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ABSTRACT: We use an extension of the generalized jackknife approach of Gray and
Schucany to obtain new nonparametric estimators for the number of classes in a finite
population of known size. We also show that generalized jackknife estimators are closely
related to certain Horvitz-Thompson estimators, to an estimator of Shlosser, and to esti-
mators based on sample coverage. In particular, the generalized jackknife approach leads to
a modification of Shlosser’s estimator that does not suffer from the erratic behavior of the
original estimator. The performance of both new and previous estimators is investigated
by means of an asymptotic variance analysis and a Monte Carlo simulation study.
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1.

Introduction

The problem of estimating the number of classes in a population has been studied for
many years. A recent review article (Bunge and Fitzpatrick 1993) lists more than 125
references. In this article, we consider an important special case of the general problem —
estimating the number of classes in a finite population of known size. Only a handful of
papers have addressed this problem and none has reached an entirely satisfactory solution,
despite the fact that the first attempt at solution appeared in the statistical literature nearly
50 years ago (Mosteller 1949). The problem we consider has arisen in the literature in a
variety of applications, including the following.

(i)

(if)

(iii)

In a company-sponsored contest, many entries (say several hundred thousand) have
been received. It is known that some people have entered more than once. The goal is
to estimate the number of different people who have entered from a sample of entries
(Mosteller 1949; Sudman 1976).

A sampling frame is constructed by combining a number of lists that may contain
overlapping entries. It is desired to estimate, using a sample from all lists, the number
of units on the combined list (Deming and Glasser 1959; Goodman 1952; Kish 1965,
Sec. 11.2; Sudman 1976, Sec. 3.6). An important example of such a problem is an
“administrative records census,” currently under study by the U.S. Bureau of the
Census. In such a census, several administrative files (such as AFDC or IRS records)
are combined, and the total number of distinct individuals included in the combined
file is determined. Exact computation of the number of distinct individuals in the
combined file is extremely expensive because of the high cost of determining the
number of duplicated entries. A similar problem and proposed solution was discussed
in the London Financial Times (March 2, 1949) by C. F. Carter, who was interested
in estimating the number of different investors in British industrial stocks based on
samples from share registers of companies (Mosteller 1949).

In a relational database system, data are organized in tables called relations (see,
e.g., Korth and Silberschatz 1991, Chap. 3). In a typical relation, each row might
represent a record for an individual employee in a company, and each column might
correspond to a different attribute of the employee, such as salary, years of experience,
department number, and so forth. A relational query specifies an output relation that
is to be computed from the set of base relations stored by the system. Knowledge
of the number of distinct values for each attribute in the base relations is central
to determining the most efficient method for computing a specified output relation
(Hellerstein and Stonebraker 1994; Selinger, Astrahan, Chamberlain, Lorie, and Price
1979). The size of the base relations in modern database systems often is so large
that exact computation of the distinct-value parameters is prohibitively expensive,
and thus estimation of these parameters is desired (Astrahan, Schkolnick, and Whang
1987; Flajolet and Martin 1985; Gelenbe and Gardy 1982; Hou, Ozsoyoglu, and Taneja



1988, 1989; Naughton and Seshadri 1990; Ozsoyoglu, Du, Tjahjana, Hou, and Rowland
1991; Whang, Vander-Zanden, and Taylor 1990).

In each of these applications, the size of the population (number of contest entries, total
number of units over all lists, and number of rows in the base relation) is known, and this
size is too large for easy computation of the number of classes.

The problem studied in this article can be described formally as follows. A population
of size N consists of D mutually disjoint classes of items, labelled Cy,Cs,... ,Cp. Define
N; to be the size of class (), so that N = Z]-Dzl N;. A simple random sample of n
items is selected (without replacement) from the population. This sample includes n; items
from class Cj. The problem we consider is that of estimating D using information from
the sample along with knowledge of the value of N. We denote by F; the number of
classes of size ¢ in the population, so that D = ZZ]\L . F;. Similarly, we denote by f; the
number of classes represented exactly ¢ times in the sample and by d the total number of
classes represented in the sample. Thus d = " ; f; and > 1 ;4if; = n. Define vectors
N = (Ny,Nsy,...,Np), n = (nq,ne,... ,np), and f = (f1, fo,... , fn). Note that n is not
observable, but f is. Because we sample without replacement, the random vector n has a
multivariate hypergeometric distribution with probability mass function

N1\ (N: N
(n) Gay) - (ip)
()

n
The probability mass function of the observable random vector f is simply P(n | D,N)

summed over all points n that correspond to f:

P(n|D,N) =

(1)

P(f| D,N)=) P(n]|D,N),
S

where S = {n: #(n; =14) = f; for 1 <i < D}. The probability mass function P(f | D,N)
does not have a closed-form expression in general.

In Section 2 we review the estimators that have been proposed for estimating D from
data generated under model (1). In Section 3 we provide several new estimators of D based
on an extension of the generalized jackknife approach of Gray and Schucany (1972). We
then show that generalized jackknife estimators of the number of classes in a population are
closely related to certain “Horvitz-Thompson” estimators, to an estimator due to Shlosser
(1981), and to estimators based on the notion of “sample coverage” (Chao and Lee 1992).
In Section 4 we provide and compare approximate expressions for the asymptotic variance
of several of the estimators, and in Section 5 apply our formulas to a well-known example
from the literature. We provide a simulation-based empirical comparison of the various
estimators in Section 6, and summarize our results and give recommendations in Section 7.



2. Previous Estimators

Bunge and Fitzpatrick (1993) mention only two non-Bayesian estimators that have been
developed as estimators of D under model (1). These are the estimators of Goodman (1949)
and Shlosser (1981). Goodman proved that

il (N —n i — D)l (n —i)!

i=1

fi

is the unique unbiased estimator of D when n > M max(Ny, Na,... ,Np). He further
proved that no unbiased estimator of D exists when n < M. Unfortunately, unless the
sampling fraction is quite large, the variance of ﬁgoodl is so great and the numerical dif-
ficulties encountered when computing 13(;00(11 are so severe that the estimator is unusable.
Goodman, who made note of the high variance of ﬁgoodl himself, suggested the alternative
estimator

N(N -1)

D =N-—
Good2 n(n _ 1)

f2

for overcoming the variance problem. Although B(;Oo(m has lower variance than 13(;00(11, it
can take on negative values and can have a large bias for any n if D is small. For example,
consider the case in which D =1 and n > 2, and observe that fo = 0 and B(;Oo(m = N.

Under the assumption that the population size N is large and the sampling fraction
g = n/N is nonnegligible, Shlosser (1981) derived the estimator

S (1—q)fi
i iq(l—q) L fy

For the two examples considered in his paper, Shlosser found that use of ESh with a 10%
sampling fraction resulted in an error rate below 20%. In our experiments, however, we
observed root mean squared errors (RMSE’s) exceeding 200%, even for well-behaved popu-
lations with relatively little variation among the class sizes (see Sec. 6). Considering the
relationship between Dg), and generalized jackknife estimators (see Sec. 3.4) provides insight
into the source of this erratic behavior and suggests some possible modifications of ﬁSh to
improve performance.

In related work, Burnham and Overton (1978, 1979) proposed a family of (traditional)
generalized jackknife estimators for estimating the size of a closed population when capture
probabilities vary among animals. The D individuals in the population play the role of our
D classes; a given individual can appear up to n times in the overall sample if captured
on one or more of n possible trapping occasions. The capture probability for an individual
is assumed to be constant over time, and the capture probabilities for the D individuals
are modeled as D iid random samples from a fixed probability distribution. Burnham and

Dsp=d+ fi



Overton’s sample design is clearly different from model (1). Under the Burnham and Over-
ton model, for example, the quantities f1, fo, ... , fn have a joint multinomial distribution.
Closely related to the work of Burnham and Overton are the ordinary jackknife estimators
of the number of species in a closed region developed by Heltshe and Forrester (1983) and
Smith and van Belle (1984). The sample data consist of a list of the species that appear in
each of n quadrats. (The number of times that a species is represented in a quadrat is not
recorded.) This setup is essentially identical to that of Burnham and Overton, with the D
species playing the role of the D individuals and the n quadrats playing the role of the n
trapping occasions.

3. Generalized Jackknife Estimators

In this section we outline an extension of the generalized jackknife approach to bias
reduction and then use this approach to derive new estimators for the number of classes
in a finite population. We also point out connections between our generalized jackknife
approach and several other estimation approaches in the literature.

3.1. The Generalized Jackknife Approach

Let 0 be an unknown real-valued parameter. A generalized jackknife estimator of @ is
an estimator of the form

0, — RO,

G(§1,§2): 1-R

(2)
where 6; and 6, are biased estimators of 6 and R (# 1) is a real number (Gray and Schucany
1972). The idea underlying the generalized jackknife approach is to try and choose R such
that G(01, 92) has lower bias than either 91 or 92 To motivate the choice of R, observe that
for

E[6,] -0
E[f,] -

the estimator G(§1,§2) is unbiased for #. This optimal value of R is typically unknown,
however, and can only be approximated, resulting in bias reduction but not complete bias
elimination. In the following, we extend the original definition of the generalized jackknife
given by Gray and Schucany (1972) by allowing R to depend on the data; that is, we allow
R to be random.

Recall that d is the number of classes represented in the sample. Write d,, for d to
emphasize the dependence of d on the sample size, and denote by d,_1(k) the number of
classes represented in the sample after the kth observation has been removed. Set

1 n
,]_) — E kz_ldn]_(k)

R= (3)



We focus on generalized jackknife estimators that are obtained by taking 91 = d, and
02 = d(n 1) in (2); these are the usual choices for 01 and 02 in the classical first-order
jackknife estimator (Miller 1974). Observe that d,_1(k) = dn — 1 if the class for the
kth observation is represented only once in the sample; otherwise, dn—1(k) = d,. Thus
dn 1) = dn — (f1/n) and, by (2), G(61,0) = D, where

f1

D=di+ K (4)

and K = R/(1 — R). It follows from (3) that the optimal choice of K is

E[dn]_D D_E[dn]
Eldpn -yl — Elds] — E[fil/n

To derive a more explicit formula for K, denote by I[A] the indicator of event A and observe
that

K=

(5)

D D D
Eld,|=FE ZI[nj>0] :Zp{nj>0}:D_ZP{”j:0}-
j=1 j=1 j=1
Similar reasoning shows that

D
E[fi]=) P{n; =1}, (6)

i=1
so that
Z] 1 P{n; =0}
Z] 1P{n1—1}

Following Shlosser (1981), we focus on the case in which the population size N is large and
the sampling fraction ¢ = n/N is nonnegligible, and we make the approximation

(7)

Pin =iy~ ()0 - ot 3)

for 0 <k <nand 1< j <D. That is, the probability distribution of each n; is approxi-
mated by the probability distribution of n; under a Bernoulli sample design in which each
item is included in the sample with probability ¢, independently of all other items in the
population. Use of this approximation leads to estimators that behave almost identically to
estimators derived using the exact distribution of n but are simpler to compute and derive
(see App. A for further discussion). Substituting (8) into (7), we obtain

> (1= )
Z] 1N]‘I(1 _‘I)

—. (9)



The quantity K defined in (9) depends on unknown parameters Ny, Na,... , Np that are
difficult to estimate. Our approach is to approximate K by a function of D and of other
parameters that are easier to estimate, thereby obtaining an approximate version of (4). The
estimates for these parameters, including D for D, are then substituted into the approximate
version of (4) and the resulting equation is solved for D.

We also consider “smoothed” jackknife estimators. The idea is to replace the quantity
fi/n in (4) by its expected value F [f1] /n in the hope that the resulting estimator of D will
be more stable than the original “unsmoothed” estimator. As with the parameter K, the
quantity F [f1] /n depends on the unknown parameters Ny, N3,...,Np; see (6) and (8).
Thus our approach to estimating F [f1] /n is the same as our approach to estimating K.

Estimators also can be based on high-order jackknifing schemes that consider the num-
ber of distinct values in the sample when two elements are removed, when three elements
are removed, and so forth. Typically, using a high-order jackknifing scheme requires es-
timating high-order moments (skewness, kurtosis, and so forth) of the set of numbers
{N1,N3,... ,Np}. Initial experiments indicated that the reduction in estimation error
due to using the high-order jackknife is outweighed by the increase in error due to un-
certainty in the moment estimates. Thus we do not pursue high-order jackknife schemes
further.

