

On the Validity of Long-Run Estimation Methods for Discrete-Event Systems

Peter J. Haas

IBM Research Division

Almaden Research Center

San Jose, CA

peterh@almaden.ibm.com

Peter W. Glynn

Dept. of Manag. Sci. & Engrg.

Stanford University

Stanford, CA

glynn@stanford.edu

Motivation: Time-Average Limits

- Often want to study performance measures of the form

$$r(f) = \lim_{t \rightarrow \infty} \frac{1}{t} \int_0^t f(X(u)) du$$

- f is real-valued reward/cost function
- $\{X(t): t \geq 0\}$: underlying process of **discrete-event stochastic system**
- Ex: long-run utilization, reliability, operating cost
- System modeled as **generalized semi-Markov process** (GSMP)
- Also want discrete-time averages over state-transition epochs

- For complex systems, must estimate $r(f)$ using simulation
 - Want point estimates and **confidence intervals**

Some Common Interval Estimation Methods

- Assume $\{ f(X(t)) : t \geq 0 \}$ obeys CLT with variance constant σ^2
- Methods based on consistent estimation of σ^2
 - Regenerative methods
 - Variable batch means
 - Spectral methods
- Cancellation methods
 - Require FCLT
 - Rest on limit theorem in which σ^2 “cancels out”
 - Ex: classical batch means
 - Ex: original standardized time series (STS) methods

When are Estimation Methods Guaranteed to Work?

- When are time-average limits well defined?
- When are estimation methods valid?
- Typical conditions on output process $\{ f(X(t)) : t \geq 0 \}$ hard to verify
 - Output process is regenerative
 - Output process is stationary (usually false!) and ϕ -mixing
 - Output process obeys an FCLT
 - Output process obeys a strong invariance principle
- We want conditions on model **building blocks**

Road Map for Remainder of Talk

- Review of GSMPs and FCLTs
- Cancellation methods
 - New limit theorems for GSMPs (SLLNs and FCLTS)
 - Ensures validity of cancellation methods
 - Weakest moment conditions possible (vs Haas 1999)
- Conditions for (weak) consistency of estimators of σ^2
 - Coupling approach for “quadratic form” estimators of σ^2
 - Exploit existing results for stationary processes
 - Obtain conditions for variable batch means & spectral estimators

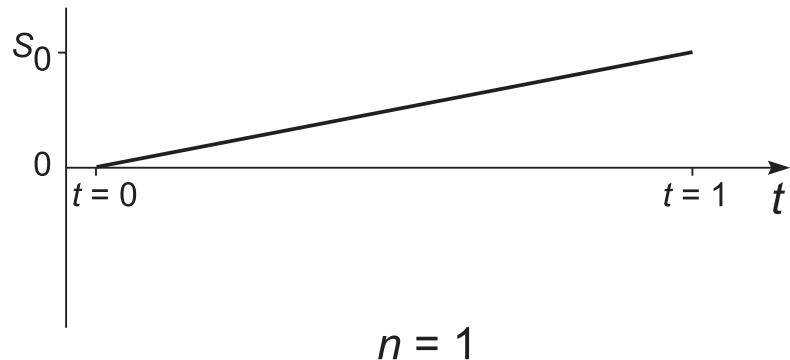
GSMPs

- $\{X(t): t \geq 0\}$ makes **state** transitions when **events** occur
 - Discrete set S of states and finite set E of events
 - $E(s) =$ set of **active** events in state $s \in S$
 - State-transition probabilities $p(s'; s, e^*)$
- Occurrence of events governed by **clocks**
 - Clock for $e \in E$ records time until scheduled occurrence of e
 - Set according to distribution function $F(x; e)$
 - Runs down to 0 at speed $r(s, e)$
- Defined in terms of **Markov chain** $\{(S_n, C_n): n \geq 0\}$
 - S_n = state and C_n = clock-reading vector (after n th state transition)
 - Denote state space of chain by Σ

