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ABSTRACT: We use an extension of the generalized jackknife approach of Gray and
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1. Introduction

The problem of estimating the number of classes in a population has been studied for
many years. A recent review article (Bunge and Fitzpatrick 1993) lists more than 125
references. In this article, we consider an important special case of the general problem |
estimating the number of classes in a �nite population of known size. Only a handful of
papers have addressed this problem and none has reached an entirely satisfactory solution,
despite the fact that the �rst attempt at solution appeared in the statistical literature nearly
50 years ago (Mosteller 1949). The problem we consider has arisen in the literature in a
variety of applications, including the following.

(i) In a company-sponsored contest, many entries (say several hundred thousand) have
been received. It is known that some people have entered more than once. The goal is
to estimate the number of di�erent people who have entered from a sample of entries
(Mosteller 1949; Sudman 1976).

(ii) A sampling frame is constructed by combining a number of lists that may contain
overlapping entries. It is desired to estimate, using a sample from all lists, the number
of units on the combined list (Deming and Glasser 1959; Goodman 1952; Kish 1965,
Sec. 11.2; Sudman 1976, Sec. 3.6). An important example of such a problem is an
\administrative records census," currently under study by the U.S. Bureau of the
Census. In such a census, several administrative �les (such as AFDC or IRS records)
are combined, and the total number of distinct individuals included in the combined
�le is determined. Exact computation of the number of distinct individuals in the
combined �le is extremely expensive because of the high cost of determining the
number of duplicated entries. A similar problem and proposed solution was discussed
in the London Financial Times (March 2, 1949) by C. F. Carter, who was interested
in estimating the number of di�erent investors in British industrial stocks based on
samples from share registers of companies (Mosteller 1949).

(iii) In a relational database system, data are organized in tables called relations (see,
e.g., Korth and Silberschatz 1991, Chap. 3). In a typical relation, each row might
represent a record for an individual employee in a company, and each column might
correspond to a di�erent attribute of the employee, such as salary, years of experience,
department number, and so forth. A relational query speci�es an output relation that
is to be computed from the set of base relations stored by the system. Knowledge
of the number of distinct values for each attribute in the base relations is central
to determining the most e�cient method for computing a speci�ed output relation
(Hellerstein and Stonebraker 1994; Selinger, Astrahan, Chamberlain, Lorie, and Price
1979). The size of the base relations in modern database systems often is so large
that exact computation of the distinct-value parameters is prohibitively expensive,
and thus estimation of these parameters is desired (Astrahan, Schkolnick, and Whang
1987; Flajolet and Martin 1985; Gelenbe and Gardy 1982; Hou, Ozsoyoglu, and Taneja
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1988, 1989; Naughton and Seshadri 1990; Ozsoyoglu, Du, Tjahjana, Hou, and Rowland
1991; Whang, Vander-Zanden, and Taylor 1990).

In each of these applications, the size of the population (number of contest entries, total
number of units over all lists, and number of rows in the base relation) is known, and this
size is too large for easy computation of the number of classes.

The problem studied in this article can be described formally as follows. A population
of size N consists of D mutually disjoint classes of items, labelled C1; C2; : : : ; CD. De�ne
Nj to be the size of class Cj, so that N =

PD
j=1Nj . A simple random sample of n

items is selected (without replacement) from the population. This sample includes nj items
from class Cj. The problem we consider is that of estimating D using information from
the sample along with knowledge of the value of N . We denote by Fi the number of
classes of size i in the population, so that D =

PN
i=1 Fi. Similarly, we denote by fi the

number of classes represented exactly i times in the sample and by d the total number of
classes represented in the sample. Thus d =

Pn
i=1 fi and

Pn
i=1 ifi = n. De�ne vectors

N = (N1; N2; : : : ; ND), n = (n1; n2; : : : ; nD), and f = (f1; f2; : : : ; fn). Note that n is not
observable, but f is. Because we sample without replacement, the random vector n has a
multivariate hypergeometric distribution with probability mass function

P (n j D;N) =

�N1

n1

��N2

n2

� � � � �NDnD��N
n

� : (1)

The probability mass function of the observable random vector f is simply P (n j D;N)
summed over all points n that correspond to f :

P (f j D;N) =
X
S

P (n j D;N);

where S = fn : #(nj = i) = fi for 1 � i � D g. The probability mass function P (f j D;N)
does not have a closed-form expression in general.