3.2. The Estimators
Different approximations for K and F [f1] /n lead to different estimators for D. Here

we develop a number of the possible estimators.

3.2.1. First-Order Estimators The simplest estimators of D can be derived using a
first-order approximation to K. Specifically, approximate each N; in (9) by the average
value

Sl=

— 1
N:BZNJ-:

j=1
and substitute the resulting expression for K into (4) to obtain

(1-q)f1D
—

D =d,+ (10)

Now substitute D for D on the right side of (10) and solve for D. The resulting solution,
denoted by D1, is given by

Dyj1 = (1 - m>_l dp. (11)

n

We refer to this estimator as the “unsmoothed first-order jackknife estimator.”



To derive a “smoothed first-order jackknife estimator,” observe that by (6) and (8),

Elfi]

n

1 _
~ 3 Njg(l - gV (12)

e

j=1
Approximating each N; in (12) by N, we have

O (13)

n
On the right side of (10), replace fi/n with the approximate expression for E'[f1] /n given
n (13), yielding

D=d,+D(1-¢q)".
Replacing D with D and N with N / D in the foregoing expression leads to the relation

D - (1-qNP) =d,.

We define the smoothed first-order jackknife estimator ﬁsjl as the value of D that solves

this equation. Given d,, n, and N, ﬁsjl can be computed numerically using standard
root-finding procedures. Observe that if in fact Ny = Np = --- = Np = N/D, then

Eldn) ~ D(1 - (1-gVP).

In this case ﬁsjl can be viewed as a simple method-of-moments estimator obtained by
replacing F [dy,] with the estimate d,, and solving for D. If, moreover, the sampling fraction
¢ is small enough so that the distribution of (nq,ng,... ,np) is approximately multinomial
(see Sec. 3.3), then stl is approximately equal to the maximum likelihood estimator for
D (see Good 1950). Observe that both Bujl and stl are consistent for D: lA)ujl — D and
ﬁsj1—>Dasq—>1.

3.2.2. Second-Order Estimators A second-order approximation to K can be derived

as follows. Denote by 72 the squared coefficient of variation of the class sizes N1, No,... , Np:
(1/D) ¥°74(N; = N)?
2 = ]N2 ) (14)

Suppose that «? is relatively small, so that each Nj is close to the average value N. Sub-
stitute the Taylor approximations

(1-g)M =~ (1 - + (1 - ¢V In(1 — g)(N; -~ N)



and
Nya(1 = )™ % Nyg (1= 7 4+ (1= @)™ in(1 - )(N; ~ )
for 1 < j < D into (9) to obtain

1
1+1In(1 — q)N~2

K ~ D(1—q) ( > ~D(1—gq) (1 —In(l — q)N+?). (15)

The unknown parameter 72 can be estimated using the following approach (cf. Chao and

Lee 1992). With the usual convention that () = 0 for n < m, we find that

Siti-ngil ~ Y-y (V)da- 9%

i=1 i=1 j=1

j=1 =2 i—2

D
= @) Nj(N; - 1),

j=1

so that
N
D D

2 ~ (s i =
o ~n2;z(z )E]| z]—i—N 1.

Thus if D were known, then a natural method-of-moments estimator 42(D) of v would be
2 D
43(D) = max(0, 22 ~Dfi+ 5~ 1). (16)
To develop a second-order estimate of D, substitute (15) into (4) to obtain

D=d,+ W (1 —1In(1 — q)N~?), (17)

from which it follows that

Dfil—q) fi(1—g)In(l—q)y*
n q

D=d,+

Replacing D with D on the right side of this equation and solving for D yields the relation

(1 B fl(ln_ q)) g, 1= 1;(1 —a)7* (18)




An estimator of D can be obtained by substituting '?2(13) for v in (18) and solving for
D numerically. Alternatively, we can start with a simple initial estimator of D and then
correct this estimator using (18). Following this latter approach, we use ﬁujl as our initial
estimator and define

Dyjo = (1 -
n q

fﬂ1—®>lch_jﬂl—qﬂml—QW%ﬁmﬂ>'

A smoothed second-order jackknife estimator can be obtained by replacing the expres-
sion f1/n in (17) with the approximation to F [fi] /n given in (13), leading to

D=d,+D(1- q)ﬁ (1 —In(1 — q)N~?).

Replacing D with D and proceeding as before, we obtain the estimator
~ o\ -1 . N
Dy =(1-(1-9)") " (d — (1- 9™ In(1 - N5 (D)

where N = N /ﬁujl. As with the first-order estimators ﬁujl and stl, the second-order
estimators Dyj2 and Dgjp are consistent for D.

3.2.3. Horvitz-Thompson Jackknife Estimators In this section we discuss an al-
ternative approach to estimation of K based on a technique of Horvitz and Thompson.
(See Sarndal, Swensson, and Wretman 1992 for a general discussion of Horvitz-Thompson
estimators.) First, consider the general problem of estimating a parameter of the form
0(g) = Z]D:l g(Nj), where g is a specified function. Observe that because P {n; >0} >0
for 1 < j < D, we have 0(g9) = F [X(g)], where

D .
x(0) =3 25
j=1

)(n; >0) _ > 9(N;)
nj>0} {j:nj>0}P{nj>0}

It follows from (8) that P {n; >0} ~ 1 — (1 — ¢)™4, and the foregoing discussion suggests
that we estimate 6(g) by

~ (N;)
Alg) = IR (19)
’ {j:nz,;o} L= (=g

where ]Vj is an estimator for N;. The key point is that we need to estimate N; only when
n; > 0. To do this, observe that

E[n,] gN;
Enj|n; >0 = — J :
nj [ nj > 0] P{n; >0} 1—(1—q)N




Replacing F [nj | nj > 0] with n; leads to the estimating equation

qgN;

- g )

n]‘:

and a method-of-moments estimator ]\A/'j can be defined as the value of N; that solves (20).
Now consider the problem of estimating K, and hence D. By (9), K ~ 6(f)/6(g), where

f(z) = (1 —¢)® and g(z) = zq(1 — q)® !/n. Thus a natural estimator of K is given by
0(f)/6(g), leading to the final estimator,
7
Dury = dp + o) fi
0(g) ™

A smoothed variant of BHTj can be obtained by replacing f1/n with the Horvitz-Thompson
estimator of E/[fi] /n, namely (g). The resulting estimator, denoted by Dyrs;, is given by

ﬁHTsj =d, + é\(f)

Finally, a hybrid estimator can be obtained using a first-order approximation for the nu-
merator of K and a Horvitz-Thompson estimator for the denominator. This leads to the
estimator Dhj, defined as the solution D of the equation

5 (1 . f“:—q)N/D> 4
nd(g)

If we replace fi/n with the Horvitz-Thompson estimator for E'[fi]/n in the foregoing
equatlon in order to obtain a smoothed variant of Dhj, then the resulting estimator coincides
with Dsﬂ

Because D = 60(u), where u(z) = 1, it may appear that a “non-jackknife” Horvitz-
Thompson estimator ﬁHT can be defined by setting EHT = §(u) It is straightforward
to show, however, that ﬁHT = lA)HTSj, so that EHT can in fact be viewed as a smoothed
jackknife estimator.

Simulation experiments indicate that the behavior of the Horvitz-Thompson jackknife
estimators DHTJ and DHTSJ is erratic (see App. D for detailed results). Overall, the poor
performance of DHTJ and DHTSJ is caused by inaccurate estimation of 9( f). The problem
seems to be that when IV; is small, the estimator N is unstable and yet typically has a
large effect on the value of a(f) through the term (1 —¢)™i /(1 — (1 — ¢)"7). The estimator
ﬁhj uses a Taylor approximation in place of 5( f) and hence has lower bias and RMSE than
the other two Horvitz-Thompson jackknife estimators. However, other estimators perform
better than Dhj, and we do not consider the estimators DHTJ, DHTSJ, and DhJ further.

10



3.3. Relation to Estimators Based on Sample Coverage

The generalized jackknife approach for deriving an estimator of D works for sample
designs other than hypergeometric sampling. For example, the most thoroughly studied
version of the number-of-classes problem is that in which the population is assumed to
be infinite and n is assumed to have a multinomial distribution with parameter vector
7w = (71, 72,... ,mp); that is,

P(n|D,x) = (nm’f_ _ nD) AT D, (21)

When we proceed as in Section 3.1 to derive a generalized jackknife estimator under the
model in (21), the estimator turns out to be nearly identical to the “coverage-based” esti-
mator proposed by Chao and Lee (1992). To see this, start again with (4) and select K as
in (5). Because

D

Eldy)-D=-) (1-m)"

j=1
under the model in (21), it follows that

ZjD:]_ un(;)

D ’
Zj:l mUn—1(7;)

where v, (z) = (1 —z)". Set T = 1/D and use the Taylor approximations
vn () & on(T) + (mj — ) (7)
and
Tjvn_1(m;) = 7j (vn_1(7) + (m; — T)v),_1 (7))

in a manner analogous to the derivation in Section 3.2.2 to obtain

K= (D~-1)+ (n—1)? (22)

where y2 = —1+D Z]D:l 7r]2 is the squared coefficient of variation of the numbers my, 73, ... ,
wp- Denote by ﬁmult the estimator of D under the multinomial model. Then, by (4),

Doy = dn + (D = 1) + (n — 1)) 12 (23)

Replace D with ﬁmult and 72 with an estimator 42 in (23) and solve for ﬁmult to obtain

~

~ d. n(1-C)(n—-1_, 1
Dy = = _ -,
ult C + c < n Y n)

11



where C = 1 — (fi/n). When the sample size n is large, the estimator ﬁmult is essentially
the same as the estimator
ﬁCL _ dT" + Mﬁ,
C C

proposed by Chao and Lee (1992). The estimator Der, was developed from a different
point of view, using the concept of sample coverage. The sample coverage for an infinite
population is defined as Z L mjI[n; > 0], and the quantity C=1- (f1/n) is a standard
estimator of the sample coverage.

Conversely, when Chao and Lee’s derivation is modified to account for hypergeomet-
ric sampling, the resulting estimator is equal to ﬁujz (see App. B). Thus at least some
estimators based on sample coverage can be viewed as generalized jackknife estimators.

3.4. Relation to Shlosser’s Estimator

Observe that the estimator ﬁSh, though not developed from a jackknife perspective, can
be viewed as an estimator of the form (4) with K estimated by

~ " (1—2q)if;
KSh =n nZz:'I( q){zl .
>im1ig(l—q) 1 fi
To analyze the behavior of ESh, we first rewrite the jackknife quantity K defined in (9) as
follows:

N )
Y (1 —¢q)'F;
K=n %Zfl( OF (24)
Zi:1 iq(1 - q) 1 F;
Shlosser’s justification of 13511 assumes that
E[fi] R

for 1 <4 < N. When the assumption in (25) holds and the sample size is large enough so
that

fim E[fi] (26)

for 1 <i< N,

12



so that ﬁSh behaves as a generalized jackknife estimator. Although the relations in (25)
and (26) hold exactly for n = N (implying that BSh is consistent for D), these relations
can fail drastically for smaller sample sizes. For example, when F; = 0 and F; > 0 for some
i > 1, the right side of (25) is infinite, whereas the left side is finite for n sufficiently small.
This observation leads one to expect that ESh will not perform well when the sample size is
relatively small and Ny, Na, ..., Np have similar values (with N; > 1 for each j). Both the
variance analysis in Section 4 and the simulation experiments described in Section 6 bear
out this conjecture.
The foregoing discussion suggests that replacing I?Sh with

K& = ——Kgn (27)
E[Ksp]

in the formula for DSh might result in an improved estimator, because KSh is unbiased
for K. Of course we cannot perform this replacement exactly, since K and E[KSh] are
unknown, but we can approximate Kg;, as follows. Using the fact that

N .
1 i
ZP{nJ—r} Z( Nea-g =3 (Hra-ar )
for 1 < r <n, we have, to first order,

S (- ) B[f]
Siia(l = ) B[]
_ lin( - (L +q) - 1F,
S i - g

Using the first-order approximation Ny = Ny = --- = Np = N together with (24), (27),

and (29), we find that
. 1+q)N-1Y\ .
(IT+g" -1

We thus obtain a modified Shlosser estimator given by

= g(1+g)V ! Sl —9)'fi
Dghy =dpn + f1 <(1 Y 1) (Z?qu(l — q)i_lfi> ;

where N is an initial estimate of N based on an initial estimate of D. We set N equal to
N/ Duﬂ throughout. As with DSh, the estimator D5h2 is consistent for D.

