(1), (2), and
(3). Denote these QFRs as q1, q2, and q3, respectively; see
Figure 5. Since bucket b1 is referred to only by q1, it fol-
lows from(7) that n(b1) = λ1/e. Similarly, n(b2) = λ1λ2/e,

3There may be some bucketsb for which n(b) = 0 in any consistent
solution. We detect such buckets by solving an appropriate linear program,
and exclude them from the entropy calculation since their contribution to
the entropy is 0 (limn(b)→0 n(b) ln

(

n(b)
)

= 0).
4We actually modify the basic algorithm in [12] to permit efficient in-

cremental updating of the maximum entropy solution. The idea isto persist
the multipliers corresponding to each QFR in the offline store, so that we
only need to recompute the solution for a few specified regions. Details
are omitted for brevity.

n(b3) = λ1λ3/e, and n(b4) = λ1λ2λ3/e. We can therefore
rewrite (1), (2), and(3) as

λ1 +λ1λ2 +λ1λ3 +λ1λ2λ3 = 100e

λ1λ2 +λ1λ2λ3 = 80e

λ1λ3 +λ1λ2λ3 = 30e

Solving the above equations, we obtainλ1 = 14e, λ2 = 4,
andλ3 = 3/7, yielding the final histogram (Figure 5).

This histogram is consistent with all of the added QFRs.
It is also “the most uniform” in the following sense. It main-
tains the 80-20 ratio between Hondas and BMWs for both
the colors. Similarly, it maintains the 30-70 ratio between
white and black cars for both the makes. Such uniformity is
not obtained by adding QFRs in an ad-hoc manner, e.g., as
in the histogram of Figure 3(e).

4. Dealing with Database Updates

As long as no tuples are updated, inserted, or deleted, all
of the QFRs obtained by ISOMER are consistent with each
other, and there exists at least one valid histogram solution
that satisfies the set of constraints in (6). However, in the
presence of data changes, the set of QFRs might evolve to a
point at which no histogram can be simultaneously consis-
tent with the entire set.

Example 2 Suppose that ISOMER obtains the two
QFRs N(make = ’Honda’) = 80 and N(make
= ’Honda’,color = ’White’) = 30, and
then some updates to the data occur. After
these updates, ISOMER might obtain the QFR
N(make = ’Honda’, color = ’Black’) = 60.
Clearly, there exists no histogram solution consistent with
all three QFRs.

Given inconsistent QFRs, there exists no solution to the op-
timization problem of Section 3.4.2. Thus, ISOMER must
first discard the QFRs that are no longer valid due to data
changes, leaving a set of consistent QFRs having a valid
histogram solution. However, deciding which QFR is in-
valid is not always straightforward and depends on the type
of data change. In Example 2, if some new black-Honda tu-
ples have been inserted, the first QFR is invalid. However,
if the color of some Hondas has been updated from white to
black, then the second QFR is invalid. In general, both the
first and second QFRs may be invalid.

Since no information is available about the type of data
change, ISOMER uses the notion of theageof a QFR to
decide which QFRs to discard. The intuition is that the older
a QFR, the more likely that it has been invalidated. Thus
ISOMER discards those QFRs that are relatively old and
whose removal leaves behind a consistent set. To quickly
detect such QFRs, the following LP approach is employed.

4.1. A Linear-Programming Solution

ISOMER associates two “slack” variables with each con-
straint corresponding to the QFRs. The constraints in (6) are
rewritten as (for 1≤ i ≤ m)

∑
b|C(b)⊆R(qi)

n(b)−N(qi) = s+i −s−i (8)

ISOMER also adds the nonnegativity constraints

n(b) ≥ 0 for all b, s+i ,s−i ≥ 0 for i = 1, . . . ,m. (9)

If there is a solution to the set of constraints (8) and (9)
such thats+

i = s−i = 0, then the solution satisfies theith
constraint from (6). Otherwise, ifs+

i or s−i is positive, the
ith constraint is not satisfied. Ideally, we would like a solu-
tion that satisfies the maximum number of constraints from
(6), i.e., a solution that minimizes the number of nonzero
slack variables. Unfortunately, determining such a solution
is known to be NP-complete [2]. ISOMER instead settles
for minimizing the sum of the slack variables, because this
problem can be solved by linear programming. ISOMER
then discards all QFRs that correspond to constraints hav-
ing nonzero slack. Note that if all the original constraints
from (6) are satisfiable, then there exists a solution in which
all of the slacks equal 0, and hence no QFRs are discarded.