In Section 2 we review the estimators that have been proposed for estimating D from
data generated under model (1). In Section 3 we provide several new estimators of D based
on an extension of the generalized jackknife approach of Gray and Schucany (1972). We
then show that generalized jackknife estimators of the number of classes in a population are
closely related to certain \Horvitz-Thompson" estimators, to an estimator due to Shlosser
(1981), and to estimators based on the notion of \sample coverage" (Chao and Lee 1992).
In Section 4 we provide and compare approximate expressions for the asymptotic variance
of several of the estimators, and in Section 5 apply our formulas to a well-known example
from the literature. We provide a simulation-based empirical comparison of the various
estimators in Section 6, and summarize our results and give recommendations in Section 7.
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2. Previous Estimators

Bunge and Fitzpatrick (1993) mention only two non-Bayesian estimators that have been
developed as estimators of D under model (1). These are the estimators of Goodman (1949)
and Shlosser (1981). Goodman proved that

bDGood1 = d+
nX
i=1

(�1)i+1 (N � n+ i� 1)! (n � i)!

(N � n� 1)!n!
fi

is the unique unbiased estimator of D when n > M
def
= max(N1; N2; : : : ; ND). He further

proved that no unbiased estimator of D exists when n � M . Unfortunately, unless the
sampling fraction is quite large, the variance of bDGood1 is so great and the numerical dif-
�culties encountered when computing bDGood1 are so severe that the estimator is unusable.
Goodman, who made note of the high variance of bDGood1 himself, suggested the alternative
estimator

bDGood2 = N � N(N � 1)

n(n� 1)
f2

for overcoming the variance problem. Although bDGood2 has lower variance than bDGood1, it
can take on negative values and can have a large bias for any n if D is small. For example,
consider the case in which D = 1 and n > 2, and observe that f2 = 0 and bDGood2 = N .

Under the assumption that the population size N is large and the sampling fraction
q = n=N is nonnegligible, Shlosser (1981) derived the estimator

bDSh = d+ f1

Pn
i=1(1� q)ifiPn

i=1 iq(1� q)i�1fi
:

For the two examples considered in his paper, Shlosser found that use of bDSh with a 10%
sampling fraction resulted in an error rate below 20%. In our experiments, however, we
observed root mean squared errors (rmse's) exceeding 200%, even for well-behaved popu-
lations with relatively little variation among the class sizes (see Sec. 6). Considering the
relationship between bDSh and generalized jackknife estimators (see Sec. 3.4) provides insight
into the source of this erratic behavior and suggests some possible modi�cations of bDSh to
improve performance.

In related work, Burnham and Overton (1978, 1979) proposed a family of (traditional)
generalized jackknife estimators for estimating the size of a closed population when capture
probabilities vary among animals. The D individuals in the population play the role of our
D classes; a given individual can appear up to n times in the overall sample if captured
on one or more of n possible trapping occasions. The capture probability for an individual
is assumed to be constant over time, and the capture probabilities for the D individuals
are modeled as D iid random samples from a �xed probability distribution. Burnham and
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Overton's sample design is clearly di�erent from model (1). Under the Burnham and Over-
ton model, for example, the quantities f1; f2; : : : ; fn have a joint multinomial distribution.
Closely related to the work of Burnham and Overton are the ordinary jackknife estimators
of the number of species in a closed region developed by Heltshe and Forrester (1983) and
Smith and van Belle (1984). The sample data consist of a list of the species that appear in
each of n quadrats. (The number of times that a species is represented in a quadrat is not
recorded.) This setup is essentially identical to that of Burnham and Overton, with the D
species playing the role of the D individuals and the n quadrats playing the role of the n
trapping occasions.

3. Generalized Jackknife Estimators

In this section we outline an extension of the generalized jackknife approach to bias
reduction and then use this approach to derive new estimators for the number of classes
in a �nite population. We also point out connections between our generalized jackknife
approach and several other estimation approaches in the literature.

3.1. The Generalized Jackknife Approach

Let � be an unknown real-valued parameter. A generalized jackknife estimator of � is
an estimator of the form

G(b�1; b�2) = b�1 �Rb�2
1�R

; (2)

where b�1 and b�2 are biased estimators of � and R (6= 1) is a real number (Gray and Schucany
1972). The idea underlying the generalized jackknife approach is to try and choose R such
that G(b�1; b�2) has lower bias than either b�1 or b�2. To motivate the choice of R, observe that
for

R =
E[b�1]� �

E[b�2]� �
; (3)

the estimator G(b�1; b�2) is unbiased for �. This optimal value of R is typically unknown,
however, and can only be approximated, resulting in bias reduction but not complete bias
elimination. In the following, we extend the original de�nition of the generalized jackknife
given by Gray and Schucany (1972) by allowing R to depend on the data; that is, we allow
R to be random.