E[I?Sh] =~n

(29)

13



An alternative consistent estimator of D can be obtained by directly using the expres-
sions in (24), (27), and (29) with F; estimated by

fifi
Z?:l iq(1 — Q)Flfz'

for 1 <4 < Nj these estimators of Fi, F»,... ,Fy were proposed by Shlosser (1981)
conjunction with the estimator Dg,. Substltutlng the resulting estimator of K and E [KSh]
into (27) leads to the final estimator

S Y ig*(1— g%t i S - )
Dsia =dn (z;ll(l—q)i((uq)i—l)fi) (sratiais)

B = (30)

As with the estimator ESh, Shlosser’s justification of the estimators in (30) rests on the
assumption in (25). Thus one might expect that, like ESh, the estimator 55113 will be
unstable when the sample size is relatively small and Ny, N2, ..., Np have similar values.
On the other hand, the reduction in bias of Ké‘h relative to KSh leads one to expect that
D5h3 will perform better than DSh when 2 is sufficiently large. (One might be tempted
to avoid the assumption in (25) when estimating Fi, Fy,... , Fy by taking a method-of-
moments approach: replace F[f;] with f, in (28) for 1 < r < n and solve the resulting
set of linear equations either exactly or approximately. As pointed out by Shlosser (1981),
however, this system of equations is nearly singular, and hence extremely unstable.)

4. Variance and Variance Estimates

Consider an estimator D that is a function of the sample only through f = (f1, fo,...,
fu), where M = max(Ny, Na,...,Np). All of the estimators introduced in Section 3 are
of this type. In general, we also allow D to depend explicitly on the population size N and
write D = ﬁ(f , N). Suppose that, for any N > 0 and nonnegative M-dimensional vector
f # 0, the function D is continuously differentiable at the point (f, N) and

D(cf,cN) = eD(f, N) (31)

for ¢ > 0. Approximating the hypergeometric sample design by a Bernoulli sample design
as in (8), we can obtain the following approximate expression for the asymptotic variance
of D(f, N) as D becomes large:

M
AVar[D(f,N)] = Y APVar[fi]+ > AiAsCov[fi, fs], (32)
=1 1<ii'<M

il

where A; is the partial derivative of D with respect to f;, evaluated at the point (f, V).
(When computing each A;, we replace each occurrence of n and d,, in the formula for D by
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Zf\i 11fi and Zf\i 1 [i before taking derivatives.) The approximation in (32) is valid when
there is not too much variability in the class sizes (see App. C for a precise formulation and
proof of this result). It follows from the proof that, to a good approximation, the variance
of an estimator D satisfying (31) increases linearly as D increases.

Straightforward calculations show that each of the specific estimators ﬁujl; ﬁup, ﬁSh,
55112, and BShg is continuously differentiable as stated previously and also satisfies (31).
Thus we can use (32) to study the asymptotic variance of these estimators. We focus on
ﬁujl, Bujz, 55112, and BShg because each of these estimators performs best for at least one
population studied in the simulation experiments described in Section 6; we also consider
135}1, because BSh is the most useful of the estimators previously proposed in the literature.
Computation of the A; coefficients for each estimator is tedious, but straightforward. When
D= Bujg, for example, we obtain

A2 _ gy _ N (?1_—) (ql) l_ngl)f—l 7)
ujl AN o ~
v (%ujl X4 +1)_2(72+1_ Dﬁl) o n- (172—Q)f1 +%2)
and
==
x fi (%(@2 + 1)—%(&2 +1- Dﬁ"l) Ly _sz)D“jl - (?i 57 %)

for1<i§n,where'?2—'y(l/5uﬂ)
@) _ 7. (L1 (1—q) N
A =D (g i (- 0))

AW B (di + %)

and

for 1 <i<n.

Figures 1 and 2 compare the variances of the estimators ﬁuﬂ, Dujz, DSh, DSh2, and
D5h3 for a number of populations with equal class sizes. For these special populations, Duﬂ
and Duﬂ are approximately unbiased, so that the relative variances of these estimators are
approprlate measures of relative performance It is partlcularly instructive to compare the
variance of Dujl and Duﬂ, since Duﬂ is obtained from Duﬂ by adjusting the latter estimator
to compensate for bias induced by the assumption of equal class sizes. This adjustment is
unnecessary for our special populations, and a comparison allows evaluation of the penalty
(i.e., the increase in variance) that is being paid for the adjustment.
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Figure 1 displays the standard deviations of ﬁujl, Do, ESh, ﬁsm, and Bshg for an
equal-class-size population with N = 15,000 and D = 1500 (so that N = 10) as the
sampling fraction ¢ varies. Observe that Bup is only slightly less efficient than ﬁujl, SO
that the penalty for bias adjustment is small in this case. Performance of the estimators
lA)ujl and Bsm is nearly indistinguishable. The most striking observation is that for this
population, ESh and ﬁsm are not competitive with the other three estimators. The relative
performance of ESh and 55h3 is especially poor for small sampling fractions. On the other
hand, the variance analysis indicates that modification of Dgy as in (27) and (29) indeed
reduces the instability of the original Schlosser estimator in this case. Thus we focus on the
estimators Dujl, Dujg, and DSh2 in the remainder of this section and in the next section.
(We return to the estimator D5h3 in Section 6, where our simulation experiments indicate
that ﬁsm can exhibit smaller RMSE than the other estimators, but only at large sample
sizes and for certain “ill-conditioned” populations in which 4?2 is extremely large.)

Figure 2 compares the three estimators ﬁujl, ﬁup, and ﬁShg for equal-class-size pop-
ulations with a range of class sizes; for these calculations the number of classes and the
sampling fraction are held constant at D = 1500 and ¢ = 10. This figure illustrates the
difficulty of precisely estimating D when the class size is small (but greater than 1). Again,
we see that these three estimators perform similarly, with nearly equal variability when N
exceeds about 40.

We checked the accuracy of the variance approximation in some example populations by
comparing the values computed from (32) with results of a simulation experiment. (This
experiment is discussed more completely in Section 6 below.) Simulated sampling with
g = 0.05, 0.10, and 0.20 from the population examined in Figure 1 (N = 15,000, D = 1500)
yields variance estimates within 10% (on average) of those calculated from (32). Similar
results were found in sampling from an equal-class-size population with N = 15,000 and
D = 150. The only difficulties we encountered occurred for equal-class-size populations with

16



class sizes of N = 1 and N = 2. For these small class sizes the variance approximation, which
is based on the approximation of the hypergeometric sample design by a Bernoulli sample
design, is not sufficiently accurate. In particular, the approximate variance strongly reflects
random fluctuations in the sample size due to the Bernoulli sample design; such fluctuations
are not present in the actual hypergeometric sample design. Simulation experiments indicate
that for N > 3 the differences caused by Bernoulli versus hypergeometric sampling become
negligible. (Of course, if the sample design is in fact Bernoulli, then this problem does not
occur.)

In practice, we estimate the asymptotic variance of an estimator D by substituting
estimates for { Var[f;]: 1 <i< M}, and {Cov|[f;, fi]: 1 <i#4i < M} into (32). To
obtain such estimates, we approximate the true population by a population with D classes,
each of size N/D. Under this approximation and the assumption in (8) of a Bernoulli
sample design, the random vector f has a multinomial distribution with parameters D and

p= (Pl,P2,--- ,pn), where
pi = (N(D> gi(1 — g)N/D)=i
(3

for 1 <14 <mn. It follows that Var[f;] = Dp;(1 —p;) and Cov [f;, f#] = —Dp;py. Each p; can
be estimated either by

5= (M1P)eta- o
]

or simply by f; /13 It turns out that the latter formula yields better variance estimates,
and so we take

i1 . B f;

Va’r[fl] - fZ (1 ﬁ)
and

=i g :_fifz"

COV[fZ)fZ] B

for 1 < 4,4’ < n. These formulas coincide with the estimators obtained using the “un-
conditional approach” of Chao and Lee (1992). A computer program that calculates Dy;,
Dyj2, Dsp2 and their estimated standard errors from sample data can be obtained from the

second author.

5. An Example

The following example illustrates how knowledge of the population size N can affect
estimates of the number of classes. When the population size N is unknown, Chao and
Lee (1992, Sec. 3) have proposed that the estimator D¢y, defined in Section 3.3 be used to
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N Dyi1 Dy  Dsue

1000 455 502 455
(47)  (60)  (51)

10,000 709 788 707
(125) (161) (128)

100,000 752 835 749
(141) (183) (144)

Table 1: Values of ﬁujl, ﬁujg, and 135112 for three hypothetical combined lists. (Standard
errors are in parentheses.)

estimate the number of classes, because the formula for ECL does not involve the unknown
parameter N. When N is known, a slight modification of the derivation of ECL leads to
the unsmoothed second-order jackknife estimator _ﬁujg (see App. B).

Our example is based on one discussed by Chao and Lee (1992), who borrowed data
first described and analyzed by Holst (1981). These data arose from an application in
numismatics in which 204 ancient coins were classified according to die type in order to
estimate the number of different dies used in the minting process. Among the die types on
the reverse sides of the 204 coins were 156 singletons, 19 pairs, 2 triplets, and 1 quadruplet
(fr =156, fo =19, f3 =2, f4 = 1, d = 178). Because the total number of coins minted
is unknown in this case, model (1) is inappropriate for analyzing these data. But suppose
that the same data had arisen from an application in which N was known. For example,
suppose that the data were obtained by selecting a simple random sample of 204 names
from a sampling frame that had been constructed by combining 5 lists of 200 names each
(N = 1000), 50 lists of 200 names each (N = 10,000), or 500 lists of 200 names each
(N = 100,000). In each case our object is to estimate the number of unique individuals
on the combined list, based on the sample results. We focus on the three estimators Bujl,
ﬁujz, and Bsm- The estimates for the three cases are given in Table 1; the standard errors
displayed in Table 1 are estimated using the procedure outlined in Section 4.

We would expect similar inferences to be made from the same data under the multi-
nomial model and the finite population model when N is very large. Indeed, the value
ﬁuj2 = 835 agrees closely with Chao and Lee’s estimate ECL = 844 (SE 187) when
N = 100,000. Moreover, when N = 100,000 we find that &z(ﬁuﬂ) ~ 0.13, which is the
same estimate of 2 given by Chao and Lee. As the population size decreases, however,
both our assessment of the magnitude of D and our uncertainty about that magnitude
decrease, because we are observing a larger and larger fraction of both the population and
the classes.

The most extreme divergence between the estimate obtained using ZADCL and estimates
obtained using Dyj1, Dyj2, or Dgpa occurs when the sample consists of all singletons (f; = n).
In that case, ECL = 00, whereas Bujl = ﬁujz = 135}12 = N. This result indicates that when
the population size N is known, it is better to use an estimator that exploits knowledge
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of N than to sample with replacement and use the estimator ECL. In some applications,
sampling with replacement is not even an option. For example, the only available sampling
mechanism in at least one current database system is a one-pass reservoir algorithm (as in
Vitter 1985).

The empirical results in Section 6 1ndlcate that, of the three estimators displayed in
Table 1, Duﬂ is the superior estimator when fy is small (< 1). Thus for our example, Duﬂ
would be the preferred estimator, since ¥ (Dujl) ~ 0.13 in all three cases. Note that Duﬂ
consistently has the highest variance of the three estimators in Table 1. The bias of Duﬂ
is typically lower than that of lA)ujl or Bsm when 4?2 is small, however, so that the overall
RMSE is lower.

6. Simulation Results

This section describes the results of a simulation study done to compare the performance
of the various estimators described in Section 3. Our comparison is based on the perfor-
mance of the estimators for sampling fractions of 5%, 10%, and 20% in 52 populations.
(Initial experiments indicated that the performance of the various estimators is best viewed
as a function of sampling fraction, rather than absolute sample size. This is in contrast to
estimators of, for example, population averages.)