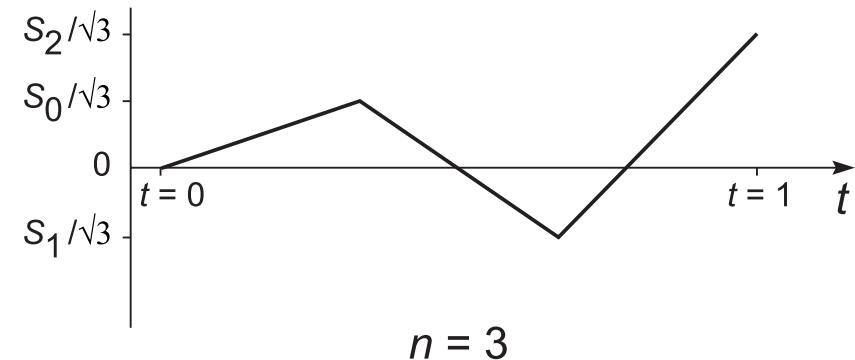
A Classical FCLT: Donsker's theorem

- $\{X_n: n \geq 0\}$ i.i.d. mean 0 random variables
- $S_n = X_0 + X_1 + \cdots + X_n$
- $U_n(t) = \frac{1}{\sqrt{n}} \int_0^{nt} X_{\lfloor u \rfloor} du$
- *Theorem:* if $\sigma^2 = \text{Var}[X_0] < \infty$, then $U_n \Rightarrow \sigma W$
 - the symbol \Rightarrow denotes weak convergence on $C[0, 1]$
 - W is a standard Brownian motion on $[0, 1]$
- By continuous mapping theorem: $U_n(1) = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} X_j \Rightarrow \sigma W(1)$