Recall that d is the number of classes represented in the sample. Write dn for d to
emphasize the dependence of d on the sample size, and denote by dn�1(k) the number of
classes represented in the sample after the kth observation has been removed. Set

d(n�1) =
1

n

nX
k=1

dn�1(k):

4



We focus on generalized jackknife estimators that are obtained by taking b�1 = dn andb�2 = d(n�1) in (2); these are the usual choices for b�1 and b�2 in the classical �rst-order
jackknife estimator (Miller 1974). Observe that dn�1(k) = dn � 1 if the class for the
kth observation is represented only once in the sample; otherwise, dn�1(k) = dn. Thus
d(n�1) = dn � (f1=n) and, by (2), G(b�1; b�2) = bD, where

bD = dn +K
f1
n

(4)

and K = R=(1�R). It follows from (3) that the optimal choice of K is

K =
E [dn]�D

E[d(n�1)]�E [dn]
=
D �E [dn]

E [f1] =n
: (5)

To derive a more explicit formula for K, denote by I[A] the indicator of event A and observe
that

E [dn] = E

24 DX
j=1

I[nj > 0]

35 =

DX
j=1

P fnj > 0 g = D �
DX
j=1

P fnj = 0 g :

Similar reasoning shows that

E [f1] =
DX
j=1

P fnj = 1 g ; (6)

so that

K = n

PD
j=1 P fnj = 0 gPD
j=1 P fnj = 1 g : (7)

Following Shlosser (1981), we focus on the case in which the population size N is large and
the sampling fraction q = n=N is nonnegligible, and we make the approximation

P fnj = k g �
�
Nj

k

�
qk(1� q)Nj�k (8)

for 0 � k � n and 1 � j � D. That is, the probability distribution of each nj is approxi-
mated by the probability distribution of nj under a Bernoulli sample design in which each
item is included in the sample with probability q, independently of all other items in the
population. Use of this approximation leads to estimators that behave almost identically to
estimators derived using the exact distribution of n but are simpler to compute and derive
(see App. A for further discussion). Substituting (8) into (7), we obtain

K � n

PD
j=1(1� q)NjPD

j=1Njq(1� q)Nj�1
: (9)
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The quantity K de�ned in (9) depends on unknown parameters N1; N2; : : : ; ND that are
di�cult to estimate. Our approach is to approximate K by a function of D and of other
parameters that are easier to estimate, thereby obtaining an approximate version of (4). The
estimates for these parameters, including bD forD, are then substituted into the approximate
version of (4) and the resulting equation is solved for bD.

We also consider \smoothed" jackknife estimators. The idea is to replace the quantity
f1=n in (4) by its expected value E [f1] =n in the hope that the resulting estimator of D will
be more stable than the original \unsmoothed" estimator. As with the parameter K, the
quantity E [f1] =n depends on the unknown parameters N1; N2; : : : ; ND; see (6) and (8).
Thus our approach to estimating E [f1] =n is the same as our approach to estimating K.

Estimators also can be based on high-order jackkni�ng schemes that consider the num-
ber of distinct values in the sample when two elements are removed, when three elements
are removed, and so forth. Typically, using a high-order jackkni�ng scheme requires es-
timating high-order moments (skewness, kurtosis, and so forth) of the set of numbers
fN1; N2; : : : ; ND g. Initial experiments indicated that the reduction in estimation error
due to using the high-order jackknife is outweighed by the increase in error due to un-
certainty in the moment estimates. Thus we do not pursue high-order jackknife schemes
further.

3.2. The Estimators

Di�erent approximations for K and E [f1] =n lead to di�erent estimators for D. Here
we develop a number of the possible estimators.

3.2.1. First-Order Estimators The simplest estimators of D can be derived using a
�rst-order approximation to K. Speci�cally, approximate each Nj in (9) by the average
value

N =
1

D

DX
j=1

Nj =
N

D

and substitute the resulting expression for K into (4) to obtain

bD = dn +
(1� q)f1D

n
: (10)

Now substitute bD for D on the right side of (10) and solve for bD. The resulting solution,
denoted by bDuj1, is given by

bDuj1 =

�
1� (1� q)f1

n

��1
dn: (11)

We refer to this estimator as the \unsmoothed �rst-order jackknife estimator."
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To derive a \smoothed �rst-order jackknife estimator," observe that by (6) and (8),

E [f1]

n
� 1

n

DX
j=1

Njq(1� q)Nj�1: (12)

Approximating each Nj in (12) by N , we have

E [f1]

n
� (1� q)N�1: (13)

On the right side of (10), replace f1=n with the approximate expression for E [f1] =n given
in (13), yielding

bD = dn +D(1� q)N :