We consider several sets of populations. The first set comprises synthetic populations of
the type considered in the literature. Populations EQ10 and EQ100 have equal class sizes of
10 and 100. In populations NGB/1, NGB/2, and NGB/4, the class sizes follow a negative
binomial distribution. Specifically, the fraction f(m) of classes in population NGB/k with
class size equal to m is given by

sy~ (7 )kt

for m > k, where r = 0.04. Chao and Lee (1992) considered populations of this type.
The populations in the second set are meant to be representative of data that could be
encountered when a sampling frame for a population census is constructed by combining a
number of lists which may contain overlapping entries. Population GOOD and SUDM were
studied by Goodman (1949) and Sudman (1976). Population FRAME2 mimics a sampling
frame that might arise in an administrative records census of the type described in Section 1.
One approach to such a census is to augment the usual census address list with a small
number of relatively large administrative records files, such as AFDC or Food Stamps, and
then estimate the number of distinct individuals on the combined list from a sample. We
have constructed FRAME2 so that a given individual can appear at most five times, but
most individuals appear exactly once, mimicking the case in which four administrative lists
are used to supplement the census address list. Population FRAMES is similar to FRAME2,
but for the FRAMES3 population it is assumed that the combined list is made up of a number
of small lists (perhaps obtained from neighborhood-level organizations) rather than a few
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Name N D 4% Skew
EQI0 15000 1500 0.00 0.00 Name N D 4° Skew
EQ100 15000 150 0.00 0.00 GOOD 10000 9595 0.04 5.64
NGB/4 82135 874 0.18 0.50 FRAME2 33750 19000 0.31 1.18
NGB/2 41197 906 0.37 0.81 FRAME3 111500 36000 0.52 1.92
NGB/1 20213 930 0.75 1.25 SUDM 330000 100000 1.87 2.71
Table 2: Characteristics of synthetic popu- Table 3: Characteristics of “merged list”
lations. populations.
Name N D v?  Skew

Z20A 50000 247 114.38 14.60
715 50000 772 166.18 23.44
Z20B 50000 10384 234.81 73.54

Table 4: Characteristics of “ill-conditioned” populations.

large lists. The populations in the third set, denoted by Z20A, Z20B, and Z15, are used
to study the behavior of the estimators when the data are extremely ill-conditioned. The
class sizes in each of these populations follow a generalized Zipf distribution (see Knuth
1973, p. 398). Specifically, N;/N o =% where @ equals 1.5 or 2.0. These populations
have extremely high values of 42. Descriptive statistics for these three sets of populations
are given in Tables 2, 3, and 4. The column entitled “skew” displays the dimensionless
coefficient of skewness A, which is defined by

$2,0; - WD
(Z2. v - w/0)™”

The final set comprises 40 real populations that demonstrate the type of distributions
encountered when estimating the number of distinct values of an attribute in a relational
database. Specifically, the populations studied correspond to various relational attributes
from a database of enrollment records for students at the University of Wisconsin and a
database of billing records from a large insurance company. The population size N ranges
from 15,469 to 1,654,700, with D ranging from 3 to 1,547,606 and +? ranging from 0 to
81.63 (see App. D for further details). It is notable that values of 42 encountered in the
literature (Chao and Lee 1992; Goodman 1949; Shlosser 1981; Sudman 1976) tend not to
exceed the value 2, and are typically less than 1, whereas the value of 42 exceeds 2 for more
than 50% of the real populations.

For each estimator, population, and sampling fraction, we estimated the bias and RMSE
by repeatedly drawing a simple random sample from the population, evaluating the esti-
mator, and then computing the error of each estimate. (When evaluating the estimator,
we truncated each estimate below at d and above at N.) The final estimate of bias was
obtained by averaging the error over all of the experimental replications, and RMSE was
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sample
size v? ﬁujl 5551 -ﬁuj2 ﬁst Dsn  Dsno Dsns 42
5% >0and <1 Average 13.48 14.20 11.84 12.27 79.17 13.23 202.16 56.65
Maximum 43.81 45.14 39.56  39.67 428.25 46.59 3299.10 96.72
> 1 and < 50 Average 38.14 39.17 65.34 45.25 54.30 36.67 93.92 46.51
Maximum 70.47 70.48 186.15 186.15 218.02 66.82 1042.73 91.70

> 50 Average 74.11 75.92 388.77 77.78 28.13 71.23 21.45 74.72
Maximum 85.09 88.49 564.57 112.13 47.63 83.71 38.58 85.55
all Average 30.95 31.91 68.61 34.44 62.33 29.86 132.06 52.78

Maximum 85.09 88.49 564.57 186.15 428.25 83.71 3299.10 96.72
10% >0and <1 Average 11.30 12.14 9.05 9.71  33.09 11.19 22.68 49.68
Maximum 39.80 42.32 31.73 31.90 200.79 44.83 131.15 90.68
> 1 and < 50 Average 31.41 32.59 90.96 38.74 34.96 29.16 50.17 38.34
Maximum 61.27 61.28 267.08 186.15 107.16 54.03 357.43 83.12

> 50 Average 63.92 65.88 682.55 115.77 15.50 58.82 11.51 64.43
Maximum 76.47 81.21 1133.61 281.98 28.97 73.14 21.81 76.89
all Average 25.79 26.89 103.38 32.94 32.71 24.18 36.10 44.93

Maximum 76.47 81.21 1133.61 281.98 200.79 73.14 357.43 90.68
20% >0and <1 Average 8.89 9.86 5.77 6.53 12.91 8.30 9.05 40.65
Maximum 33.01 37.28 29.82 2749 79.16 30.14 79.16 81.03
> 1 and < 50 Average 23.44 24.81 123.00 32.79 18.14 20.88 17.91 28.65
Maximum 46.77 49.73 369.77 186.15 49.20 43.38 74.99 67.42

> 50 Average 50.10 52.19 1093.07 130.30 7.73 42.58 6.32 50.51
Maximum 62.96 69.06 2010.61 381.51 15.12 56.72 10.62 63.37
all Average 19.62 20.88 150.28 29.69 15.23 17.47 13.44 35.18

Maximum 62.96 69.06 2010.61 381.51 79.16 56.72 79.16 81.03

Table 5: Average and maximum RMSE (%) for various estimators.

estimated as the square root of the averaged square error. We used 100 replications, which
was sufficient to estimate the RMSE with a standard error below 5% in nearly all cases;
typically the standard error was much less.

Summary results from the simulations are displayed in Tables 5 and 6. Table 5 gives the
average and maximum RMSE’s for each estimator of D over all populations with 0 < 72 < 1,
with 1 < 42 < 50, and with ¥2 > 50, as well as the average and maximum RMSE’s for
each estimator over all populations combined. Similarly, Table 6 gives the average and
maximum bias for each estimator. In these tables, the RMSE and bias are each expressed as
a percentage of the true number of classes. Tables 5 and 6 also display the RMSE and bias
of the estimator 42 (Bujl) used in the second-order jackknife estimators; the RMSE and bias
are expressed as a percentage of the true value 42 and are displayed in the column labelled
52,

Comparing Tables 5 and 6 indicates that for each estimator the major component of
the RMSE is almost always bias, not variance. Thus, even though the standard error can be
estimated as in Section 4, this estimated standard error usually does not give an accurate
picture of the error in estimation of D. Another consequence of the predominance of bias

is that when 4?2 is large, the RMSE for the second-order estimator Dy, does not decrease
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sample
size ¥? ﬁujl ﬁsjl ﬁujZ -ﬁsj2 ﬁSh ﬁShZ ﬁSha 4*
5% >0and <1 Average -12.71 -13.43 -10.76 -11.38 71.11 -10.98 90.57 -55.75
Maximum -43.77 -45.10 -39.51 -39.62 427.53 -46.59 958.74 -94.97
>1 and < 50 Average -37.95 -38.99 42.77 -16.83 39.13 -36.35 61.98 -46.19
Maximum -70.32 -70.32 186.15 186.15 218.01 -66.49 663.26 -91.70

> 50 Average -74.10 -75.91 382.88 -22.16 22.92 -71.22 3.17 -74.71
Maximum -85.09 -88.49 556.68 110.28 44.65 -83.71 33.44 -85.54
all Average -30.54 -31.51 4731 -15.04 50.80 -28.79 69.00 -52.24

Maximum -85.09 -88.49 556.68 186.15 427.53 -83.71 958.74 -94.97
10% >0and <1 Average -10.93 -11.78 -8.38  -9.31 28.12 -9.47 17.66 -48.87
Maximum -39.79 -42.31 -31.47 -31.88 200.49 -44.83 130.80 -90.59
> 1 and < 50 Average -31.16 -32.34 74.62 -10.44 25.41 -28.61 35.20 -37.98
Maximum -61.00 -61.00 261.47 186.15 107.16 -53.88 264.38 -83.12

> 50 Average -63.91 -65.87 677.18 24.90 11.57 -58.78 3.10 -64.41
Maximum -76.47 -81.21 1125.89 280.63 27.09 -73.13 18.47 -76.88
all Average -25.51 -26.62 87.45 -7.26 2544 -23.20 25.65 -44.41

Maximum -76.47 -81.21 1125.89 280.63 200.49 -73.13 264.38 -90.59
20% >0and <1 Average -8.57 -9.55 -4.99  -6.20 9.99 -6.75 5.73 -39.71
Maximum -33.01 -37.27 -17.83 -22.67 45.86 -28.38 28.17 -81.00
> 1 and < 50 Average -23.12 -24.49 112.39 -3.41 12.09 -20.13 10.02 -28.23
Maximum -46.54 -49.73 362.12 186.15 49.20 -43.38 49.34 -67.36

> 50 Average -50.09 -52.17 1087.89 60.47 5.03 -42.53 1.72 -50.49
Maximum -62.96 -69.06 2003.12 381.51 13.90 -56.71 8.23 -63.36
all Average -19.32 -20.59 140.02 0.38 10.70 -16.45 7.65 -34.58

Maximum -62.96 -69.06 2003.12 381.51 49.20 -56.71 49.34 -81.00

Table 6: Average and maximum bias (%) for various estimators.

monotonically as the sampling fraction increases. (In all other cases the RMSE decreases
monotonically.)

Comparing Dujl with Dsﬂ and then comparing Duﬂ with Dsjg, we see that smoothing a
first-order jackknife estimator never results in a better first-order estimator. On the other
hand, smoothing a second-order jackknife estimator can result in significant performance
improvement when ~? is large.

Similarly, using higher-order Taylor expansions leads to mixed results. Second-order
estlmators perform better than first-order estimators when 2 is relatively small, but not
when ~? 1s large. The difficulty is partially that the estimator ¥ (Dujl) tends to underes-
timate 42 when 4?2 is large, leading to underestimates of the number of classes. Moreover,
the Taylor approximations underlying ﬁujl; ﬁsjl, ﬁup, and ﬁsz are derived under the as-
sumption of not too much variability between class sizes; this assumption is violated when
7?2 is large. There apparently is no systematic relation between the coefficient of skewness
for the class sizes and the performance of second-order jackknife estimators.

