Foresight: Recommending Visual Insights

Çağatay Demiralp
Peter Haas
Srinivasan Parthasarathy
Tejaswini Pedapati

IBM Research
Foresight: Recommending Visual Insights

Çağatay Demiralp
Peter Haas
Srinivasan Parthasarathy
Tejaswini Pedapati

IBM Research
Automated Visualization Systems
Chart Typologies

Declarative Encoding Languages
Component Model Architectures
Graphics APIs

Expressiveness
Speed

Majority of Users

Excel
Google Charts
Tableau

D3
ggplot
VizQL
VizML

Processing
Prefuse

OpenGL
DirectX
Java2D
HTML Canvas
Foresight

Majority of Users

Automated Visualization Systems

Chart Typologies

Declarative Encoding Languages

Component Model Architectures

Graphics APIs

speed

Expressiveness

Excel
Google Charts
Tableau

D3
ggplot
VizQL
VizML

Processing Prefuse

OpenGL
DirectX
Java2D
HTML Canvas

Excel
Google Charts
Tableau
Exploratory Data Analysis (EDA)

Explore patterns and relations in data, ask questions and (re)form hypotheses

Statistics + visualizations

"Here is the data! Which questions does it want us to ask? What seems to be going on?"

Exploratory vs. confirmatory

John W. Tukey (1915 - 2000)
EDA CHALLENGES

Data complexity
Insufficient time and skills
Cognitive limitations

Transient working memory
Tendency to fit evidence to existing expectations and schemas

[Tversky & Kahneman’75, Nickerson’98, Card et al.’05]
Structured, rapid first order EDA
Framework for exploring datasets through ranked and neighborhood based visualizations
Exploring engine supporting a faceted interface
Sketch based composition for fast approximate computation
OECD Dataset: 25 well-being indicators (columns) for 36 OECD member countries (rows)
PRIOR WORK
```plaintext
measure + data

measure + visual encoding

Foresight
Rank-by-Feature’04
AutoVis’10
Zenvisage’16
SeeDB’15
GrandTour’84
PRIM-9’79
VizDeck’13
Gotz & Wen’09
Zhou & Chen’03
SAGE’94

Voyager-2’17
Voyager’16

ShowMe’07
```
measure + data

measure + visual encoding

Foresight
Rank-by-Feature’04
AutoVis‘10
Voyager-2’17
Voyager‘16
Voyager-1’17
Voyager‘16

VizDeck’13
Gotz & Wen’09
Zhou & Chen’03
SAGE‘94
GrandTour‘84
SeeDB‘15
PRIM-9’79
Zenvisage‘16

visual encoding

ShowMe‘07
measure + data

measure + visual encoding

alphabetical
Voyager-2’17
Voyager’16

Foresight
Rank-by-Feature’04
AutoVis’10

Zenvisage’16
SeeDB’15

GrandTour’84
PRIM-9’79

VizDeck’13

Gotz & Wen’09
Zhou & Chen’03
SAGE’94
DESIGN
INTERVIEW STUDY

Participants:

- 10 data scientists (2 female + 8 male)
- IBM Research
- Diverse domains, e.g., healthcare, marketing, finance, etc.
- MS & PhDs
- Predictive modeling
INTERVIEW STUDY

Sought answers for:

- How do analysts start exploratory data analysis?
- What tools do analysts generally work with?
- What visualizations and statistics do analysts frequently use?
- How do analysts decide on what is “interesting” in data?
- What strategies do analysts use with large data?
- What are productivity challenges in general and for specific tools?
INTERVIEW STUDY

Procedure & analysis:

- Face to face, open ended
- Walk through a recent experience
- Three note takers & audio recorded
- Lasted ~30 mins
- Merged & grouped through iterative coding
INTERVIEW STUDY

Results:

1) EDA in Data Analysis Process
2) Junior versus Senior Analysts
3) Stratified Greedy Navigation
4) Handling Big Data
5) Tools
6) Challenges
EDA in Data Analysis Process

Analysts spent most of their time on EDA, after data is readied for analysis. First order understanding dominated EDA.
INTERVIEW RESULTS

Junior versus Senior Analysts

Senior analysts (5+ years experience) spent more time on domain understanding and EDA than junior analysts.

Junior analysts transitioned to modeling faster, relied more on ML based techniques.

Senior analysts relied on basic statistical techniques but put more emphasis on domain specific—causal/semantic—relations.
INTERVIEW RESULTS

Stratified Greedy Navigation

Simpler, univariate to more complex, multivariate

Hierarchical both in statistical computation and data relations

Rarely considered trivariate relations

Greedy strategy deciding on what to focus

May cause premature fixation
DESIGN CRITERIA

1. Structure data variation around statistical descriptors

2. Use descriptor strength to drive the promotion of data variation

3. Give user control over the definition of descriptor strength

4. Use the best visualizations for communicating statistical descriptors

5. Facilitate stratified work flow to minimize the cost of exploration

6. Enable access to raw data on demand
DESCRIPTORS

Dispersion: Quartile coefficient of dispersion; visualized with histogram

Skew: Standardized skewness coefficient; visualized with histogram

Heavy tails: Kurtosis; visualized with histogram

Outliers: Number of points outside the inlier range of Tukey box-and-whisker plot; visualized using box-and-whisker plot

Heterogeneous frequencies: Normalized Shannon Entropy; visualized with Pareto chart

Linear relationship: Absolute value of the Person correlation coefficient; visualized with a scatter plot with a best line fit overlaid
NEIGHBORHOOD
NEIGHBORHOOD
NEIGHBORHOOD
NEIGHBORHOOD
SCALABILITY VIA SKETCHING
SKETCHES

Compressed synopses for fast approximate computations
Provide desirable guarantees on approximation errors
Hyperplane sketch for correlation
CONCLUSION
“What information consumes is rather obvious: it consumes the attention of its recipients. Hence a wealth of information creates a poverty of attention, and a need to allocate that attention efficiently among the overabundance of information sources that might consume it.”

Herb A. Simon (1916 - 2001)
FORESIGHT

Framework for exploring datasets through ranked and neighborhood based visualizations

Exploring engine supporting a faceted interface

Sketch based composition for fast approximate computation

Interview study providing insights into the EDA practices, informing EDA tool design at large
ON GOING

Human-subjects study
New descriptors
Foresight: Recommending Visual Insights

Çağatay Demiralp @serravis
Peter Haas
Srinivasan Parthasarathy
Tejaswini Pedapati

IBM Research
INSIGHT

Strong manifestation of a statistical property of the data, e.g., high correlation between two attributes, high skewness or concentration about the mean of a single attribute, a strong clustering of values, etc.