As noted earlier, we want to preferentially discard older
QFRs. Instead of minimizing the sum of slack vari-
ables, ISOMER therefore minimizes a weighted sum of the
slack variables, where the slack corresponding to a QFR is
weighted inversely by the age of the QFR. Thus, a QFR
that is not satisfied and has nonzero slack incurs a smaller
objective-function penalty if it is old than if it is new. Thus
an optimal solution is more likely to permit slack in older
QFRs, so that such QFRs are preferentially discarded. The
age of theith QFR is given bym− i + 1. Thus ISOMER
solves the following linear program to detect inconsistent
constraints: Minimize

m

∑
i=1

1
m− i +1

(s+i +s−i)

subject to (8) and (9). Ifs+
i or s−i is nonzero in the result-

ing solution, then theith QFR is discarded. In our imple-
mentation, we have used the highly optimized open source
Coin LP solver [18]. Discarding QFRs enables ISOMER to
merge buckets as described in the next subsection.

Our overall method for eliminating invalidated QFRs is
clearly a heuristic. However, as shown in Section 6, it works
effectively and efficiently in practice. In future work, we
hope to enhance ISOMER with a more principled method
for eliminating inconsistent QFRs.

4.2. Merging Histogram Buckets

Once ISOMER has decided to discard a particular QFR,
the total histogram size can potentially be reduced by merg-
ing two or more histogram buckets. The process of merging

buckets is essentially the inverse of the process for drilling
holes described in Section 3.4.1 and is similar to that de-
scribed in [4]. Due to space constraints, we give only a
brief description here.

After the ith QFR is discarded, ISOMER examines all
“top-level” buckets that coverR(qi), i.e., all bucketsb such
thatC(b) ⊆ R(qi), butC

(

parent(b)
)

* R(qi). Bucketb can
be merged with another bucket in the following cases:

• If bucket b has exactly the same referring set as its
parent, i.e., if{ j|C(b) ⊆ R(q j)} = { j|C

(

parent(b)
)

⊆
R(q j)}, then b can be merged with its parent. This
is because bothb and parent(b) have the same num-
ber of tuples per unit volume in the maximum-entropy
solution; cf. (7). The children ofb now become the
children of parent(b).

• If there is a siblingb′ of b such that (i)b′ andb have
the same referring set and (ii) box(b′)∪box(b) is hy-
perrectangular, thenb andb′ can be merged. The chil-
dren ofb are recursively examined to see if they can be
merged with their new siblings, i.e., children ofb′. The
new merged bucket is also examined to see if it can be
merged with any of its siblings.

5. Meeting a Space Budget
Database systems usually limit the size of a histogram

in order to ensure efficiency when the histogram is read at
optimization time. Thus, we assume that there is limited
space available for histogram storage. The addition of new
QFRs causes the size of ISOMER’s STHoles histogram to
grow as new holes are drilled. Whenever the histogram
size exceeds the space budget, ISOMER reduces the his-
togram size by discarding “unimportant” QFRs. Intuitively,
a QFR is unimportant if it provides little information over
and above what is already provided by other QFRs. Dis-
carding unimportant QFRs reduces the total histogram size
by triggering the merging of buckets (Section 4.2).

Example 3 In the example of Section 3.2, suppose that
we have space to store only two histogram buck-
ets. After adding the QFRs N= 100 and N(make =
’Honda’) = 80, the resulting histogram has two buck-
ets, and is shown in Figure 6(a). Each bucket has vol-
ume equal to 2, and bucket b2 is a hole in the top-level
bucket b1. Suppose that we now add the third QFR,
N(make = ’BMW’, color = ’white’) = 10. ISO-
MER drills a hole corresponding to this QFR, and the re-
sulting histogram, shown in Figure 6(b), has three buckets,
violating the space budget. Notice, however, that the ad-
dition of this third QFR yields no extra information: be-
cause tuples are assumed to be uniformly distributed within
a bucket, the histogram in Figure 6(b) is already implied by
the histogram in Figure 6(a). Thus the third QFR is unim-
portant, and can be discarded.