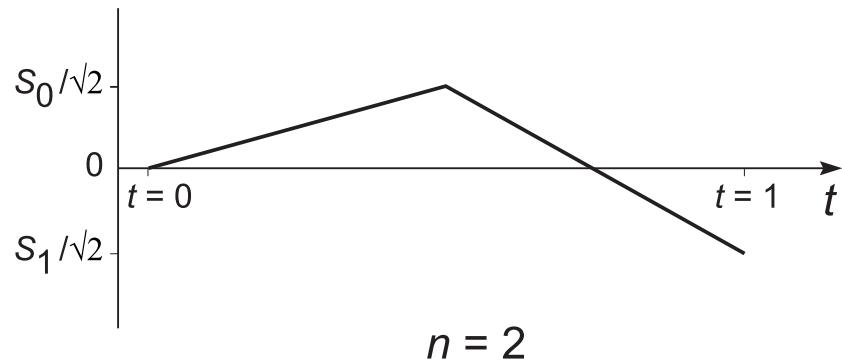
The Function $U_n(t)$



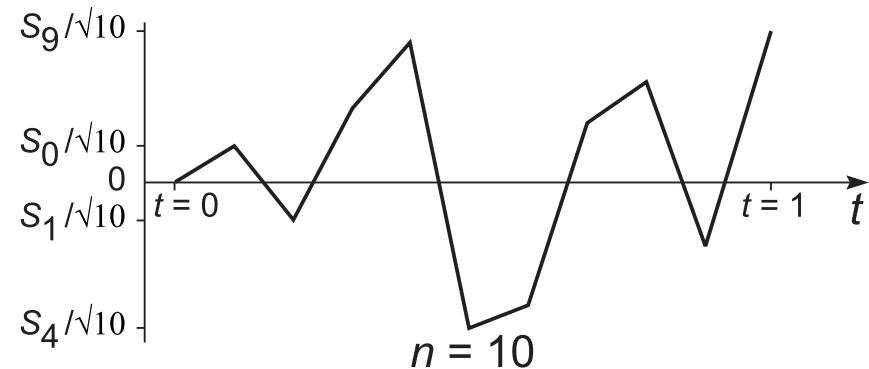
$n = 1$



$n = 3$

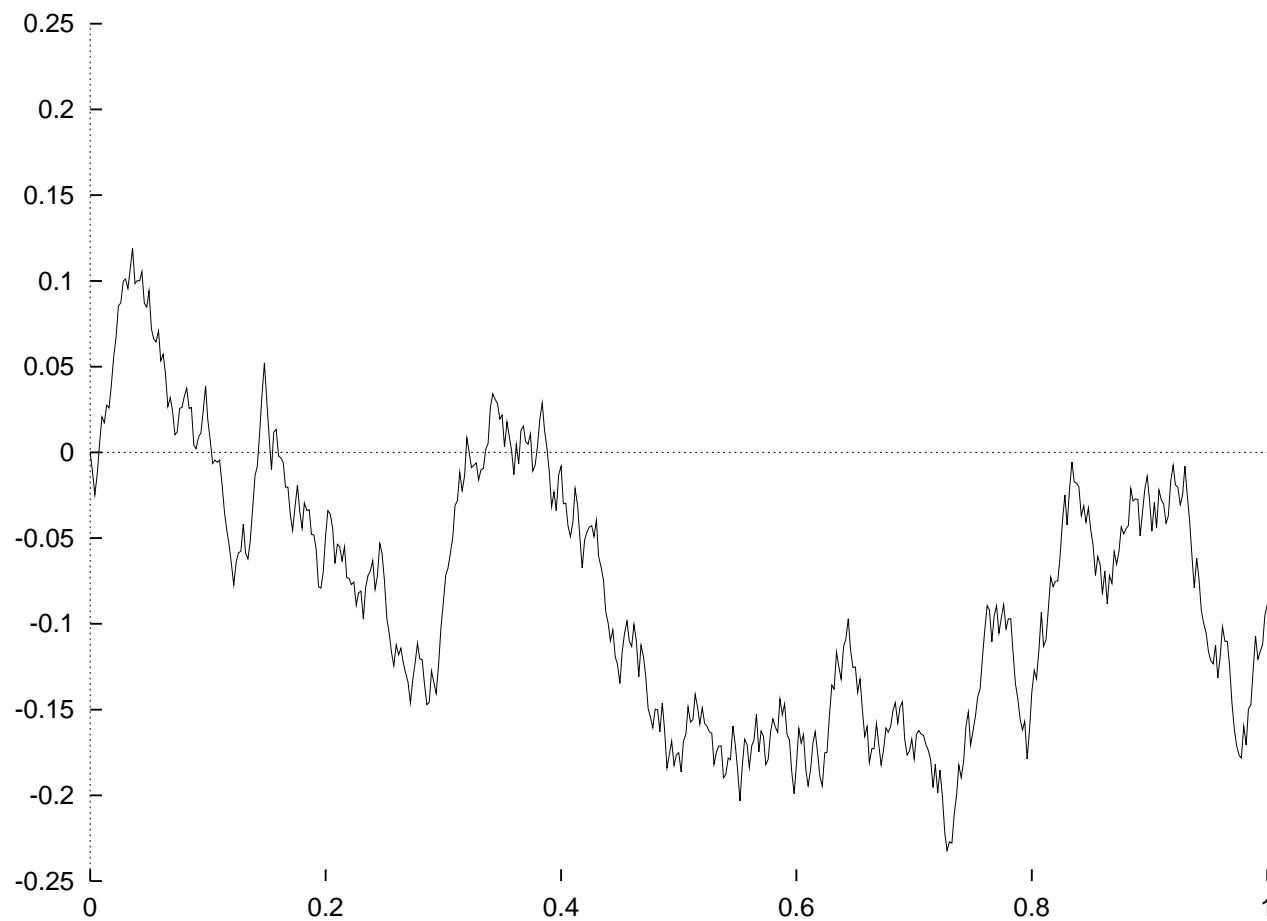


$n = 2$



$n = 10$

The Function $U_n(t)$ with $n = 500$



Consequences of FCLT (Glynn and Iglehart 1990)

