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Motivation: Time-Average Limits

e Often want to study performance measures of the form

r(f) = lim = f(X(w)) du

t—oo t 0

— f is real-valued reward/cost function

— { X(t): t > 0 }: underlying process of discrete-event stochastic system
— Ex: long-run utilization, reliability, operating cost

— System modeled as generalized semi-Markov process (GSMP)

— Also want discrete-time averages over state-transition epochs

e For complex systems, must estimate r(f) using simulation

— Want point estimates and confidence intervals
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Some Common Interval Estimation Methods

e Assume { f(X(¢)): ¢ >0} obeys CLT with variance constant o2

e Methods based on consistent estimation of o2

— Regenerative methods
— Variable batch means
— Spectral methods

e Cancellation methods

— Require FCLT

— Rest on limit theorem in which ¢? “cancels out”

— Ex: classical batch means

— Ex: original standardized time series (STS) methods
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When are Estimation Methods Guaranteed to Work?

e When are time-average limits well defined?
e When are estimation methods valid?

e Typical conditions on output process {f(X(t)): t> O} hard to verify

— QOutput process is regenerative

— Output process is stationary (usually false!) and ¢-mixing
— Output process obeys an FCLT

— Qutput process obeys a strong invariance principle

e \We want conditions on model building blocks
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Road Map for Remainder of Talk

e Review of GSMPs and FCLTs

e Cancellation methods

— New limit theorems for GSMPs (SLLNs and FCLTS)
— Ensures validity of cancellation methods
— Weakest moment conditions possible (vs Haas 1999)

e Conditions for (weak) consistency of estimators of o2

— Coupling approach for “quadratic form” estimators of o2
— Exploit existing results for stationary processes
— Obtain conditions for variable batch means & spectral estmators
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GSMPs

e { X(t):t> 0} makes state transitions when events occur

— Discrete set S of states and finite set E of events
— FE(s) = set of active events in state s € S
— State-transition probabilities p(s’; s, e*)

e Occurrence of events governed by clocks

— Clock for e € E records time until scheduled occurrence of e
— Set according to distribution function F'(z;e)
— Runs down to 0 at speed r(s,e)

e Defined in terms of Markov chain {(S,,C,): n >0}

— S, = state and C,, = clock-reading vector (after nth state transition)
— Denote state space of chain by X
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A Classical FCLT: Donsker’s theorem

e { X,:n>0}iid. mean 0 random variables
¢ Sp=Xo+ X1+ + X,
° Un(t) — \/Lﬁfont XLuJ du

e Theorem: if 02 = Var [X] < oo, then U, = oW

— the symbol =- denotes weak convergence on C'|0, 1]
— W is a standard Brownian motion on [0, 1]

e By continuous mapping theorem: U, (1) = ﬁ Z;":_Ol X;=oW(1)
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The Function U, (t)

~Y

SN2

MAMA 2002

t=0 t=1
n=1
0 >
t=0 f

Sy /3 -
So/V3 -
0

Sq/3

Sg/N10

SO/\/10 1

SqN10 -

S, /N10 -

~Y



The Function U, (t) with n = 500
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Consequences of FCLT (Glynn and lIglehart 1990)
o Estimate r = lim, 0o 27 ) f(X;) by 7, = 232770 F(X))

e Suppose that U,, = oW, where U, (t) = \/Lﬁfont(f(XLuJ) — fr) du

e Suppose &: C[0,1] — R is “continuous” and, for z € C[0,1] and a € R,
E(ax) = a&(x) and £(x — ae) = &(x), where e(t) =t

o Set &, =&(V,), where V(1) = L [ f(X|,)) du

— nJo

Po =1 V(fa—1) _Ua(l) _ oW(1) W

& Vn& EUn) T a&(W) (W)

e Can show:
e Asymptotic 100p% confidence interval: |7, — &2y, Tn + En2p)
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Limit Theorems for GSMPs

e Assumption PD(q)