Replacing D with bD and N with N= bD in the foregoing expression leads to the relation

bD�1� (1� q)N=
bD
�
= dn:

We de�ne the smoothed �rst-order jackknife estimator bDsj1 as the value of bD that solves

this equation. Given dn, n, and N , bDsj1 can be computed numerically using standard
root-�nding procedures. Observe that if in fact N1 = N2 = � � � = ND = N=D, then

E [dn] � D
�
1� (1 � q)N=D

�
:

In this case bDsj1 can be viewed as a simple method-of-moments estimator obtained by
replacing E [dn] with the estimate dn and solving for D. If, moreover, the sampling fraction
q is small enough so that the distribution of (n1; n2; : : : ; nD) is approximately multinomial
(see Sec. 3.3), then bDsj1 is approximately equal to the maximum likelihood estimator for

D (see Good 1950). Observe that both bDuj1 and bDsj1 are consistent for D: bDuj1 ! D andbDsj1 ! D as q ! 1.

3.2.2. Second-Order Estimators A second-order approximation to K can be derived
as follows. Denote by 
2 the squared coe�cient of variation of the class sizesN1; N2; : : : ; ND:


2 =
(1=D)

PD
j=1(Nj �N)2

N
2 : (14)

Suppose that 
2 is relatively small, so that each Nj is close to the average value N . Sub-
stitute the Taylor approximations

(1� q)Nj � (1� q)N + (1� q)N ln(1� q)(Nj �N)
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and

Njq(1� q)Nj�1 � Njq
�
(1� q)N�1 + (1� q)N�1 ln(1� q)(Nj �N)

�
for 1 � j � D into (9) to obtain

K � D(1� q)

�
1

1 + ln(1� q)N
2

�
� D(1� q)

�
1� ln(1� q)N
2

�
: (15)

The unknown parameter 
2 can be estimated using the following approach (cf. Chao and
Lee 1992). With the usual convention that

�n
m

�
= 0 for n < m, we �nd that

NX
i=1

i(i� 1)E [fi] �
NX
i=1

i(i � 1)
DX
j=1

�
Nj

i

�
qi(1� q)Nj�i

= q2
DX
j=1

Nj(Nj � 1)

NjX
i=2

�
Nj � 2

i� 2

�
qi�2(1� q)Nj�i

= q2
DX
j=1

Nj(Nj � 1);

so that


2 � D

n2

NX
i=1

i(i� 1)E [fi] +
D

N
� 1:

Thus if D were known, then a natural method-of-moments estimator 
̂2(D) of 
2 would be


̂2(D) = max
�
0;

D

n2

nX
i=1

i(i� 1)fi +
D

N
� 1
�
: (16)

To develop a second-order estimate of D, substitute (15) into (4) to obtain

bD = dn +
Df1(1� q)

n

�
1� ln(1� q)N
2

�
; (17)

from which it follows that

bD = dn +
Df1(1� q)

n
� f1(1� q) ln(1� q)
2

q
:

Replacing D with bD on the right side of this equation and solving for bD yields the relation�
1� f1(1� q)

n

� bD = dn � f1(1� q) ln(1 � q)
2

q
: (18)
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An estimator of D can be obtained by substituting 
̂2( bD) for 
2 in (18) and solving forbD numerically. Alternatively, we can start with a simple initial estimator of D and then
correct this estimator using (18). Following this latter approach, we use bDuj1 as our initial
estimator and de�ne

bDuj2 =

�
1� f1(1� q)

n

��1 
dn � f1(1� q) ln(1� q)
̂2( bDuj1)

q

!
:

A smoothed second-order jackknife estimator can be obtained by replacing the expres-
sion f1=n in (17) with the approximation to E [f1] =n given in (13), leading to

bD = dn +D(1� q)N
�
1� ln(1� q)N
2

�
:

Replacing D with bD and proceeding as before, we obtain the estimator

bDsj2 =
�
1� (1� q)

~N
��1 �

dn � (1� q)
~N ln(1� q)N
̂2( bDuj1)

�
;

where ~N = N= bDuj1. As with the �rst-order estimators bDuj1 and bDsj1, the second-order

estimators bDuj2 and bDsj2 are consistent for D.