Black

White

BMW Honda

n(b)=802

#white BMW’s
=10

=13λ

1n(b)=10

n(b)=103

n(b)=802

(b)(a)

=42λ

λ1=10e λ1=10e =42λ

n(b)=201

Figure 6. Unimportant QFR Example

How can the unimportant QFRs be efficiently deter-
mined? Note that the age of a QFR—which ISOMER uses
as a criteria for deciding which QFRs are invalid—is not
relevant for deciding importance. E.g., in Example 3, ISO-
MER can receive many instances of the third QFR in suc-
cession, thus making the second QFR very old. However,
the second QFR is still more important than the third QFR.

An elegant aspect of ISOMER is that the maximum-
entropy solution yields, for free, an importance measure
for each QFR. This leads to a very efficient procedure for
detecting and discarding unimportant QFRs. Specifically,
ISOMER uses the quantity| ln(λi)| as the importance mea-
sure for theith QFR, whereλi is the multiplier defined in
(7). To justify this choice intuitively, we note that ifλi = 1,
then removal of theith QFR does not affect the bucket
counts, so that the final maximum-entropy solution is un-
altered. For instance,λ3 = 1 in the final solution in Ex-
ample 3—see Figure 6(b)—and we concluded that the third
QFR was unimportant. By the same token, if the multiplier
corresponding to a QFR is close to 1, then removal of that
QFR will affect the final solution less than if we remove a
QFR whose multiplier is much greater than 1. Thus, theith
QFR is unimportant ifλi ≈ 1, i.e., if | ln(λi)| ≈ 0.

An alternative justification for our definition follows
from the fact that| ln(λi)| = |yi |, where yi is the La-
grange multiplier corresponding to theith constraint in the
maximum-entropy optimization problem (Section 3.4.3). It
is well known from optimization theory [3] that the La-
grange multiplier for a constraint measures the degree to
which the constraint affects the optimum value of the ob-
jective function. Thus|yi | measures how much theith con-
straint affects the entropy, i.e., the amount of information in
the distribution. In other words,|yi | = | ln(λi)| is a measure
of the amount of information carried by theith constraint,
and hence a measure of the importance of theith QFR.

Thus, whenever the histogram exceeds the space budget,
ISOMER proceeds by examining the current maximum-
entropy solution and, for eachi, computes the importance
measure for theith QFR as| ln(λi)|. ISOMER then dis-
cards the QFR with the least importance according to this
measure and merges buckets as described in Section 4.2.
ISOMER then incrementally computes the new maximum-
entropy solution and repeats the above procedure until the
histogram is sufficiently small.

6. Experiments

In this section, we provide an experimental validation of
ISOMER. We prototyped ISOMER on top of DB2 UDB,
which supports gathering of query feedback. The experi-
ments were conducted on an Intel 2.3GHz processor with
1GB RAM. We used ISOMER to maintain a multidimen-
sional histogram using query feedback and compared ISO-
MER’s cardinality estimates against estimates obtained by
a state-of-the-art commercial optimizer. The only form of
multidimensional statistics presently supported by the opti-
mizer is a count of the number of distinct values in a group
of columns. We also compared the ISOMER estimates with
those obtained by STGrid, since both algorithms use the
same type of feedback. We did not compare ISOMER with
STHoles, because the feedback collection strategy used by
STHoles has a very high overhead that makes the approach
impractical, particularly when index scans are used during
query processing; see Section 1.1.

Our experiments demonstrate the following:

1. ISOMER provides significantly better cardinality esti-
mates than either the commercial optimizer technique
or STGrid.

2. For static data, the cardinality estimates provided by
ISOMER consistently improve and then stabilize as
QFRs are added to the histogram, i.e., there is no os-
cillation in accuracy when more QFRs are added (and
others removed to keep within the space budget).

3. For changing data, ISOMER learns the new data dis-
tribution much faster (i.e., with the addition of many
fewer QFRs) than STGrid and provides significantly
better cardinality estimates.

4. The overall overhead of ISOMER is low.

For our experiments we used a DMV (Department of
Motor Vehicles) database that was derived from a real-
world application. For our experiment, we focused on the
Cars table which has several correlated columns such as
make, model, color, andyear. The maximum number
of distinct values in any column was approximately 150.

We generated a collection of queries referred to as train-
ing queries, issued them to the query execution engine, and
collected QFRs for the predicates in these queries. We used
ISOMER (or STGrid for comparison) to maintain a multidi-
mensional histogram on the set of referenced attributes. The
histogram was initialized using one-dimensional database
statistics on the attributes and by assuming independence
between the attributes. QFRs collected during execution of
the training queries were then used to refine this histogram
while allowing a maximum ofk buckets, wherek was an
experimental parameter.