As predicted in Sectlons 3.4 and 4, the estimators DSh and D5h3 behave poorly when
72 is relatively small and DSh3 performs better than DSh when 2 is large. For small to
medium values of ¥2, the modified estimator DSh2 has a smaller RMSE than DSh or D5h3, and
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sample

size 'yz -ﬁuj2 ﬁujZa ﬁsm ﬁShS ﬁhybrid
5% >0and <1 Average 11.84 19.46 13.23 202.16 11.84
Maximum 39.56 192.64 46.59 3299.10 39.56
> 1 and < 50 Average 65.34 2747 36.67 93.92 27.47

Maximum 186.15 54.51 66.82 1042.73 54.51

> 50 Average 388.77 23.00 71.23 21.45 26.17
Maximum 564.57 36.60 83.71 38.58 39.20
all Average 68.61 23.89 29.86 132.06 21.06

Maximum 564.57 192.64 83.71 3299.10 54.51
10% >0and <1 Average 9.06 13.26 11.19 22.68 9.05
Maximum 31.73 120.14 44.83 131.15 31.73
> 1 and < 50 Average 90.96 19.22 29.16 50.17 19.55
Maximum 267.08 48.12 54.03 357.43 48.12

> 50 Average 682.55 17.82 58.82 11.51 11.51
Maximum 1133.61 27.30 73.14 21.81 21.81
all Average 103.38 16.71 24.18 36.10 14.69

Maximum 1133.61 120.14 73.14 357.43 48.12
20% >0and <1 Average 5.77 8.12 8.30 9.05 5.77
Maximum 29.82 79.16 30.14 79.16 29.82
> 1 and < 50 Average 123.00 17.44 20.88 17.91 17.69
Maximum 369.77 76.57 43.38 74.99 76.57

> 50 Average 1093.07 37.30 42.58 6.32 6.32
Maximum 2010.61 83.69 56.72 10.62 10.62
all Average 150.28 15.20 17.47 13.44 12.00

Maximum 2010.61 83.69 56.72 79.16 76.57

Table 7: Average and maximum RMSE (%) of Dyj2, Dyj2a, Dsn2, Dsn3, and Dyybria-

its performance is comparable to the generalized jackknife estimators. For extremely large
values of 42 and also for large sample sizes, the estimator BShg has the best performance
of the three Shlosser-type estimators. (For a 20% sampling fraction, ﬁShg in fact has the
lowest average RMSE of all the estimators considered.)

As indicated earlier, smoothing can improve the performance of the second-order jack-
knife estimator ﬁup. An alternative ad hoc technique for improving performance is to
“stabilize” _ﬁujg using a method suggested by Chao, Ma, and Yang (1993). Fix ¢ > 1 and
remove any class whose frequency in the sample exceeds c; that is, remove from the sample
all members of classes {Cj: j € B}, where B = {1 <j <D: n; >c}. Then compute
the estimator ﬁup from the reduced sample and subsequently increment it by |B| to pro-
duce the final estimate, denoted by ﬁujga. (Here |B| denotes the number of elements in
the set B.) When computing ﬁup from the reduced sample, take the population size as

~

N — Z]-GB Nj, where each N; is a method-of-moments estimator of N; as in Section 3.2.3.

Ifn — ZjeB n; = 0, then simply compute _ﬁujg from the full sample. The idea behind this

procedure is as follows. When ~?2 is large, the population consists of a few large classes
and many smaller classes. By in effect removing the largest classes from the population,
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we obtain a reduced population for which 42 is smaller, so that D is easier to estimate;
the contribution to D from the |B| removed classes is then added back at the final step
of the estimation process. (We also experimented with another stabilization technique in
which the k most frequent classes are removed for some fixed k, but this technique is not
as effective.) Preliminary experiments indicated that ¢ approximately 50 yields the best
performance. For larger values of ¢, not enough of the frequent classes are removed; for
smaller ¢, the size of the reduced sample is too small, and the resulting inaccuracy of ﬁujg
when computed from this sample offsets the benefits of the reduction in y2. We therefore
take ¢ = 50 in our experiments. As can be seen from Table 7, the RMSE for ﬁujga is indeed
much lower than that for ﬁup when 72 exceeds 1. Moreover, by comparing the RMSE of ﬁsp
and ﬁuj2a in Tables 5 and 7, respectively, it can be seen that stabilization is more effective
than smoothing. Observe, however, that the performance of ﬁuj2a is worse than that of
lA)ujz when +? is small. Interestingly, experiments indicate that none of the other estimators
that we consider appears to benefit from stabilization, and we apply this technique only
to D wj2- Overall, the most effective estimators appear to be D uj2a; Which has the smallest
average RMSE over the various populations, and DSh2, which has the smallest worst-case
RMSE.

Our next observation is based on a comparison of the bias and RMSE of Bujl and Bsm
for all of the populations studied. The behavior of the two estimators is quite similar: the
correlation between the bias of the estimators is 0.990 and the correlation between the RMSE
is 0.993. The RMSE and bias of Duﬂ are usually slightly greater than the RMSE and bias,
respectively, of DSh2 On the other hand, using DSh2 requires computation of fi, fa,... , fn,
whereas using Duﬂ requires computation only of f;. Thus, if computational resources are
limited, then it may be desirable to use lA)ujl as a surrogate for Bsm; the quantity fi can be
computed efficiently using “Bloom filter” techniques as described by Ramakrishna (1989).

The experimental results show that the relative performance of the estimators is strongly
influenced by the value of 'y As can be seen from Table 7, the estimator Duﬂ has the
smallest average RMSE when 0 < 42 < 1, the estimator Bupa has the smallest average
RMSE when 1 < 42 < 50, and the estimator 135}13 has the smallest average RMSE when
72 > 50. These results indicate that it may be desirable to allow an estimator to depend
explicitly on the (estimated) value of y2. To illustrate this idea, we consider a simple ad
hoc branching estimator, denoted by ﬁhybrid. The idea is to estimate v2 by 4%(D ujl) fix
parameters 0 < a3 < a2, and set

Dhybrid = Dyjoa  if on Dujl) < agz; (33)

Table 7 displays the estimated RMSE for Dhybnd when a7 = 0.9 and as = 30. As can
be seen, the RMSE for the combined estimator Dhybrld almost never exceeds that for Dujg,

~

Dyj2a, or D5h3 separately.
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7. Conclusions

Both new and previous nonparametric estimators of the number of classes in a finite
population can be viewed as generalized jackknife estimators. This viewpoint has suggested
ways to improve Shlosser’s original estimator and has shed new light on certain Horvitz-
Thompson estimators as well as estimators based on notions of “sample coverage.” We
have used delta-method arguments to develop estimators of the standard error of generalized
jackknife estimators. As indicated by the example in Section 5, knowledge of the population
size can lead to more precise estimation of the number of classes.

Of the estimators considered, the best appears to be the branching estimator ﬁhybrid
defined by (33), in which a modified Shlosser estimator is used when the coefficient of
variation of the class sizes is estimated to be extremely large and unsmoothed second-order
jackknife estimators are used otherwise. The systematic development of such branching
estimators is a topic for future research. If a nonbranching estimator is desired, then we
recommend the stabilized unsmoothed second-order jackknife estimator Duﬂa, followed by
the modified Shlosser estimator D5h2 If computing resources are scarce, then Dujl is a
reasonable estimator.

The various estimators of D discussed in this article embody different approaches for
dealing with the difficulties caused by variation in the class sizes Ny, Na,... ,Np. Such
variation is reflected by large values of 2. First-order estimates simply approximate each
N; by N. Tt is well-known in the literature that such an approach tends to yield down-
wardly biased estimates (see Bunge and Fitzpatrick 1993). More sophisticated approaches
considered here include

e Taylor corrections to the first-order approximation, as in the estimators ﬁujg and ﬁsp;

e the stabilization technique of Section 6, in which the population is in effect modified
so that the variation in class sizes is reduced;

e the Horvitz-Thompson approach, in which the first-order assumption is avoided by
estimating explicitly each N; such that n; > 0; and

e Shlosser’s approach, which replaces the first-order assumptlon Wlth the assumption in
(25) and in its purest form results in the estimators DSh and DSh3

The poor performance of the Horvitz-Thompson estimators indicates that approaches based
on direct estimation of the N;’s are unlikely to be successful. The second-order Taylor
correction is effective mainly for small values of 42, and both the stabilization technique
and Shlosser’s approach are effective mainly for large values of ¥2. Thus, until a better
solution is found, the best estimators will result from a judicious combination of the various
approaches considered here.
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A. Estimators Based On Hypergeometric Probabilities

As in Section 3, denote by m; the number of elements in the sample that belong to
class j for 1 < j < D. Under the hypergeometric model (1), we have

P{n; =k}
(D02 /()
-(¥) G ’ifﬁi)) N R ER VAT

:<N> ala—3) @5\ (A= -g— %) (1—q-Fx)
k)AL= 3) (- Bt (=R =5 (1= 5

N

for 1 <j < D and 0 <k < min(n, N;), where ¢ = n/N. When N is large relative to N;, we
have the approximate equality given in (8). That is, P {n; = k } is approximately equal to
the probability that n; = k under the Bernoulli sampling model.

Estimators analogous to those in Section 3 can be derived using the exact hypergeometric
probabilities. The starting point in such a derivation is the pair of identities

P{n; =0} = hn(N;)

and

P‘(”jZUZ(#

n+1

) B (),

where

T(N-—n-az+1)T(N+1)

I'(N—z+1)I'(N—n+1) ifz <N —n:
hn(z) = - '
(@) 0 ifz>N-—-n

for z > 0. (By an elementary property of the gamma function,

() )

29



for 1 <j < D.) It follows that the optimal value of the parameter K in (4) is given by
N; )
> (m) hn—1(Nj)

First-order and second-order jackknife estimators can now be derived using arguments par-
allel to those in Section 3.2. The second-order Taylor approximations use the identity

K =

h;L("L‘) = —hn(z)gn(z)
for z > 0 and n > 1, where

1
gn(x):ZN—x—n—i-k'
k=1

The estimators analogous to those in Section 3.2 are

-1
B (1 1) (1 om )™

(N-N—n+ 1)f1>_1 (dn N (N-N—-n+ l)gn—1(1\7)f3/2(13uj1)f1) ,

Dyp = [1-
w2 ( nN n

and
stZ = (1 - hn(N))_l (dn + N’A)’2(Bujl)gn—l(N)hn(N)) )

where N = N /ﬁujl and

(D) = max(o, % S i -1)fi + % - 1).

Moreover, the smoothed first-order jackknife estimator ﬁsjl is defined as the value of D
that solves the equation

D(1 = hy(N/D)) = dn.

Finally, Horvitz-Thompson estimators can be derived in a manner similar to that in Sec-
tion 3.2.3. For each j such that n; > 0, define the method-of-moments estimator IN; of N;
as the value of N that solves the equation

gN
n]- - =_-
1- hn(N)
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Then define the estimator of §(g) of O(g) = Z]D:l g(Nj) as

T S E)

{j:nj>0}

Nj)

We compared the estimators based on the Bernoulli approximation (8) against the es-
timators based on the exact hypergeometric probabilities, using the populations described
in Section 6. The error induced by the approximation (8) turned out to be less than 1% in
all cases.

The derivation of ﬁup and ﬁsp using the exact hypergeometric probabilities assumes
that Nj < N —n for 1 < j < D. Without this assumption, Taylor approximations of
hn(Nj) fail because hy, is not continuous, and the subsequent derivation for each estimator
is inappropriate. We conclude by providing a technique for modifying ﬁup and stz to deal
with this problem. For concreteness, we focus on the unsmoothed second-order jackknife
estimator Bujz. Denote by J the set of indices of the “big” classes: J ={j: N; > N —n}.
(Observe that if n < N/2, then J can contain at most one element.) If j € J, then with
probability 1 class j is represented in the sample. We can decompose D according to

=|J|+1{1,2,...,D}—J|. (34)

The first term on the right side of (34) is the number of big classes, and the second term
represents the number of classes in the reduced population that is formed by removing the
big classes. We can estimate |J| by the number of elements in the set J = { j: N > N-n},
where Nj is a method-of-moments estimator of N; defined as the numerical solution of the
equation F [n; | nj > 0] = n; (cf. Sec. 3.2.3). Since we assume a hypergeometric sampling
model, ]\Afj is defined more precisely as the solution of the equation

Ni(n/N) _
1—ho(N;) 7

To estimate the remaining term in (34), apply the unsmoothed second-order Jackkmfe
estimator to the reduced population obtalned by removing the classes in J Set N* =

N — Z]EJN n*=n— Zyejnj,d |J| ff=Hs: nj—landngH and

* N* _ n* w0\ —1
S

(Observe that ]Vj =1, and hence j ¢ J, whenever nj =1, so that f; = fi.) The modified
version of Dy is then given by

~, - (N* = N* —n* + 1)\~
i = 1T (1-
N* — N* = n* + 1)gp- 1 (N* M
X<d2+( ):* 1(N*)¥4(D Jl)f1>,
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where N* = N*/D If nj = n for some j, then ]/\\fj = N and ﬁsz =1.If ]Vj > N* —n*
for some j ¢ J, , then the foregoing process can be repeated. Similar modifications can be
made to the estimators Dsj; and Dg;s.

ujl-

B. Derivation of 5uj1 and ﬁujz Based on Sample Coverage

For a finite population of size N, the sample coverage is defined as
C= Z N;/N)I[n; > 0].
j=1

Using the approximation in (8), we have to first order

D

ElC]=Y" ”P{nj>0} Z (1-(1-gN)~1-(1-¢)V. (35)

j=1
Similarly, E [dp] ~ D (1 (- q)ﬁ), so that D ~ E[d,] /E[C]. Observe that by (35) and
(13),

E[C]zl—%.

n

The foregoing relations suggest the method-of-moments estimator D= dn/ C , where

(1- Q)f1‘

n

C=1-

This estimator is identical to Bujl-
To derive a second-order estimator, use a Taylor approximation as in Section 3.2.2 to
obtain

where 72 is the squared coefficient of variation of Ny, N, ..., Np. It follows that
—(1 -V ~ —
Eldn] D(l (1-q) ) ~D[14+ (1—¢)VIn(1 —g)N~*
ElC]  1-(1-gN-(1-¢NIn(l -q)Ny? 1—(1—g)V ’

32



and hence

_Eld] (1—-@NIn(l-gq)Ny? _E[fi](1 - g)In(1 — ¢)Ny?
e —(—gy T~ E[] (E[d"] n )

(36)

where we have used the relations (35) and (13). Define 42 as in (16). Estimating £ [dn] by
dn, E[f1] by f1, ¥2 by ¥3(D uﬂ) and F [C] by C in (36), we obtain the formula for Dy;s.