3.2.3. Horvitz-Thompson Jackknife Estimators In this section we discuss an al-
ternative approach to estimation of K based on a technique of Horvitz and Thompson.
(See Sarndal, Swensson, and Wretman 1992 for a general discussion of Horvitz-Thompson
estimators.) First, consider the general problem of estimating a parameter of the form
�(g) =

PD
j=1 g(Nj), where g is a speci�ed function. Observe that because P fnj > 0 g > 0

for 1 � j � D, we have �(g) = E [X(g)], where

X(g) =

DX
j=1

g(Nj)I(nj > 0)

P fnj > 0 g =
X

fj:nj>0g

g(Nj)

P fnj > 0 g :

It follows from (8) that P fnj > 0 g � 1� (1 � q)Nj , and the foregoing discussion suggests
that we estimate �(g) by

b�(g) = X
fj:nj>0g

g( bNj)

1� (1� q)
bNj
; (19)

where bNj is an estimator for Nj . The key point is that we need to estimate Nj only when
nj > 0. To do this, observe that

E [nj j nj > 0] =
E [nj]

P fnj > 0 g �
qNj

1� (1� q)Nj
:
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Replacing E [nj j nj > 0] with nj leads to the estimating equation

nj =
qNj

1� (1� q)Nj
; (20)

and a method-of-moments estimator bNj can be de�ned as the value of Nj that solves (20).
Now consider the problem of estimating K, and hence D. By (9), K � �(f)=�(g), where

f(x) = (1 � q)x and g(x) = xq(1 � q)x�1=n. Thus a natural estimator of K is given byb�(f)=b�(g), leading to the �nal estimator,
bDHTj = dn +

b�(f)b�(g) f1n :
A smoothed variant of bDHTj can be obtained by replacing f1=n with the Horvitz-Thompson

estimator of E [f1] =n, namely b�(g). The resulting estimator, denoted by bDHTsj, is given by

bDHTsj = dn + b�(f):
Finally, a hybrid estimator can be obtained using a �rst-order approximation for the nu-
merator of K and a Horvitz-Thompson estimator for the denominator. This leads to the
estimator bDhj, de�ned as the solution bD of the equation

bD 1� f1(1� q)N=
bD

nb�(g)
!
= dn:

If we replace f1=n with the Horvitz-Thompson estimator for E [f1] =n in the foregoing
equation in order to obtain a smoothed variant of bDhj, then the resulting estimator coincides

with bDsj1.
Because D = �(u), where u(x) � 1, it may appear that a \non-jackknife" Horvitz-

Thompson estimator bDHT can be de�ned by setting bDHT = b�(u). It is straightforward
to show, however, that bDHT = bDHTsj, so that bDHT can in fact be viewed as a smoothed
jackknife estimator.

Simulation experiments indicate that the behavior of the Horvitz-Thompson jackknife
estimators bDHTj and bDHTsj is erratic (see App. D for detailed results). Overall, the poor

performance of bDHTj and bDHTsj is caused by inaccurate estimation of b�(f). The problem

seems to be that when Nj is small, the estimator bNj is unstable and yet typically has a

large e�ect on the value of b�(f) through the term (1� q)
bNj=
�
1� (1� q)

bNj
�
. The estimatorbDhj uses a Taylor approximation in place of b�(f) and hence has lower bias and rmse than

the other two Horvitz-Thompson jackknife estimators. However, other estimators perform
better than bDhj, and we do not consider the estimators bDHTj, bDHTsj, and bDhj further.
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3.3. Relation to Estimators Based on Sample Coverage

The generalized jackknife approach for deriving an estimator of D works for sample
designs other than hypergeometric sampling. For example, the most thoroughly studied
version of the number-of-classes problem is that in which the population is assumed to
be in�nite and n is assumed to have a multinomial distribution with parameter vector
� = (�1; �2; : : : ; �D); that is,

P (n j D;�) =
�

n

n1n2 � � �nD

�
�n11 �n22 � � � �nDD : (21)

When we proceed as in Section 3.1 to derive a generalized jackknife estimator under the
model in (21), the estimator turns out to be nearly identical to the \coverage-based" esti-
mator proposed by Chao and Lee (1992). To see this, start again with (4) and select K as
in (5). Because

E [dn]�D = �
DX
j=1

(1 � �j)
n

under the model in (21), it follows that

K =

PD
j=1 vn(�j)PD

j=1 �jvn�1(�j)
;

where vn(x) = (1� x)n. Set � = 1=D and use the Taylor approximations

vn(�j) � vn(�) + (�j � �)v0n(�)

and

�jvn�1(�j) � �j
�
vn�1(�) + (�j � �)v0n�1(�)

�
in a manner analogous to the derivation in Section 3.2.2 to obtain

K � (D � 1) + (n� 1)
2; (22)

where 
2 = �1+DPD
j=1 �

2
j is the squared coe�cient of variation of the numbers �1; �2; : : : ;

�D. Denote by bDmult the estimator of D under the multinomial model. Then, by (4),

bDmult = dn +
�
(D � 1) + (n� 1)
2

�f1
n
: (23)