To test the accuracy of the maintained histogram, we
generated a collection of 200 test queries from the same

Figure 7. Error of 2D Histogram on model and
year

distribution as that of the training queries. We periodically
tested the histogram’s accuracy by comparing the actual and
estimated cardinalities for each predicate in the test queries.
We measured the relative error in the estimation as

Relative Error=
|N(q)− N̂(q)|

max(100,N(q))
,

whereN(q) andN̂(q) are the actual and estimated number
of tuples respectively that satisfy the predicateq. In our for-
mula, the quantity 100 is a sanity constant [8] that prevents
the relative error from blowing up in case of highly selec-
tive predicates, i.e., predicates for whichN(q) is either very
small or equal to 0. We measured the overall accuracy of the
histogram by the average relative error across all predicates
in the test queries.

We discuss the accuracy of ISOMER on static data in
Section 6.1 and then consider updates in Section 6.2. We
study the running time of ISOMER in Section 6.3.

6.1. Accuracy on Static Data

6.1.1 2D Histograms

To demonstrate the ability of ISOMER to handle both nu-
merical and categorical attributes, we used ISOMER to
build a two-dimensional histogram on the attributesmodel
(categorical) andyear (numerical) of theCar table. Both
test and training queries were of the form

SELECT * FROM Car WHERE model = x
AND year BETWEEN y1 AND y2

wherex, y1, andy2 are variables. The queries were gen-
erated according to the data distribution. First,x was cho-
sen randomly from all possible models; the probability for
choosing a given model was proportional to the model’s fre-
quency in the database. Theny1 andy2 (y1 ≤ y2) were cho-
sen randomly from between the minimum and maximum
years that occur with modelx. Note that the execution of
such queries gave us QFRs not only for two-dimensional
predicates, but also for one-dimensional predicates, since
predicates are applied one by one. Thus, we obtained QFRs
such asN(model = x) andN(model = x, y1 ≤ year ≤
y2).

Figure 7 plots the error of the various approaches as a
function of the number of training queries. Each histogram

Figure 8. Error of 3D Histogram on make,
model and color

was allowed to have a maximum ofk = 175 buckets. It can
be seen that ISOMER significantly outperforms STGrid by
providing much more accurate cardinality estimates. Also
note that the error of ISOMER consistently decreases and
then stabilizes, but never increases with the addition of more
QFRs. Although STGrid also seems to possess this desir-
able property in case of static data, we show in the sequel
that, for dynamic data, the error of STGrid may actually
increasewith addition of more QFRs. As expected, the
optimizer performs poorly, mainly because of the limited
multidimensional statistics it supports. That is, the opti-
mizer keeps only a count of the number of distinct values
for a group of columns, which is not useful for predicting
the cardinality of range predicates on the numerical attribute
year. Thus, the optimizer estimates are simply based on
the independence assumption.

6.1.2 3D Histograms
In this experiment, we built a three-dimensional histogram
on the highly correlated attributesmake, model, and
color. Both the training and test queries were of the form

SELECT * FROM Car WHERE make = x AND
model = y AND color = z

wherex, y, andz are variables. The query-generation pro-
cess was similar to that described in Section 6.1.1. First,
a makex was chosen from the various makes according to
the data distribution. Then from the various models cor-
responding to makex, a particular modely was chosen,
again according to the data distribution. Finally a colorz
was chosen from the various colors corresponding to the
(make, model) combination(x,y). ISOMER obtained QFRs
for predicates of dimension 1, 2, and 3.

Figure 8 plots the error of the various approaches against
the number of training queries. Each histogram was al-
lowed to have a maximum ofk = 250 buckets. ISOMER
again outperforms STGrid by an even greater margin than
in the 2D case, for two reasons. First, there are no partially
overlapping buckets, because all attributes are categorical
and hence the only predicates are equality predicates. Thus
no bucket splits take place in ISOMER, so that a larger
number of QFRs can be added to the histogram before the
space budget is reached, thereby boosting accuracy. Sec-
ond, STGrid performs poorly because it merely adjusts the

Figure 9. Error vs allowed number of buckets

tuple counts in the buckets based on QFRs and does not use
the QFRs to restructure the buckets. This lack of restructur-
ing is a problem because buckets are determined from the
initial one-dimensional statistics, that ignore the correlation
between attributes. Sincemake, model, andcolor are
much more strongly correlated thanmodel andyear, the
performance of STGrid for this 3D histogram is worse than
for the 2D histogram in Section 6.1.1.