C. Asymptotic Variance

In this appendix we study the asymptotic variance of an estimator D as D becomes
large. Consider an infinite sequence Cy,Co,... of classes with corresponding class sizes
N1, Ns, ... and construct a sequence of increasing populations in which the Dth population
comprises classes C1,Cy,... ,Cp. Asin (8), approximate the hypergeometric sample design
by a Bernoulli sample design. Although the population size N depends on D, as does each
sample statistic f;, we suppress this dependence in our notation. Suppose that there exists
a finite, positive integer M and a positive real number 7 such that

N, <M (37)
for j > 1 and
N 1 &
lim VD (5 _ n) ~ Jim VD (5 ;(Nj _ 77)) o, (38)
Also suppose that there exists a nonnegative vector pu = (u1, p2,... ,pnm) # 0 and a non-

negative symmetric matrix 3 = ||o; i/ # 0 such that

D—o0 D

D
i VD (Z =) = i VB [ 53 - ) | =0 (39)
]:1

. Var[fi] i
Dll—I)nOO D B D—)OO D Z a]’ a]y 0-1,17 (40)
and
. Cov [fi, fr] .
DI% # - Dlgnoo D ZaJﬂa],z’ = Oy (41)

for 1 <1i,i' < M, where
aj,z' — ( 'J>q2(1 _ q)Njfz.
1
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The conditions in (37)—(41) are satisfied, for example, when the class-size sequence N1, No, . ..
is of the form I, 1Is,... ,I.,I1,I5,... ,I.,..., where Iy, I, ... , I, are fixed nonnegative in-
tegers; in effect, this sequence of populations is obtained from an initial population by
uniformly scaling up the initial F;’s.

As in Section 4, suppose that the estimator D is a function of the sample only through
f = (f1, f2,.-., fu) and satisfies the condition in (31). Also suppose that the differentia-
bility assumption in Section 4 holds, so that D is continuously differentiable at the point
)

Write f; = Z]D:l Ilnj = i] for 1 < i < M and observe that, under the foregoing
assumptions, each f; is the sum of D independent (but not identically distributed) Bernoulli
random variables. An application of Theorem 5.1.2 in Chung (1974) followed by (39) shows
that

lim () = (1) (12)
with probability 1, where f = f/D and N = N/D. Similarly, since (39)—(41) hold by
assumption, an application of Theorem B in Serfling (1980, Sec. 1.9.2) and then Slutsky’s
Theorem (see Serfling 1980, Sec. 1.5.4) shows that v/ D(f — pu) = N(0,X) as D — oo, where
“=” denotes convergence in distribution and N denotes a multivariate normal random
variable. It then follows from (38) and Theorem 4.4 in Billingsley (1986) that

\/5((?’ N) - (Mﬂ?)) = (N(O’ 2)’0)‘

Since D is assumed differentiable at (p,m), an application of the Delta Method (see Bishop,
Fienberg, and Holland 1975, Sec. 14.6) shows that

VD(D(,N) — D(p,n)) = N(0,B'B) (43)

as D — oo, where B = Vlﬁ(u,n), V1D denotes the gradient of ﬁ(u, k) with respect to
u, and N (0, B!¥B) is a univariate normal random variable. Using (31) we can rewrite the
foregoing limit as

1 .~ ~
——(D(f,N) — D(Du, Dn)) = N(0,B'£B),
so that the asymptotic variance of ﬁ(f, N) is equal to (BtEIAES)D.

To approximate this asymptotic variance, set A = V;D(f, N) and let C = C(f) be

the covariance matrix of the random vector f. It follows from (31) that ViD(cu,ck) =
V1D(u,k) for any ¢,k > 0 and nonnegative M-dimensional vector u. Thus,

lim A = lim V,D(f,N) = lim V1D, N)=VD(pn,n) =B (44)

D—o0 D—oo D—oo
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Name N D 4* Skew | Name N D 72 Skew
DBO01 15469 15469 0.00 0.00 | DB21 15469 131 3.76 3.79
DB02 1288928 1288928 0.00 0.00 || DB22 624473 168 3.90 3.06
DB03 624473 624473 0.00 0.00 || DB23 1547606 21 6.30 3.26
DB04 597382 591564 0.01 17.61 || DB24 1547606 49 6.55 2.70
DBO05 113600 110074 0.04 6.87 || DB25 1463974 535328 7.60 639.24
DB06 621498 591564 0.05 4.70 || DB26 1547606 909 7.99 7.70

DBO7 1341544 1288927 0.05 9.95 || DB27 1463974 10 8.12 2.66
DB08 1547606 51168 0.23 0.24 || DB28 931174 73 12.96 6.43
DB09 1547606 3 0.38 -0.67 || DB29 597382 17 14.27 3.73
DB10 147811 110076 0.47 741 || DB30 633756 221480 15.68 454.61
DB11 113600 3 0.70 0.08 | DB31 633756 213 16.16 7.36
DB12 173805 109688 0.93 4.84 | DB32 173805 72 16.98 7.14

DB13 1463974 624472 0.94 4.77 || DB33 931174 398 19.70 7.89
DB14 1654700 624473 1.13 438 | DB34 113600 6155 24.17  54.66
DB15 633756 202462 1.19 3.53 || DB35 1654700 235 30.85 10.35

DB16 597382 437654 1.53 114.62 || DB36 173805 61 31.71 7.04
DB17 931174 110076 1.63 4.51 || DB37 1341544 37 33.03 5.82
DB18 931174 29 3.22 4.29 | DB38 147811 62 34.68 7.22
DB19 1547606 33 3.33 1.66 | DB39 1463974 233 3775  11.06
DB20 1547606 194 3.35 297 || DB40 624473 14047 81.63  69.00

Table 8: Characteristics of “database” populations

with probability 1, where the third equality follows by (42) and the assumed continuity of
V1D. Using (40), (41), and (44), we find that
A'CA

lim —
DYoo BY(DZ)B

with probability 1, and the asymptotic variance of D can be approximated by A!CA.

D. Detailed Experimental Results

This section contains further details about the experiments described in Section 6. Ta-
ble 8 displays characteristics of the “database” populations used in the experiments. The
printouts on the following pages contain simulation results for all of the estimators and
for each experimental population. In the printouts, “Psize” denotes the population size,
“Nclass” denotes the number of classes in the population, and “gm2hat” denotes the esti-
mator ’72(1310-1) used to estimate 42 in the second-order jackknife estimators.
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Performance Measure: Bias (%)
Sample size: 5.0%

Name Psize Nclass gamma2 skew Dujl Dsjl Duj2 Duj2a Dsj2 DSh DSh2 DSh3 DHTj
DBO1 15469 15469 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 -0.00 0.00

DB02 1288928 1288928 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 0.00

DB03 624473 624473 0.00 0.00 0.00 0.00 0.00 0.00 000 -0.00 -0.00 0.00 0.00

EQ100 15000 150 0.00 0.00 0.10 0.10 0.13 0.3 0.12 1200 0.10 243 1945

EQ10 15000 1500 0.00 0.00 0.83 0.82 197 197 196 42753 0.93 340.21 48754 5
DB04 597382 591564 0.01 17.61 -1.27 -1.30 -1.17 -1.17 -1.18 0.81 081 0.76 0.85

GOOD 10000 9595 0.04 564 -431 -439 -406 -406 -406 350 350 3.28 363

DBO5 113600 110074 0.04 6.87 -335 -3.41 -3.16 -3.16 -3.16 269 269 254 279

DB06 621498 591564 0.05 4.70 -432 -440 -410 -410 -410 431 431 4.08 445

DBO7 1341544 1288927 0.05 995 -423 -432 -393 -393 -393 342 342 323 355

NGB/4 82135 874 0.18 050 -1.57 -259 -020 -0.20 -1.97 33.14 -153 596 77.76 1
DB08 1547606 51168 0.23 0.24 -10.89 -12.77 -7.44 -7.44 -8.89 252.82 -11.02 11791 386.55 5
FRAME2 33750 19000 0.31 1.18 -22.87 -23.23 -21.74 -21.74 -21.76 61.36 -16.55 56.81 64.26
NGB/2 41197 906 0.37 0.81 -10.54 -13.56 -4.77 -4.77 -8.79 150.37 -10.57 49.40 289.71 4
DB09 1547606 3 038 -067 0.00 000 0.00 0.00 000 0.00 000 0.00 0.00

DB10 147811 110076 0.47 7.41 -28.55 -29.46 -25.48 -25.48 -25.53 2588 -32.32 2345 27.48
FRAME3 111500 36000 0.52 1.92 -30.75 -31.75 -27.83 -27.83 -27.95 140.58 -29.48 123.23 152.26 1
DB11 113600 3 0.70 0.08 -30.33 -30.33 -28.27 26.67 -30.33 26.67 -27.62 958.74 26.67
NGB/1 20213 930 0.75 1.25 -28.54 -32.10 -20.02 -20.02 -23.26 222.19 -28.79 101.73 358.24 4
DB12 173805 109688 0.93 4.84 -43.77 -4510 -39.51 -39.51 -39.62 38.67 -46.59 33.21 42.40
DB13 1463974 624472 094 4.77 -42.46 -44.34 -36.34 -36.34 -36.56 87.27 -41.79 7506 9591 1
DB14 1654700 624473 1.13 4.38 -46.24 -48.36 -39.39 -39.39 -39.70 98.96 -46.91 8259 110.89 1
DB15 633756 202462 1.19 3.53 -47.79 -49.85 -41.36 -41.36 -41.73 117.75 -47.98 9545 134.26 1
DB16 597382 437654 1.53 114.62 -35.18 -39.18 3.48 3.48 3.11 2581 -32.33 22.83 28.09
DB17 931174 110076 1.63 451 -43.84 -48.86 -24.72 -24.72 -27.82 218.01 -44.26 140.08 295.35 3
SUDM 330000 100000 1.87 2.71 -59.61 -61.38 -54.50 -54.50 -54.93 96.75 -59.32 68.93 118.32 1
DB18 931174 29 322 429 -486 -486 047 2793 -4.86 26.02 -3.39 663.26 28.37

DB19 1547606 33 333 166 -9.00 -9.00 245 -6.26 -9.00 -1.79 -8.66 -5.37 54.99

DB20 1547606 194 3.35 297 -481 -482 892 -0.64 -482 530 -434 396 5442

DB21 15469 131 3.76 3.79 -19.87 -22.41 3593 21.21 -21.50 74.24 -17.84 15.94 247.70 3
DB22 624473 168 390 3.06 -12.13 -12.15 8.17 -4.96 -12.15 3.52 -11.41 0.04 7216 1
DB23 1547606 21 630 326 -890 -8.90 1488 -4.15 -8.90 0.99 -8.43 -1.64 61.76