Replace D with bDmult and 

2 with an estimator ~
2 in (23) and solve for bDmult to obtain

bDmult =
dnbC +

n(1� bC)bC
�
n� 1

n
~
2 � 1

n

�
;
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where bC = 1 � (f1=n). When the sample size n is large, the estimator bDmult is essentially
the same as the estimator

bDCL =
dnbC +

n(1� bC)bC ~
2

proposed by Chao and Lee (1992). The estimator bDCL was developed from a di�erent
point of view, using the concept of sample coverage. The sample coverage for an in�nite
population is de�ned as

PD
j=1 �jI[nj > 0], and the quantity bC = 1 � (f1=n) is a standard

estimator of the sample coverage.
Conversely, when Chao and Lee's derivation is modi�ed to account for hypergeomet-

ric sampling, the resulting estimator is equal to bDuj2 (see App. B). Thus at least some
estimators based on sample coverage can be viewed as generalized jackknife estimators.

3.4. Relation to Shlosser's Estimator

Observe that the estimator bDSh, though not developed from a jackknife perspective, can
be viewed as an estimator of the form (4) with K estimated by

bKSh = n

Pn
i=1(1� q)ifiPn

i=1 iq(1� q)i�1fi
:

To analyze the behavior of bDSh, we �rst rewrite the jackknife quantity K de�ned in (9) as
follows:

K = n

PN
i=1(1� q)iFiPN

i=1 iq(1� q)i�1Fi
: (24)

Shlosser's justi�cation of bDSh assumes that

E [fi]

E [f1]
� Fi
F1

(25)

for 1 � i � N . When the assumption in (25) holds and the sample size is large enough so
that

fi � E [fi] (26)

for 1 � i � N ,

bKSh � n

PN
i=1(1� q)iE [fi]PN

i=1 iq(1� q)i�1E [fi]

= n

PN
i=1(1� q)i

�
E [fi] =E [f1]

�PN
i=1 iq(1� q)i�1

�
E [fi] =E [f1]

�
� n

F�11

PN
i=1(1� q)iFi

F�11

PN
i=1 iq(1 � q)i�1Fi

= K;

12



so that bDSh behaves as a generalized jackknife estimator. Although the relations in (25)
and (26) hold exactly for n = N (implying that bDSh is consistent for D), these relations
can fail drastically for smaller sample sizes. For example, when F1 = 0 and Fi > 0 for some
i > 1, the right side of (25) is in�nite, whereas the left side is �nite for n su�ciently small.
This observation leads one to expect that bDSh will not perform well when the sample size is
relatively small and N1; N2; : : : ; ND have similar values (with Nj > 1 for each j). Both the
variance analysis in Section 4 and the simulation experiments described in Section 6 bear
out this conjecture.

The foregoing discussion suggests that replacing bKSh with

bK�
Sh =

K

E[ bKSh]
bKSh (27)

in the formula for bDSh might result in an improved estimator, because bK�
Sh is unbiased

for K. Of course we cannot perform this replacement exactly, since K and E[ bKSh] are
unknown, but we can approximate bK�

Sh as follows. Using the fact that

E [fr] =

DX
j=1

P fnj = r g �
DX
j=1

�
Nj

r

�
qr(1� q)Nj�r =

NX
i=r

�
i

r

�
qr(1� q)i�rFi (28)

for 1 � r � n, we have, to �rst order,

E[ bKSh] � n

PN
i=1(1� q)iE [fi]PN

i=1 iq(1� q)i�1E [fi]

= n

PN
i=1(1� q)i

�
(1 + q)i � 1

�
FiPN

i=1 iq
2(1� q2)i�1Fi

:

(29)

Using the �rst-order approximation N1 = N2 = � � � = ND = N together with (24), (27),
and (29), we �nd that

bK�
Sh �

 
q(1 + q)N�1

(1 + q)N � 1

! bKSh:

We thus obtain a modi�ed Shlosser estimator given by

bDSh2 = dn + f1

 
q(1 + q)

~N�1

(1 + q) ~N � 1

!� Pn
i=1(1� q)ifiPn

i=1 iq(1� q)i�1fi

�
;

where ~N is an initial estimate of N based on an initial estimate of D. We set ~N equal to
N= bDuj1 throughout. As with bDSh, the estimator bDSh2 is consistent for D.
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An alternative consistent estimator of D can be obtained by directly using the expres-
sions in (24), (27), and (29) with Fi estimated by

bFi = f1fiPn
i=1 iq(1� q)i�1fi

(30)

for 1 � i � N ; these estimators of F1; F2; : : : ; FN were proposed by Shlosser (1981) in
conjunction with the estimator bDSh. Substituting the resulting estimator of K and E[ bKSh]
into (27) leads to the �nal estimator

bDSh3 = dn + f1

 Pn
i=1 iq

2(1� q2)i�1fiPn
i=1(1� q)i

�
(1 + q)i � 1

�
fi

!� Pn
i=1(1� q)ifiPn

i=1 iq(1� q)i�1fi

�2

:

As with the estimator bDSh, Shlosser's justi�cation of the estimators in (30) rests on the
assumption in (25). Thus one might expect that, like bDSh, the estimator bDSh3 will be
unstable when the sample size is relatively small and N1; N2; : : : ; ND have similar values.
On the other hand, the reduction in bias of bK�

Sh relative to bKSh leads one to expect thatbDSh3 will perform better than bDSh when 
2 is su�ciently large. (One might be tempted
to avoid the assumption in (25) when estimating F1; F2; : : : ; FN by taking a method-of-
moments approach: replace E [fr] with fr in (28) for 1 � r � n and solve the resulting
set of linear equations either exactly or approximately. As pointed out by Shlosser (1981),
however, this system of equations is nearly singular, and hence extremely unstable.)

4. Variance and Variance Estimates

Consider an estimator bD that is a function of the sample only through f = (f1; f2; : : : ;
fM ), where M = max(N1; N2; : : : ; ND). All of the estimators introduced in Section 3 are
of this type. In general, we also allow bD to depend explicitly on the population size N and
write bD = bD(f ; N). Suppose that, for any N > 0 and nonnegative M -dimensional vector
f 6= 0, the function bD is continuously di�erentiable at the point (f ; N) and

bD(cf ; cN) = c bD(f ; N) (31)

for c > 0. Approximating the hypergeometric sample design by a Bernoulli sample design
as in (8), we can obtain the following approximate expression for the asymptotic variance
of bD(f ; N) as D becomes large:

AVar[ bD(f ; N)] �
MX
i=1

A2
iVar [fi] +

X
1�i;i0�M

i6=i0

AiAi0Cov [fi; fi0 ] ; (32)

where Ai is the partial derivative of bD with respect to fi, evaluated at the point (f ; N).
(When computing each Ai, we replace each occurrence of n and dn in the formula for bD by
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PM
i=1 ifi and

PM
i=1 fi before taking derivatives.) The approximation in (32) is valid when

there is not too much variability in the class sizes (see App. C for a precise formulation and
proof of this result). It follows from the proof that, to a good approximation, the variance
of an estimator bD satisfying (31) increases linearly as D increases.

Straightforward calculations show that each of the speci�c estimators bDuj1, bDuj2, bDSh,bDSh2, and bDSh3 is continuously di�erentiable as stated previously and also satis�es (31).
Thus we can use (32) to study the asymptotic variance of these estimators. We focus onbDuj1, bDuj2, bDSh2, and bDSh3 because each of these estimators performs best for at least one
population studied in the simulation experiments described in Section 6; we also considerbDSh, because bDSh is the most useful of the estimators previously proposed in the literature.
Computation of the Ai coe�cients for each estimator is tedious, but straightforward. WhenbD = bDuj2, for example, we obtain

A
(uj2)
1 = A

(uj1)
1 � N(1� q) ln(1� q)

n� (1� q)f1

�
"

̂2 + f1

 
A
(uj1)
1bDuj1

�

̂2 + 1

�� 2

n

�

̂2 + 1�

bDuj1

N

�
� 
̂2

n� (1� q)f1
+

̂2

n

!#
and

A
(uj2)
i = A

(uj1)
i � N(1� q) ln(1� q)

n� (1� q)f1

� f1

 
A
(uj1)
ibDuj1

�

̂2 + 1

��2i

n

�

̂2 + 1�

bDuj1

N

�
+
i(i� 1) bDuj1

n2
� i
̂2

n� (1� q)f1
+
i
̂2

n

!

for 1 < i � n, where 
̂2 = 
̂2( bDuj1),

A
(uj1)
1 = bDuj1

�
1

dn
+

(1� q)

n� (1� q)f1

�
1� f1

n

��
;

and

A
(uj1)
i = bDuj1

�
1

dn
+
i(1� q)(f1=n)

n� (1� q)f1

�
for 1 < i � n.