- Estimate $r = \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} f(X_j)$ by $\hat{r}_n = \frac{1}{n} \sum_{j=0}^{n-1} f(X_j)$
- Suppose that $U_n \Rightarrow \sigma W$, where $U_n(t) = \frac{1}{\sqrt{n}} \int_0^{nt} (f(X_{\lfloor u \rfloor}) - r) du$
- Suppose $\xi: C[0, 1] \mapsto \mathfrak{R}$ is “continuous” and, for $x \in C[0, 1]$ and $a \in \mathfrak{R}$,
$$\xi(ax) = a\xi(x) \text{ and } \xi(x - ae) = \xi(x), \text{ where } e(t) = t$$
- Set $\xi_n = \xi(\bar{Y}_n)$, where $\bar{Y}_n(t) = \frac{1}{n} \int_0^{nt} f(X_{\lfloor u \rfloor}) du$
- Can show: $\frac{\hat{r}_n - r}{\xi_n} = \frac{\sqrt{n}(\hat{r}_n - r)}{\sqrt{n}\xi_n} = \frac{U_n(1)}{\xi(U_n)} \Rightarrow \frac{\sigma W(1)}{\sigma \xi(W)} = \frac{W(1)}{\xi(W)}$
- Asymptotic $100p\%$ confidence interval: $[\hat{r}_n - \xi_n z_p, \hat{r}_n + \xi_n z_p]$

Limit Theorems for GSMPs

- Assumption PD(q)
 - GSMP has finite state space S and positive speeds
 - GSMP is irreducible
 - Each $F(\cdot; e)$ has finite q th moment and density positive on $[0, \bar{x}]$
- Assumption PDE: $\int_0^\infty v^x dF(x; e) < \infty$ for some $v > 1$
- \mathcal{H}_u : Set of functions $\tilde{h}: \Sigma \mapsto \mathbb{R}$ such that

$$|\tilde{h}(s, c)| \leq a + b (t^*(s, c))^u$$

where $t^*(s, c)$ is holding time starting from s with clock-reading vector c

Strong Law of Large Numbers

- *Theorem:* If Assumption PD(1) holds, then for any function $f: S \mapsto \mathbb{R}$ there exists finite $r(f)$ —indep. of initial dist'n—such that

$$\lim_{t \rightarrow \infty} \frac{1}{t} \int_0^t f(X(u)) du = r(f) \text{ a.s.}$$

- *Theorem:* If Assumption PD($u \vee 1$) holds ($u \geq 0$), then for any $\tilde{f} \in \mathcal{H}_u$ there exists finite $\tilde{r}(\tilde{f})$ —indep. of initial dist'n—such that

$$\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \tilde{f}(S_j, C_j) = \tilde{r}(\tilde{f}) \text{ a.s.}$$

FCLT

- Assume time-average limits $r(f)$, $\tilde{r}(\tilde{f})$ exist and set
 - $U_\nu(f)(t) = \frac{1}{\sqrt{\nu}} \int_0^{\nu t} (f(X(u)) - r(f)) du$
 - $\tilde{U}_n(\tilde{f})(t) = \frac{1}{\sqrt{n}} \int_0^{nt} (\tilde{f}(S_{\lfloor u \rfloor}, C_{\lfloor u \rfloor}) - \tilde{r}(\tilde{f})) du$
- *Theorem:* If Assumption PD(2) holds, then for any function $f: S \mapsto \mathbb{R}$ there exists $\sigma(f)$ such that $U_\nu(f) \Rightarrow \sigma(f)W$ for any initial dist'n
- *Theorem:* If Assumption PD($2(u \vee 1)$) holds, then for any $\tilde{f} \in \mathcal{H}_u$ there exists $\tilde{\sigma}(\tilde{f})$ such that $\tilde{U}_n(\tilde{f}) \Rightarrow \tilde{\sigma}(\tilde{f})W$ for any initial dist'n

Proof of SLLN and FCLT

- (Haas 1999): Under Assumption PD(q), with $h_q(s, c) = 1 + \max_i c_i^q$,

$$\sup_{(s, c) \in \Sigma - H} E_{(s, c)}[h_q(S_m, C_m) - h_q(S_0, C_0)] \leq -\beta_q h_{q-1}(s, c)$$

for some $m \geq 1$, $\beta_q > 0$, and compact set H

- Thus $\{(S_n, C_n) : n \geq 0\}$ is positive Harris recurrent
 \Rightarrow wide-sense regenerative (e.g., Meyn and Tweedie 1993)
- Show: cycle length η_1 and $\sum_{j=0}^{\eta_1-1} \tilde{f}(S_j, C_j)$ have finite q th moments
 - Show that $E_{(s, c)}[T_B^q] \leq \beta_q h_q(s, c)$ for $(s, c) \in \Sigma$ (induction on q)
 - Show that $E_\mu[\eta_1^q] < \infty$ (treat as random sum of T_B 's)
 - Show that cycle sum has finite q th moment (use bound in Gut 1988)