DB24 1547606 49 6.55 270 -2352 -23.53 35.95 -7.84 -23.53 28.21 -21.07 19.34 160.92 2
DB25 1463974 535328 7.60 639.24 -36.72 -38.84 172.75 -32.01 172.67 115.19 -33.04 100.92 125.13 1
DB26 1547606 909 7.99 7.70 -15.75 -15.84 4350 -6.87 -15.84 6.10 -14.80 -420 118.14 1
DB27 1463974 10 812 266 -37.30 -37.30 1893 -16.75 -37.30 13.11 -34.90 33.20 157.30 1
DB28 931174 73 1296 6.43 -24.68 -24.70 108.93 557 -24.70 4147 -21.55 115.70 200.83 2
DB29 597382 17 1427 3773 -51.11 -51.12 31.84 -2549 -51.12 8.30 -48.29 19.54 153.49 1
DB30 633756 221480 15.68 454.61 -27.57 -30.89 186.15 -22.81 186.15 131.99 -28.02 119.35 140.80 1
DB31 633756 213 16.16 7.36 -53.16 -53.20 28.46 -25.68 -53.20 -1.47 -50.73 18.52 14156 1
DB32 173805 72 1698 7.14 -44.38 -44.42 3432 -29.41 -4442 -14.83 -43.01 -16.30 98.23 1
DB33 931174 398 19.70 7.89 -54.02 -54.05 14.34 -40.71 -54.05 -26.37 -52.73 -26.08 78.73 1
DB34 113600 6155 24.17 54.66 -61.03 -65.59 115.69 -32.23 16.66 71.92 -60.40 2.50 206.19 2
DB35 1654700 235 30.85 10.35 -49.14 -49.16 132.99 -23.09 -49.16 3.21 -46.67 18.10 146.53 1
DB36 173805 61 31.71 7.04 -68.09 -68.11 39.91 -29.89 -68.11 3.25 -64.72 7430 12153 1
DB37 1341544 37 33.03 582 -70.32 -70.32 39.74 -27.22 -70.32 10.27 -66.49 6582 133.29 1
DB38 147811 62 34.68 7.22 -66.47 -66.50 64.00 -33.42 -66.50 -1.61 -63.41 28.43 13195 1
DB39 1463974 233 37.75 11.06 -49.24 -49.26 172.90 -23.60 -49.26 2.26 -46.81 18.18 14556 1
DB40 624473 14047 81.63 69.00 -62.37 -64.81 426.37 -17.84 -48.66 31.33 -60.27 -18.40 183.86 2
Z20A 50000 247 114.38 14.60 -75.27 -75.54 242.22 -33.52 -75.54 3.48 -71.78 -0.05 116.23 1
Z15 50000 772 166.18 23.44 -73.68 -74.80 556.68 -5.17 -74.74 44.65 -69.11 33.44 169.56 2
Z20B 50000 10384 234.81 73.54 -85.09 -88.49 306.23 -21.75 110.28 12.22 -83.71 -2.31 55.36

(0.0 <=gamma2 <1.0) Averag 320 -12.71 -13.43 -10.76 -8.14 -11.38 71.11 -10.98 90.57 97.31 1

Maximui 17.61 -43.77 -45.10 -39.51 -39.51 -39.62 427.53 -46.59 958.74 487.54 542.21 -69.15 -39.51

(1.0 <=gamma2 < 50) Average: 51.27 -37.95 -38.99 42.77 -18.33 -16.83 39.13 -36.35 61.98 128.39 1
Maximum: 639.24 -70.32 -70.32 186.15 -54.50 186.15 218.01 -66.49 663.26 295.35 360.32 -71.81 -54.50

(50 <= gamma2 <inf) Average: 4514 -74.10 -75.91 382.88 -19.57 -22.16 2292 -71.22 3.17 131.25 1
Maximum: 73.54 -85.09 -88.49 556.68 -33.52 110.28 44.65 -83.71 33.44 183.86 23150 -88.60 33.44

31.39 -30.54 -31.51 47.31 -14.31 -15.04 50.80 -28.79 69.00 116.06 144.25 -39.64 -14.16
639.24 -85.09 -88.49 556.68 -54.50 186.15 427.53 -83.71 958.74 487.54 542.21 -88.60 -54.50

55.66

60.16

-22.42
-12.15
-8.90
-23.53
-62.27
-15.84
-37.30
-24.70
-51.12
-57.85
-53.20
-44.42
-54.05
-66.00
-49.16
-68.11
-70.32
-66.50
-49.26
-64.82
-75.54
-74.80
-88.60

-27.44

-43.74

-75.94

Hybrid
0.00

-25.48

-10.76

-18.33

-3.92

gmzhat
0.00
0.00
0.00

0.75

141

-92.73
-93.62
-94.40
-94.96
-93.14

-26.47
-15.21
-10.33
-27.13
-41.33
-17.76
-41.90
-26.64
-54.70
-28.81
-56.60
-47.18
-56.75
-63.23
-50.65
-70.31
-72.45
-68.45
-50.55
-63.03
-75.97
-74.29
-85.54

-55.75

-46.19

-74.71

-94.97

-91.70

-85.54

-52.24
-94.97
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Performance Measure: Bias (%)
Sample size: 10.0%

Name Psize Nclass gamma2 skew Dujl Dsjl Duj2 Duj2a Dsj2 DSh DSh2 DSh3 DHTj DHTsj  Dhj Hybrid gm2hat
DBO1 15469 15469 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 -0.00 0.0 0.00 0.00 0.00 0.00 0.00
DB02 1288928 1288928 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 0.00 0.00
DB03 624473 624473 0.00 0.00 0.00 0.00 0.00 0.00 000 -0.00 0.00 -0.00 0.00 0.00 0.00 0.00 0.00
EQ100 15000 150 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 000 0.10 0.32 0.00 0.00 0.28
EQ10 15000 1500 0.00 0.00 -0.03 0.04 048 048 0.50 200.49 -0.11 130.80 253.36 3 17.77 -14.46 048 0.88
DB04 597382 591564 0.01 17.61 -1.16 -1.22 -0.97 -0.97 -098 0.67 0.67 059 0.73 0.77 -7.44 -097 -86.11
GOOD 10000 9595 0.04 564 -3.87 -401 -346 -346 -3.47 296 296 262 318 3.34 -19.43 -3.46 -89.40
DBO5 113600 110074 0.04 6.87 -293 -3.05 -257 -257 -257 228 228 203 244 256 -16.84 -2.57 -88.93
DB06 621498 591564 0.05 4.70 -411 -426 -3.68 -3.68 -3.68 3.64 3.64 3.26 3.89 4.07 -21.94 -3.68 -90.00
DBO7 1341544 1288927 0.05 995 -3.89 -406 -3.33 -3.33 -334 286 286 253 3.08 3.23 -20.24 -3.33 -86.81
NGB/4 82135 874 0.18 050 -0.19 -0.32 005 005 -031 142 -0.17 0.04 450 1348 -0.32 0.05 -1.89
DB08 1547606 51168 0.23 0.24 -6.38 -8.24 -381 -381 -6.36 39.52 -6.26 858 8331 1 46.14 -9.48 -3.81 -33.99
FRAME2 33750 19000 0.31 1.18 -21.96 -22.68 -19.92 -19.92 -20.01 48.24 -14.64 4133 52.94 56.59 -48.51 -19.92 -90.59
NGB/2 41197 906 0.37 081 -493 -6.65 -1.37 -1.37 -5.64 20.32 -467 178 58.09 1 04.97 -6.88 -1.37 -18.53
DB09 1547606 3 038 -067 0.00 000 0.00 0.00 000 0.00 000 0.00 0.00 0.00 0.00 0.00 0.01
DB10 147811 110076 0.47 7.41 -26.35 -27.91 -20.90 -20.90 -21.06 19.43 -31.32 15.77 22.06 23.81 -51.37 -20.90 -82.57
FRAME3 111500 36000 0.52 1.92 -28.01 -29.87 -22.68 -22.68 -23.12 95.48 -25.33 73.83 111.81 1 24.32 -47.44 -22.68 -81.98
DB11 113600 3 070 0.08 -28.00 -28.00 -24.68 17.00 -28.00 17.00 -23.91 17.00 17.00 17.07 -28.00 -24.68 -68.07
NGB/1 20213 930 0.75 1.25 -20.51 -24.22 -11.34 -11.34 -18.34 51.05 -20.17 8.04 12048 1 78.68 -25.44 -11.34 -48.47
DB12 173805 109688 0.93 4.84 -39.79 -42.31 -31.47 -31.47 -31.88 25.75 -44.83 18.33 3151 35.00 -59.08 -31.47 -82.92
DB13 1463974 624472 094 4.77 -37.52 -40.72 -26.42 -26.42 -27.20 59.49 -39.85 4443 7170 79.30 -55.33 -26.42 -77.26
DB14 1654700 624473 1.13 4.38 -40.58 -44.21 -27.98 -27.98 -29.09 63.90 -37.53 45.04 79.95 89.58 -56.25 -27.98 -76.55
DB15 633756 202462 1.19 3.53 -42.05 -45.68 -30.19 -30.19 -31.53 70.90 -40.22 46.85 92.06 1 05.01 -55.91 -30.19 -77.43
DB16 597382 437654 1.53 114.62 -29.84 -33.79 19.12 8.02 18.35 19.54 -31.23 15.77 22.62 24.38 -53.19 17.77 -49.62
DB17 931174 110076 1.63 4.51 -32.67 -39.35 -2.27 -2.29 -11.42 107.16 -32.71 5490 172.39 2 08.23 -43.01 -2.27 -52.72
SUDM 330000 100000 1.87 2.71 -54.07 -57.54 -43.85 -43.85 -45.63 43.60 -53.88 17.24 69.41 84.07 -63.40 -43.85 -83.12
DB18 931174 29 322 429 -3.28 -3.28 4.88 1842 -3.28 20.15 -1.15 264.38 20.50 21.40 -3.28 1842 -4.23
DB19 1547606 33 333 166 -6.48 -6.48 329 -282 -6.48 173 -574 873 1942 2408 -6.48 -2.82 -8.44
DB20 1547606 194 335 297 -245 -245 541 005 -245 212 -2.04 246 1298 21.15 -245 0.05 -3.21
DB21 15469 131 3.76 3.79 -11.17 -11.89 21.14 326 -11.88 1211 -9.71 113 46.28 85.67 -11.89 3.26 -14.48
DB22 624473 168 390 3.06 -849 -850 6.00 -4.04 -850 -0.59 -7.78 -0.87 19.90 31.67 -8.50 -4.04 -10.60
DB23 1547606 21 630 326 -614 -6.14 17.17 -140 -6.14 352 -526 10.63 27.72 3170 -6.14 -1.40 -7.14
DB24 1547606 49 655 270 -1557 -15.57 40.04 -3.34 -1557 7.70 -13.46 -3.43 58.98 83.42 -1557 -3.34 -17.96
DB25 1463974 535328 7.60 639.24 -32.80 -35.43 173.44 -2555 17341 7856 -32.21 60.22 9261 1 02.76 -51.48 -25.55 -36.98
DB26 1547606 909 7.99 7.70 -10.08 -10.12 40.71 -1.83 -10.12 5382 -8.67 6.92 39.86 59.26 -10.12 -1.83 -11.37
DB27 1463974 10 8.12 266 -29.40 -29.40 46.62 -6.94 -29.40 20.36 -24.88 47.47 80.06 92.30 -29.40 -6.94 -33.02
DB28 931174 73 1296 6.43 -14.38 -14.38 132.39 1859 -14.38 32.16 -10.15 41.65 8382 1 14.22 -14.38 18.59 -15.50
DB29 597382 17 1427 3.73 -40.76 -40.76 110.46 -2.87 -40.76 26.59 -34.64 38.63 114.30 1 2752 -40.76 -2.87 -43.64
DB30 633756 221480 15.68 454.61 -24.17 -26.71 186.15 -19.43 186.15 95.08 -26.43 77.14 10792 1 18.24 -46.21 -19.43 -25.16
DB31 633756 213 16.16 7.36 -43.73 -43.76 83.32 -2.73 -43.76 13.88 -38.52 4149 76.73 96.32 -43.76 -2.73 -46.52
DB32 173805 72 1698 7.14 -37.61 -37.64 73.71 -15.99 -37.64 -2.69 -34.46 23.94 52.30 65.15 -37.64 -15.99 -39.96
DB33 931174 398 19.70 7.89 -47.94 -47.96 49.73 -28.34 -47.96 -16.20 -45.08 -2.31 34.93 47.19 -47.96 -28.34 -50.35
DB34 113600 6155 24.17 54.66 -49.84 -54.19 202.17 -6.56 -5.75 24.00 -47.45 -8.44 10057 1 31.22 -54.30 -6.56 -51.61
DB35 1654700 235 30.85 10.35 -40.16 -40.17 201.07 -1.29 -40.17 10.16 -35.59 31.16 64.91 87.57 -40.17 -1.29 -41.45
DB36 173805 61 31.71 7.04 -58.77 -58.79 138.09 -7.88 -58.79 7.52 -52.76 16.37 71.51 87.39 -58.79 -7.88 -60.66
DB37 1341544 37 33.03 582 -61.00 -61.00 151.05 1.13 -61.00 24.43 -53.23 62.39 82.52 96.03 -61.00 1.13 -62.84
DB38 147811 62 3468 7.22 -57.91 -57.94 151.60 -9.94 -57.94 3.37 -52.36 17.50 64.90 81.14 -57.94 -9.94 -59.62
DB39 1463974 233 37.75 11.06 -40.07 -40.09 261.47 -0.52 -40.09 11.13 -3543 3348 67.27 89.68 -40.09 -0.52 -41.18
DB40 624473 14047 81.63 69.00 -51.27 -53.09 665.09 -3.78 -51.85 12.19 -47.15 -3.77 86.59 1 14.80 -53.09 -3.77 -51.73
Z20A 50000 247 114.38 14.60 -65.65 -65.89 536.21 -8.82 -65.89 1.31 -59.78 -1.45 63.76 81.09 -65.89 -1.45 -66.28
Z15 50000 772 166.18 23.44 -62.26 -63.29 1125.89 17.84 -63.29 27.09 -55.07 18.47 92.74 1 14.95 -63.29 18.47 -62.77
Z20B 50000 10384 234.81 7354 -76.47 -81.21 381.51 25.86 280.63 5.67 -73.13 -0.86 33.84 40.72 -81.30 -0.86 -76.88
(0.0 <=gamma2 <1.0) Averag 3.20 -10.93 -11.78 -8.38 -6.40 -9.31 2812 -9.47 17.66 40.01 52.92 -20.58 -8.38 -48.87
Maximum: 17.61 -39.79 -42.31 -31.47 -31.47 -31.88 200.49 -44.83 130.80 253.36 317.77 -59.08 -31.47 -90.59
(1.0<=gamma2 < 50) Average: 51.27 -31.16 -32.34 74.62 -7.27 -10.44 2541 -28.61 3520 65.79 81.72 -3556 -6.91 -37.98
Maximum: 639.24 -61.00 -61.00 261.47 -43.85 186.15 107.16 -53.88 264.38 172.39 208.23 -63.40 -43.85 -83.12
(50 <=gamma2 <inf) Average: 45.14 -63.91 -65.87 677.18 7.78 2490 1157 -58.78 3.10 69.23 87.89 -65.89 3.10 -64.41
Maximum: 73.54 -76.47 -81.21 1125.89 25.86 280.63 27.09 -73.13 18.47 9274 114.95 -81.30 18.47 -76.88
31.39 -2551 -26.62 87.45 -576 -7.26 2544 -23.20 25.65 55.64 70.56 -31.84 -6.74 -44.41