— GSMP has finite state space S and positive speeds
— GSMP is irreducible
— Each F'(-;e) has finite gth moment and density positive on [0, Z|

e Assumption PDE: [~ v* dF(z;e) < oo for some v > 1
e H,: Set of functions h: Y — R such that
|ﬁ(8, o) <a+b (t*(s, c))u

where t*(s, ¢) is holding time starting from s with clock-reading vector ¢
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Strong Law of Large Numbers

e Theorem: If Assumption PD(1) holds, then for any function f: S — R
there exists finite 7( f)—indep. of initial dist'n—such that

lim ! F(X(uw)du=r(f) as.

t—oo t 0

e Theorem: If Assumption PD(u V 1) holds (u > 0), then for any f e,
there exists finite 7( f)—indep. of initial dist'n—such that

n—1
R g .
Jim E 1(55,C5) =7(f) as.

7=0
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FCLT

e Assume time-average limits r(f), #(f) exist and set

- U, ( f < ( )—r(f))du

= Un(D(®) = 5 Jo (F(Spuy: Cluy) — 7(f)) du

e Theorem: If Assumption PD(2) holds, then for any function f: S — R
there exists o(f) such that U,(f) = o(f)W for any initial dist'n

e Theorem: If Assumption PD(2(w V 1)) holds, then for any f € H, there
exists &(f) such that U,,(f) = &(f)W for any initial dist'n
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Proof of SLLN and FCLT
e (Haas 1999): Under Assumption PD(q), with hy(s,c) = 1 + max; ¢}

Sup(s,c)eE—H E(s,c) [hQ<Sma Cm) o hq(507 CO)] < _thq—l(sa C)
for some m > 1, B, > 0, and compact set H

e Thus {(S,,C,): n >0} is positive Harris recurrent
= wide-sense regenerative (e.g., Meyn and Tweedie 1993)

e Show: cycle length n; and Z;“:Bl ~(Sj,C’j) have finite gth moments

— Show that E(, [T}h] < Byhg(s,c) for (s,c) € 3 (induction on q)
— Show that F,[n]] < oo (treat as random sum of T'5's)

— Show that cycle sum has finite gth moment (use bound in Gut 1988)
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Consistent Variance Estimation
e Let Assumption PDE hold

e Let f be polynomially dominated: f € H,, for some u

e For 7(n; f) = %Z;’:—Ol £(S;,C;), previous results show:

~

— limy, 00 7(n; f) = 7(f) a.s. for some finite 7(f)

— (52(H)/n) 2 (F(n; f) — #(F)) = N(0,1) for some 52()
o If V,, = 62(f), then (V,,/n) " (F(n: f) — #(f)) = N(0,1)
e Asymptotic 100p% confidence interval:

[ (n: f) = 2p(Va /)2, 7 (5 f) + 2p(Va /) /)

MAMA 2002

14



Batch-Means Variance Estimator

e Given process { Z,,: n > 0} with variance constant o2

e Break n = mb observations into b batches of length m

— For consistency, need b = b(n) and m = m(n)

e X,(j) is jth batch mean: X,,(j) =1 Z‘Zm(]ll)m i

e X, = average of batch means

e Estimator of &2:
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Spectral Estimators

e Estimator of &2:
m—1

VS = Y A(h/m)Ry
h=—(m—1)

e R is estimated lag-h autocovariance:

Ry, = ST S M TN = Z0) (Zigyn — Zn)
e )\ is lag window (window length = 2m):

— finite and continuous on [—1,1] with A(z) = A(—x) and A(0) =1
— Mz) =0 forz & [—1,1]
— lim, ,0(1 — A())/|z]|? = « for some ¢, a € (0, )
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Quadratic-Form Estimators

o A QF estimator is of the form

Vi = Vn(f) = Z Z ZiZJQZ(Z)

i=0 j=0

(n) - (1) (n)

where each ¢; ;* is finite with ¢; ./ = ¢; ;

e Localized QF estimators (includes batch-means, spectral estimators)