6.1.3 Effect of Space Budget

To study the effect of the space budget on histogram accu-
racy, we used a 2D histogram onmodel andyear as in
Section 6.1.1.

Figure 9 plots the error of the ISOMER and STGrid his-
tograms against the maximum number of buckets allowed,
along with the optimizer error (the optimizer presently
maintains a hardcoded, fixed number of buckets). The error
was measured after 400 training queries had been executed
and the corresponding QFRs used to refine the histogram.
As expected, the error of both ISOMER as well as STGrid
decreases as more buckets are allowed to be stored. How-
ever, ISOMER improves much more rapidly than STGrid as
the space budget increases and outperforms STGrid at every
value of the space budget.

6.2. Accuracy on Changing Data

To study the ability of ISOMER to deal with changing
data, we worked with a 2D histogram onmodel andyear
as in Section 6.1.1. We interspersed the execution of train-
ing queries with the issuing of updates to the database. To
specify the type of updates issued, we first define the notion
of acorrelated tupleand auniform tuple. A correlated tuple
is a tuple drawn from the real data distribution; it has all the
correlations that the real database has. For example, since
make and model are correlated, a correlated tuple can
have the(make, model) value(Honda, Civic) but
never(Toyota, Civic). In contrast, a uniform tuple is
generated by choosing the value of each attribute randomly
and independently from the attribute’s domain. For exam-
ple, unlike a correlated tuple, the value of a uniform tuple
can be any(make, model) combination.

We report the results of an experiment in which we

Figure 10. Updating: uniform to correlated

changed the data distribution from uniform to correlated.5

Specifically, we started out with a database consisting com-
pletely of uniform tuples. The optimizer gathered statis-
tics over this database; these initial statistics remainedfixed
throughout the experiment. The training queries were exe-
cuted and the gathered QFRs used to refine the histogram
over time. After every 300 training queries, 20% of the
tuples were updated from uniform to correlated tuples.
This process was repeated 5 times, after which the entire
database consisted only of correlated tuples.

Figure 10 plots the error of the various approaches
against the number of queries executed. The spikes in the
error curve that occur after roughly every 300 queries cor-
respond to the times at which the database is updated. All
the histograms start off very accurately because the data is
uniform with independent attributes. For all approaches,
the error increases when the data is updated. For ISOMER,
however, the histogram evolves as queries are issued against
the new data distribution, and the error decreases again. The
STGrid error also decreases to some extent as the histogram
is refined after updates. However, the improvement de-
creases as data becomes correlated. In fact, when more than
80% of the tuples have been updated, the addition of new
QFRs tends toincreasethe overall error in STGrid. This
is mainly due to the heuristic nature of STGrid, that does
not preserve consistency when using new QFRs to refine
the histogram. As expected, the optimizer error increases
at each database update and never decreases, since the opti-
mizer statistics are never refined.

ISOMER is not able to attain its original accuracy after
updates have occurred. However, this phenomenon is ex-
pected because ISOMER imposes the uniformity assump-
tion on any regions of the data distribution about which it
lacks information. Hence ISOMER is bound to be more
accurate on uniform than on correlated data.

6.3. Running Time

The results in Sections 6.1 and 6.2 show that in contrast
to STGrid, ISOMER is robust and highly accurate across
various data distributions and update scenarios. Neverthe-
less, the STGrid approach is very efficient because it uses a
simple heuristic to refine the histogram. Although ISOMER

5We obtained similar results, not reported here, when changing the dis-
tribution from correlated to uniform.

Figure 11. ISOMER running time vs number
of buckets

is not as efficient as STGrid, we show in this section that the
robustness of ISOMER comes at an affordable cost.

ISOMER’s cost has two components. The first com-
ponent is the cost of collecting QFRs, which has been
shown [17] to be low (less than 5% overhead). Because this
cost is incurred by any reactive approach, we do not con-
sider it further. The second component of the ISOMER cost
is the cost of refining the histogram using QFRs; this cost is
incurred whenever ISOMER is invoked. To study this latter
cost component, we work with a 2D histogram onmodel
andyear as in Section 6.2 and use changing data.