Consistent Variance Estimation

- Let Assumption PDE hold
- Let \tilde{f} be polynomially dominated: $\tilde{f} \in \mathcal{H}_u$ for some u
- For $\bar{r}(n; \tilde{f}) = \frac{1}{n} \sum_{j=0}^{n-1} \tilde{f}(S_j, C_j)$, previous results show:
 - $\lim_{n \rightarrow \infty} \bar{r}(n; \tilde{f}) = \tilde{r}(\tilde{f})$ a.s. for some finite $\tilde{r}(\tilde{f})$
 - $(\tilde{\sigma}^2(\tilde{f})/n)^{-1/2} (\bar{r}(n; \tilde{f}) - \tilde{r}(\tilde{f})) \Rightarrow N(0, 1)$ for some $\tilde{\sigma}^2(\tilde{f})$
- If $V_n \Rightarrow \tilde{\sigma}^2(\tilde{f})$, then $(V_n/n)^{-1/2} (\bar{r}(n; \tilde{f}) - \tilde{r}(\tilde{f})) \Rightarrow N(0, 1)$
- Asymptotic $100p\%$ confidence interval:

$$[\bar{r}(n; \tilde{f}) - z_p(V_n/n)^{1/2}, \bar{r}(n; \tilde{f}) + z_p(V_n/n)^{1/2}]$$

Batch-Means Variance Estimator

- Given process $\{ Z_n : n \geq 0 \}$ with variance constant $\tilde{\sigma}^2$
- Break $n = mb$ observations into b batches of length m
 - For consistency, need $b = b(n)$ and $m = m(n)$
- $\bar{X}_n(j)$ is j th batch mean: $\bar{X}_n(j) = \frac{1}{m} \sum_{i=(j-1)m}^{jm-1} Z_i$
- $\bar{X}_n = \text{average of batch means}$
- Estimator of $\tilde{\sigma}^2$:

$$V_n^{(B)} = \frac{m}{b-1} \sum_{j=1}^b (\bar{X}_n(j) - \bar{X}_n)^2$$

Spectral Estimators

- Estimator of $\tilde{\sigma}^2$:

$$V_n^{(S)} = \sum_{h=-(m-1)}^{m-1} \lambda(h/m) \hat{R}_h$$

- \hat{R}_h is estimated lag- h autocovariance:

$$\hat{R}_h = \frac{1}{n-|h|} \sum_{i=0}^{n-|h|-1} (Z_i - \bar{Z}_n)(Z_{i+|h|} - \bar{Z}_n)$$

- λ is lag window (window length = $2m$):
 - finite and continuous on $[-1, 1]$ with $\lambda(x) = \lambda(-x)$ and $\lambda(0) = 1$
 - $\lambda(x) = 0$ for $x \notin [-1, 1]$
 - $\lim_{x \rightarrow 0} (1 - \lambda(x)) / |x|^q = \alpha$ for some $q, \alpha \in (0, \infty)$

Quadratic-Form Estimators

- A QF estimator is of the form

$$V_n = V_n(\tilde{f}) = \sum_{i=0}^n \sum_{j=0}^n Z_i Z_j q_{i,j}^{(n)}$$

where each $q_{i,j}^{(n)}$ is finite with $q_{i,j}^{(n)} = q_{j,i}^{(n)}$

- Localized QF estimators (includes batch-means, spectral estimators)

