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Exploratory  
Data Analysis (EDA)
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John W. Tukey 
(1915 - 2000)

Explore patterns and relations in 
data, ask questions and (re)form 
hypotheses 

Statistics + visualizations   

“Here is the data! Which questions 
does it want us to ask? What seems 
to be going on?” 

Exploratory vs. confirmatory 



EDA CHALLENGES
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Data complexity  

Insufficient time and skills  

Cognitive limitations  

Transient working memory 

Tendency to fit evidence to existing 
expectations and schemas

[Tversky & Kahneman’75,Nickerson’98,Card et al.’05]



FORESIGHT
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Structured, rapid first order EDA 

Framework for exploring datasets through 
ranked and neighborhood based visualizations  

Exploring engine supporting a faceted 
interface 

Sketch based composition for fast 
approximate computation
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OECD Dataset: 25 well-being 
indicators (columns) for 36 OECD 
member countries (rows)

DEMO
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PRIOR WORK
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INTERVIEW STUDY
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10 data scientists  (2 female + 8 male) 

IBM Research 

Diverse domains, e.g., healthcare, 
marketing , finance, etc.  

MS & PhDs  

Predictive modeling 

 

Participants:



INTERVIEW STUDY
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How do analysts start exploratory data analysis? 

What tools do analysts generally work with? 

What visualizations and statistics do analysts 
frequently use? 

How do analysts decide on what is “interesting” in 
data? 

What strategies do analysts use with large data? 

What are productivity challenges in general and 
for specific tools? 

Sought answers for:

? !



INTERVIEW STUDY
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Procedure & analysis: 

IBM Research  

Face to face, open ended 

Walk through a recent experience  

Three note takers & audio recorded 

Lasted ~30 mins  

Merged & grouped through 
iterative coding  

 



INTERVIEW STUDY
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IBM Research  

Results:
1) EDA in Data Analysis Process 

2) Junior versus Senior Analysts 

3) Stratified Greedy Navigation 

4) Handling Big Data 

5) Tools 

6) Challenges



INTERVIEW RESULTS
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IBM Research  

EDAWrangling Profiling Modeling ReportingDiscovery

EDA in Data Analysis Process 
Analysts spent most of their time on 
EDA, after data is readied for analysis 

First order understanding dominated 
EDA 



INTERVIEW RESULTS
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IBM Research  

Junior versus Senior Analysts 
Senior analysts (5+ years experience)  spent  
more time on domain understanding and EDA 
than junior analysts  

Junior analysts transitioned to modeling faster, 
relied more on ML based techniques  

Senior analysts relied on basic statistical 
techniques but put more emphasis on domain 
specific—causal/semantic—relations



INTERVIEW RESULTS
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IBM Research  

Stratified Greedy Navigation 
Simpler, univariate to more complex, 
multivariate  

Hierarchical both in statistical computation 
and data relations  

Rarely considered trivariate relations 

Greedy strategy deciding on what to focus   

May cause premature fixation 



DESIGN CRITERIA
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1. Structure  data variation around statistical descriptors 

2. Use descriptor strength to drive the promotion of data 
variation  

3. Give user control over the definition of descriptor 
strength 

4. Use the best visualizations for communicating statistical 
descriptors  

5. Facilitate stratified work flow to minimize the cost of 
exploration 

6. Enable access to raw data on demand
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DESCRIPTORS
Dispersion: Quartile coefficient of dispersion; visualized with histogram  

Skew: Standardized skewness coefficient; visualized with histogram 

Heavy tails: Kurtosis;  visualized with histogram  

Outliers:  Number of points outside the inlier range of Tukey box-and-
whisker plot; visualized using box-and-whisker plot  

Heterogeneous frequencies:  Normalized Shannon Entropy; 
visualized with Pareto chart 

Linear relationship: Absolute value of the Person correlation 
coefficient; visualized with a scatter plot with a best line fit overlaid
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SCALABILTY 
VIA  

SKETCHING
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SKETCHES
Compressed synopses for fast 
approximate computations   

Provide desirable guarantees on 
approximation errors   

Hyperplane sketch for correlation  



CONCLUSION
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Herb A. Simon 
(1916 - 2001)

“What information consumes is 
rather obvious: it consumes the 
attention of its recipients. Hence a 
wealth of information creates a 
poverty of attention, and a need to 
allocate that attention efficiently 
among the overabundance of 
information sources that might 
consume it.”



FORESIGHT
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Framework for exploring datasets through 
ranked and neighborhood based visualizations  

Exploring engine supporting a faceted 
interface 

Sketch based composition for fast approximate 
computation 

Interview study providing insights into the EDA 
practices, informing EDA tool design at large



ON GOING
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Human-subjects  study   

New descriptors 



Foresight: Recommending 
Visual Insights 

Çağatay Demiralp 
Peter Haas 
Srinivasan Parthasarathy 
Tejaswini Pedapati

IBM Research  

@serravis 



INSIGHT
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Strong manifestation of a statistical 
property of the data, e.g., high 
correlation between two attributes, high 
skewness or concentration about the 
mean of a single attribute, a strong 
clustering of values, etc.