639.24 -76.47 -81.21 1125.89 -43.85 280.63 200.49 -73.13 264.38 253.36 317.77 -81.30 -43.85 -90.59
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Performance Measure: Bias (%)
Sample size: 20.0%

Name Psize Nclass gamma2 skew Dujl Dsjl Duj2 Duj2a Dsj2 DSh DSh2 DSh3 DHTj
DBO1 15469 15469 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 -0.00 0.00
DB02 1288928 1288928 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 0.00
DB03 624473 624473 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 0.00 0.00
EQ100 15000 150 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EQ10 15000 1500 0.00 0.00 0.12 0.12 025 025 025 4352 0.11 20.81 6253 1
DB04 597382 591564 0.01 17.61 -0.99 -1.10 -0.65 -0.65 -0.67 0.44 044 033 053
GOOD 10000 9595 0.04 564 -341 -369 -261 -261 -264 201 201 155 235
DBO5 113600 110074 0.04 6.87 -266 -2.89 -1.98 -1.98 -201 153 153 119 179
DB06 621498 591564 0.05 4.70 -3.68 -3.96 -2.86 -2.86 -2.89 251 251 199 290
DBO7 1341544 1288927 0.05 995 -3.37 -3.68 -2.40 -240 -244 193 193 149 226
NGB/4 82135 874 0.18 050 -0.01 -0.01 0.00 000 -001 0.02 -001 -0.00 0.08

DB08 1547606 51168 0.23 0.24 -243 -3.20 -1.23 -1.23 -3.06 319 -221 -0.72 1241
FRAME2 33750 19000 0.31 1.18 -19.47 -20.87 -15.73 -15.73 -16.08 29.19 -15.36 21.34 35.30
NGB/2 41197 906 037 081 -150 -1.86 -0.17 -0.17 -1.85 181 -1.25 -0.27 7.62

DB09 1547606 3 038 -067 0.00 000 0.00 0.00 000 0.00 000 0.00 0.00

DB10 147811 110076 0.47 7.41 -22.22 -24.77 -13.05 -13.05 -13.60 10.71 -28.38 6.64 14.19
FRAME3 111500 36000 0.52 1.92 -22.70 -25.77 -14.15 -14.15 -15.68 45.86 -22.55 28.17 62.08
DB11 113600 3 070 0.08 -22.67 -22.67 -16.24 18.67 -22.67 18.67 -15.78 18.67 18.67
NGB/1 20213 930 0.75 125 -12.06 -14.31 -4.24 -4.24 -1320 7.08 -10.95 -2.94 30.45
DB12 173805 109688 0.93 4.84 -33.01 -37.27 -17.83 -17.83 -19.32 11.20 -27.06 4.28 17.99
DB13 1463974 624472 0.94 4.77 -29.89 -34.52 -11.92 -11.92 -14.36 30.15 -26.74 17.83 4245
DB14 1654700 624473 1.13 4.38 -31.83 -37.10 -11.12 -11.12 -14.64 30.51 -32.00 16.53 4554
DB15 633756 202462 1.19 353 -32.79 -38.24 -12.91 -12.91 -17.34 30.69 -33.41 1440 49.32
DB16 597382 437654 1.53 114.62 -23.64 -27.77 33.89 14.14 3263 11.21 -28.05 7.31 14.80
DB17 931174 110076 1.63 451 -19.23 -25.81 19.30 18.83 -1.62 43.39 -16.77 2265 76.21 1
SUDM 330000 100000 1.87 2.71 -43.88 -49.73 -23.64 -23.64 -30.62 10.38 -43.38 -4.97 32.07
DB18 931174 29 322 429 -162 -1.62 506 4.08 -162 6.10 -033 525 6.98

DB19 1547606 33 333 166 -488 -488 039 -243 -488 -1.70 -435 -0.83 143

DB20 1547606 194 3.35 297 -1.24 -1.24 277 -029 -1.24 008 -1.02 -035 259
DB21 15469 131 3.76 3.79 -6.86 -7.01 7.61 -293 -7.01 -2.64 -6.28 -4.84 525

DB22 624473 168 390 3.06 -571 -571 526 -3.40 -571 -1.84 -507 -2.72 4.67

DB23 1547606 21 630 326 -3.81 -3.81 1093 -0.90 -3.81 132 -295 342 564
DB24 1547606 49 655 270 -9.00 -9.00 36.46 -1.28 -9.00 3.30 -6.95 222 17.52
DB25 1463974 535328 7.60 639.24 -26.76 -30.41 173.47 -15.80 173.47 37.85 -28.07 2251 52.17
DB26 1547606 909 7.99 7.70 -574 -576 29.01 -0.44 -576 110 -461 0.25 9.20
DB27 1463974 10 812 266 -19.10 -19.10 79.01 13.27 -19.10 22.98 -12.09 41.20 39.11
DB28 931174 73 1296 6.43 -597 -597 9524 1100 -597 876 -3.52 5.09 20.55
DB29 597382 17 1427 373 -27.94 -27.94 161.34 1351 -27.94 26.43 -18.88 49.34 4251
DB30 633756 221480 15.68 454.61 -19.91 -22.56 186.15 -13.89 186.15 49.20 -22.48 32.89 62.89
DB31 633756 213 16.16 7.36 -31.91 -31.93 151.13 22.76 -31.93 10.52 -24.85 11.65 34.46
DB32 173805 72 1698 7.14 -29.05 -29.07 131.47 257 -29.07 4.27 -23.51 10.83 25.36
DB33 931174 398 19.70 7.89 -39.45 -39.46 110.95 -8.45 -39.46 -6.78 -34.02 0.75 13.27
DB34 113600 6155 24.17 54.66 -36.42 -39.54 290.87 12.08 -29.97 7.53 -31.71 0.04 38.29
DB35 1654700 235 30.85 10.35 -29.91 -29.91 276.82 9.09 -2991 151 -24.68 -1.89 24.78
DB36 173805 61 31.71 7.04 -46.54 -46.56 269.05 16.10 -46.56 4.96 -37.97 8.34 28.48
DB37 1341544 37 33.03 582 -46.19 -46.19 340.60 58.20 -46.19 19.23 -35.29 2298 41.71
DB38 147811 62 34.68 7.22 -4545 -4547 303.29 15.68 -4547 4.48 -37.14 8.09 28.62
DB39 1463974 233 37.75 11.06 -29.50 -29.51 362.12 12.05 -29.51 3.50 -24.01 0.36 27.33
DB40 624473 14047 81.63 69.00 -38.07 -39.26 940.41 6.70 -39.26 3.22 -32.18 -1.64 33.51
Z20A 50000 247 114.38 14.60 -52.58 -52.79 1026.51 13.17 -52.79 0.62 -43.88 0.17 27.52
Z15 50000 772 166.18 23.44 -46.73 -47.58 2003.12 37.38 -47.58 13.90 -37.33 8.23 4259
Z20B 50000 10384 234.81 73.54 -62.96 -69.06 381.51 83.17 38151 237 -56.71 0.11 17.26

(0.0 <=gamma2 <1.0) Averag 320 -857 -955 -499 -333 -620 999 -675 573 1493

Maximui 17.61 -33.01 -37.27 -17.83 18.67 -22.67 45.86 -28.38 28.17 62.53 103.25 -46.60 -17.83

.0 <= gamma2 < wverage: .27 -23.12 -24. . . -3. .09 -20. . .
1.0 a2 < 50) A 51.27 -23.12 -24.49 11239 466 -3.41 1209 -20.13 10.02 27.81
Maximum: 639.24 -46.54 -49.73 362.12 58.20 186.15 49.20 -43.38 49.34 76.21 101.60 -52.10 58.20

(50 <=gamma2 <inf) Average: 45.14 -50.09 -52.17 1087.89 3511 60.47 503 -4253 172 30.22
Maximum: 73.54 -62.96 -69.06 200312 83.17 381.51 13.90 -56.71 823 4259 56.84 -69.12 8.23

31.39 -19.32 -20.59 140.02 3.78 0.38 10.70 -16.45 7.65 2279 30.72 -23.33 0.65
639.24 -62.96 -69.06 2003.12 83.17 38151 49.20 -56.71 49.34 76.21 103.25 -69.12 58.20

37.01

41.25

0.00
-4.79
-3.71
-11.73
-9.60
-12.97
-11.61
-0.01

-69.12

-14.08

-26.24

-52.19

Hybrid
0.00
0.00
0.00
0.00
0.25
-0.65
-2.61
-1.98
-2.86
-2.40
0.00
-1.23
-15.73
-0.17
0.00
-13.05
-14.15
-16.24
-4.24
-17.83
-11.92
-11.12
-12.91
19.76

0.11

-4.99

4.87

1.72

gmzhat
0.00
0.00
0.00
0.16
0.48
-72.86
-78.61
-77.92
-80.05
-75.63
-0.02
-13.04
-81.00
-5.60

-28.23

-50.49

-81.00

-67.41

-63.36

-34.58
-81.00
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