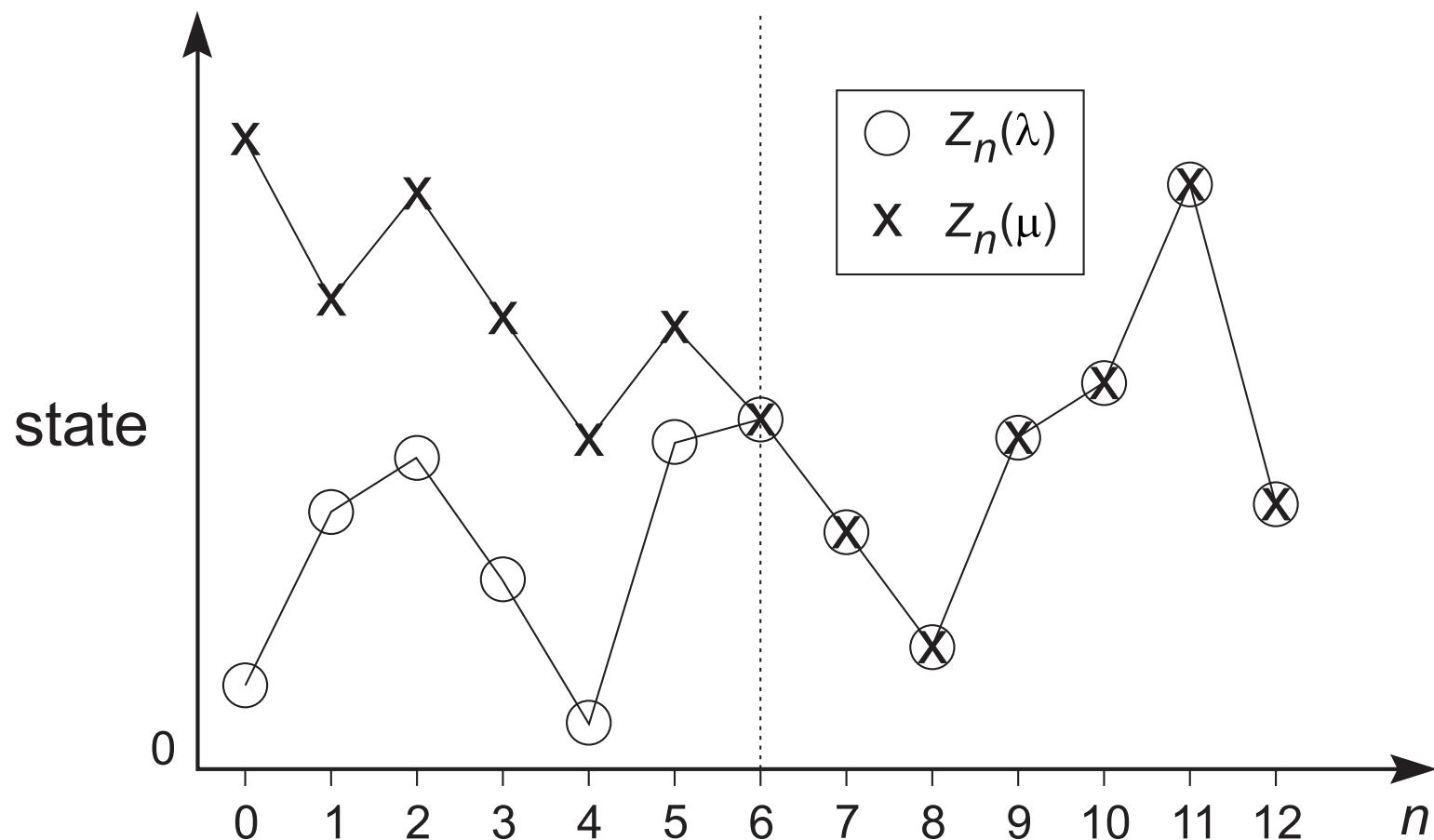
$$|q_{i,j}^{(n)}| \leq \begin{cases} a_1/n & \text{if } |i - j| \leq m(n) \\ a_2(n)/n & \text{if } |i - j| > m(n) \end{cases}$$

where $a_1 \in [0, \infty)$, $a_2(n) \rightarrow 0$, and $m(n)/n \rightarrow 0$

Aperiodic GSMPs

- **d -cycle**: S can be partitioned into disjoint sets S_1, \dots, S_d such that $s' \in S_{i+1}$ whenever $s \in S_i$ and $p(s'; s, e^*) > 0$ for some e^*
- **Period** of GSMP: largest d for which d -cycle exists
- GSMP with period 1 is **aperiodic**
- **Lemma**: If Assumption PDE holds for an aperiodic GSMP, then underlying chain $\{ (S_n, C_n) : n \geq 0 \}$ is aperiodic, hence Harris ergodic
- Two consequences of Harris ergodicity
 - There exists **invariant distribution** π : $P_\pi \{ (S_1, C_1) \in A \} = \pi(A)$
 - Chain admits **coupling**