Figure 11 plots the total running time of ISOMER to add
4000 QFRs against the maximum number of buckets al-
lowed in the histogram (A comparison with STGrid is not
shown, since its running time is essentially 0). Note that
although the worst case complexity is quadratic in the num-
ber of buckets (since all sibling pairs may be compared for
bucket merging; Section 4.2), the actual running time is
only slightly superlinear and remains well under a minute
even for a moderately sized histogram with 350 buckets.
In general, the number of buckets depends in a compli-
cated manner on the number of distinct data values and the
smoothness of the data distribution. We found that most of
this time is spent in the process of reducing the histogram
size to within the space budget, because the maximum-
entropy solution has to be recomputed every time a QFR is
discarded. We are exploring the use of the faster Newton-
Raphson method for solving the maximum-entropy opti-
mization problem in order to improve the overall running
time of ISOMER.

7. Conclusions

We have described ISOMER, an algorithm for main-
taining multidimensional histograms using query feedback.
ISOMER uses the information-theoretic principle of max-
imum entropy to refine the histogram based on query
feedback gathered over time. Unlike previous propos-
als for feedback-driven histogram maintenance, which lack
either robustness (e.g., STGrid [1]), or efficiency (e.g.,
STHoles [4]), ISOMER is both reasonably efficient and ro-
bust to changes in the underlying data.

ISOMER can be extended in several ways to increase
its utility in a database system. First, to handle a large

number of attributes, ISOMER can be combined with tech-
niques based on graphical models [7, 11]; such techniques
divide the set of attributes into correlated subsets and main-
tain multidimensional statistics only for these subsets. Sec-
ond, ISOMER can be extended to build histograms even on
attributes in different tables, by using statistical views. Fi-
nally, ISOMER can be combined with a proactive approach
in order to increase its robustness for queries that refer to
data that has not been previously queried.

References

[1] A. Aboulnaga and S. Chaudhuri. Self-tuning histograms:
building histograms without looking at data. InSIGMOD
1999.

[2] E. Amaldi and V. Kann. The complexity and approximability
of finding maximum feasible subsystems of linear relations.
Theoretical Computer Science, pages 181–210, 1995.

[3] S. Boyd and L. Vandenberghe.Convex Optimization. Cam-
bridge University Press, 2004.

[4] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: A multi-
dimensional workload-aware histogram. InSIGMOD 2001.

[5] S. Chaudhuri, R. Motwani, and V. Narasayya. Random sam-
pling for histogram construction: How much is enough? In
SIGMOD 1998.

[6] C. Chen and N. Roussopoulos. Adaptive selectivity estima-
tion using query feedback. InSIGMOD 1994.

[7] A. Deshpande, M. Garofalakis, and R. Rastogi. Indepen-
dence is good: dependency-based histogram synopses for
high-dimensional data. InSIGMOD 2001.

[8] S. Guha, K. Shim, and J. Woo. REHIST: Relative Error His-
togram Construction Algorithms. InVLDB 2004.

[9] D. Gunopulos, G. Kollios, V. Tsotras, and C. Domeniconi.
Approximating multi-dimensional aggregate range queries
over real attributes. InSIGMOD 2000.

[10] E. Jaynes. Information theory and statistical mechanics.
Physical Reviews, 1957.

[11] L. Lim, M. Wang, and J. Vitter. SASH: A self-adaptive his-
togram set for dynamically changing workloads. InVLDB
2003.

[12] V. Markl et al. Consistently estimating the selectivity of con-
juncts of predicates. InVLDB 2005.

[13] Y. Matias, J. Vitter, and M. Wang. Wavelet-based histograms
for selectivity estimation. InSIGMOD 1998.

[14] M. Muralikrishna and D. DeWitt. Equi-depth histograms for
estimating selectivity factors for multidimensional queries. In
SIGMOD 1988.

[15] V. Poosala and Y. Ioannidis. Selectivity estimation without
the attribute value independence assumption. InVLDB 1997.

[16] J. Shore and R. Johnson. Axiomatic derivation of the princi-
ple of maximum entropy and the principle of minimum cross-
entropy. IEEE Trans. Information Theory, 26(1):26–37, Jan.
1980.

[17] M. Stillger, G. Lohman, V. Markl, and M. Kandil. LEO -
DB2’s Learning Optimizer. InVLDB 2001.

[18] Computational Infrastructure for Operations Research .
http://www.coin-or.org/.

[19] N. Thaper, S. Guha, P. Indyk, and N. Koudas. Dynamic mul-
tidimensional histograms. InSIGMOD 2002.