(n)
25| =

az(n)/n if |i — j| > m(n)

. {al/n if [i — j] < m(n)

where a; € [0,00), az(n) — 0, and m(n)/n — 0
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Aperiodic GSMPs

e d-cycle: S can be partitioned into disjoint sets S1,...,S4 such that
s’ € S;11 whenever s € S; and p(s';s,e*) > 0 for some e*

e Period of GSMP: largest d for which d-cycle exists
e GSMP with period 1 is aperiodic

e Llemma: If Assumption PDE holds for an aperiodic GSMP, then
underlying chain { (S,,,Cy): n > 0} is aperiodic, hence Harris ergodic

e Two consequences of Harris ergodicity

— There exists invariant distribution 7: B {(S1,C;) € A} = n(A)
— Chain admits coupling
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Coupling
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From Stationary to Nonstationary Consistency Results

e Theorem: Given GSMP + polynomially dominated function f, suppose

— GSMP is aperiodic

— Assumption PDE holds, so that
+ there exists an invariant distribution 7 for { (S,,Cy): n >0}
« { f(Sn,Cn):n >0} obeys a CLT with a variance constant &2(f)

If localized QF estimator V/,( ~) satisfies V;,(f) = &2(f) when initial
distribution is 7, then V,,(f) = &2(f) for any initial distribution

e Proof: Couple stationary and nonstationary version of underlying chain
and show that |V,, — Vttenay| — () (follows from localization property)
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Validity of Variable Batch Means and Spectral Methods

e Theorem: Define VTEB), VTES) as before with Z,, = f(Sn,Cn). Suppose

— GSMP is aperiodic and f is polynomially dominated
— Assumption PDE holds, so that { f(S,,Cr): n >0} obeys a CLT
with a variance constant &2( f)

S VAR 52(f) if b=b(n) = oo and m = m(n) — oo

A 2(£) if m =m(n) = oo with m(n) = o(n'/?)

e Proof: Use results on consistent estimation in stationary regime (Chien
et al. 1997, Anderson 1971) + mixing and moment properties of Harris
ergodic chains, then apply coupling result
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Consistent Estimation in Continuous Time

e Can extend previous results to quantities of the form

~ ~

g(ri:(fl)v f(fQ)v R 7f(fl))
where g is nonlinear and differentiable (use Cramér-Wold + delta method)

e But can show that

r(f) = lim ! F(X(u)) du = P

t—oo t Jg 7 (t*)

where t* is holding-time function and (ft*)(s,c) = f(s)t*(s,c)
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Relation to Results of Damerdji et al.

e Stronger assumption: output process obeys strong invariance principle

e Stronger conclusion: V,, — &2 with probability 1 (strong consistency)

— Needed for showing validity of sequential stopping rules

e Hard to establish strong invariance principle

— E.g., for variable batch means with b(n) = O(n?/3)
— Our results establish weak consistency for this method
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Summary

e Sufficient building block conditions on GSMPs for validity of a variety of
interval estimation methods for time-average limits
e Cancellation methods

— New SLLNs and FCLTs in discrete and continuous time

e Consistent estimation of the variance

— General method for proving consistency via coupling
— Established validity of variable batch means, spectral methods
— Sufficient conditions for Harris ergodicity of underlying chain
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Future Work

e Future work: Cancellation methods

— Weakening of conditions based on specific model structure
— Understanding pathological behavior
— Heavy tails (applicability of current methods vs need for new methods)

e Future work: Consistent estimation methods

— Refine conditions for specific estimation methods
— Establish validity of STS variants, Cramér—Von Mises, etc.
— Complicated sequential procedures

e GSMP extensions: PRI preemption, relocatable clocks, hybrid models

e Automate condition checking in tools (e.g., irreducibility)
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