Coupling



From Stationary to Nonstationary Consistency Results

- *Theorem:* Given GSMP + polynomially dominated function \tilde{f} , suppose
 - GSMP is aperiodic
 - Assumption PDE holds, so that
 - * there exists an invariant distribution π for $\{(S_n, C_n) : n \geq 0\}$
 - * $\{\tilde{f}(S_n, C_n) : n \geq 0\}$ obeys a CLT with a variance constant $\tilde{\sigma}^2(\tilde{f})$

If localized QF estimator $V_n(\tilde{f})$ satisfies $V_n(\tilde{f}) \Rightarrow \tilde{\sigma}^2(\tilde{f})$ when initial distribution is π , then $V_n(\tilde{f}) \Rightarrow \tilde{\sigma}^2(\tilde{f})$ for any initial distribution

- Proof: Couple stationary and nonstationary version of underlying chain and show that $|V_n - V_n^{\text{stationary}}| \rightarrow 0$ (follows from localization property)

Validity of Variable Batch Means and Spectral Methods

- *Theorem:* Define $V_n^{(B)}$, $V_n^{(S)}$ as before with $Z_n = \tilde{f}(S_n, C_n)$. Suppose
 - GSMP is aperiodic and \tilde{f} is polynomially dominated
 - Assumption PDE holds, so that $\{\tilde{f}(S_n, C_n): n \geq 0\}$ obeys a CLT with a variance constant $\tilde{\sigma}^2(\tilde{f})$

Then

- $V_n^{(B)} \Rightarrow \tilde{\sigma}^2(\tilde{f})$ if $b = b(n) \rightarrow \infty$ and $m = m(n) \rightarrow \infty$
- $V_n^{(S)} \Rightarrow \tilde{\sigma}^2(\tilde{f})$ if $m = m(n) \rightarrow \infty$ with $m(n) = o(n^{1/2})$
- *Proof:* Use results on consistent estimation in stationary regime (Chien et al. 1997, Anderson 1971) + mixing and moment properties of Harris ergodic chains, then apply coupling result

Consistent Estimation in Continuous Time

- Can extend previous results to quantities of the form

$$g(\tilde{r}(\tilde{f}_1), \tilde{r}(\tilde{f}_2), \dots, \tilde{r}(\tilde{f}_l))$$

where g is nonlinear and differentiable (use Cramér-Wold + delta method)

- But can show that

$$r(f) = \lim_{t \rightarrow \infty} \frac{1}{t} \int_0^t f(X(u)) du = \frac{\tilde{r}(ft^*)}{\tilde{r}(t^*)}$$

where t^* is holding-time function and $(ft^*)(s, c) = f(s)t^*(s, c)$

Relation to Results of Damerdji et al.

- Stronger assumption: output process obeys strong invariance principle
- Stronger conclusion: $V_n \rightarrow \tilde{\sigma}^2$ with probability 1 (strong consistency)
 - Needed for showing validity of sequential stopping rules
- Hard to establish strong invariance principle
 - E.g., for variable batch means with $b(n) = O(n^{2/3})$
 - Our results establish weak consistency for this method

Summary

- Sufficient building block conditions on GSMPs for validity of a variety of interval estimation methods for time-average limits
- Cancellation methods
 - New SLLNs and FCLTs in discrete and continuous time
- Consistent estimation of the variance
 - General method for proving consistency via coupling
 - Established validity of variable batch means, spectral methods
 - Sufficient conditions for Harris ergodicity of underlying chain

Future Work

- Future work: Cancellation methods
 - Weakening of conditions based on specific model structure
 - Understanding pathological behavior
 - Heavy tails (applicability of current methods vs need for new methods)
- Future work: Consistent estimation methods
 - Refine conditions for specific estimation methods
 - Establish validity of STS variants, Cramér–Von Mises, etc.
 - Complicated sequential procedures
- GSMP extensions: PRI preemption, relocatable clocks, hybrid models
- Automate condition checking in tools (e.g., irreducibility)