Figures 1 and 2 compare the variances of the estimators bDuj1, bDuj2, bDSh, bDSh2, andbDSh3 for a number of populations with equal class sizes. For these special populations, bDuj1

and bDuj2 are approximately unbiased, so that the relative variances of these estimators are
appropriate measures of relative performance. It is particularly instructive to compare the
variance of bDuj1 and bDuj2, since bDuj2 is obtained from bDuj1 by adjusting the latter estimator
to compensate for bias induced by the assumption of equal class sizes. This adjustment is
unnecessary for our special populations, and a comparison allows evaluation of the penalty
(i.e., the increase in variance) that is being paid for the adjustment.
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Figure 1: Standard deviation of bDuj1,bDuj2, bDSh, bDSh2, and bDSh3 (D = 15; 000
and N = 10).
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Figure 2: Standard deviation of bDuj1,bDuj2, and bDSh2 (D = 1500 and q = 0:10).

Figure 1 displays the standard deviations of bDuj1, bDuj2, bDSh, bDSh2, and bDSh3 for an
equal-class-size population with N = 15; 000 and D = 1500 (so that N = 10) as the
sampling fraction q varies. Observe that bDuj2 is only slightly less e�cient than bDuj1, so
that the penalty for bias adjustment is small in this case. Performance of the estimatorsbDuj1 and bDSh2 is nearly indistinguishable. The most striking observation is that for this

population, bDSh and bDSh3 are not competitive with the other three estimators. The relative
performance of bDSh and bDSh3 is especially poor for small sampling fractions. On the other
hand, the variance analysis indicates that modi�cation of bDSh as in (27) and (29) indeed
reduces the instability of the original Schlosser estimator in this case. Thus we focus on the
estimators bDuj1, bDuj2, and bDSh2 in the remainder of this section and in the next section.

(We return to the estimator bDSh3 in Section 6, where our simulation experiments indicate
that bDSh3 can exhibit smaller rmse than the other estimators, but only at large sample
sizes and for certain \ill-conditioned" populations in which 
2 is extremely large.)

Figure 2 compares the three estimators bDuj1, bDuj2, and bDSh2 for equal-class-size pop-
ulations with a range of class sizes; for these calculations the number of classes and the
sampling fraction are held constant at D = 1500 and q = 10. This �gure illustrates the
di�culty of precisely estimating D when the class size is small (but greater than 1). Again,
we see that these three estimators perform similarly, with nearly equal variability when N
exceeds about 40.

We checked the accuracy of the variance approximation in some example populations by
comparing the values computed from (32) with results of a simulation experiment. (This
experiment is discussed more completely in Section 6 below.) Simulated sampling with
q = 0:05, 0:10, and 0:20 from the population examined in Figure 1 (N = 15; 000, D = 1500)
yields variance estimates within 10% (on average) of those calculated from (32). Similar
results were found in sampling from an equal-class-size population with N = 15; 000 and
D = 150. The only di�culties we encountered occurred for equal-class-size populations with
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class sizes ofN = 1 andN = 2. For these small class sizes the variance approximation, which
is based on the approximation of the hypergeometric sample design by a Bernoulli sample
design, is not su�ciently accurate. In particular, the approximate variance strongly re
ects
random 
uctuations in the sample size due to the Bernoulli sample design; such 
uctuations
are not present in the actual hypergeometric sample design. Simulation experiments indicate
that for N � 3 the di�erences caused by Bernoulli versus hypergeometric sampling become
negligible. (Of course, if the sample design is in fact Bernoulli, then this problem does not
occur.)

In practice, we estimate the asymptotic variance of an estimator bD by substituting
estimates for fVar [fi] : 1 � i �M g, and fCov [fi; fi0 ] : 1 � i 6= i0 �M g into (32). To
obtain such estimates, we approximate the true population by a population with D classes,
each of size N=D. Under this approximation and the assumption in (8) of a Bernoulli
sample design, the random vector f has a multinomial distribution with parameters D and
p = (p1; p2; : : : ; pn), where

pi =

�
N=D

i

�
qi(1� q)(N=D)�i

for 1 � i � n. It follows that Var [fi] = Dpi(1� pi) and Cov [fi; fi0 ] = �Dpipi0 . Each pi can
be estimated either by

bpi = �N= bD
i

�
qi(1� q)(N=

bD)�i

or simply by fi= bD. It turns out that the latter formula yields better variance estimates,
and so we take

dVar[fi] = fi

�
1� fibD

�
and

dCov[fi; fi0 ] = �fifi0bD
for 1 � i; i0 � n. These formulas coincide with the estimators obtained using the \un-
conditional approach" of Chao and Lee (1992). A computer program that calculates bDuj1,bDuj2, bDSh2 and their estimated standard errors from sample data can be obtained from the
second author.

5. An Example

The following example illustrates how knowledge of the population size N can a�ect
estimates of the number of classes. When the population size N is unknown, Chao and
Lee (1992, Sec. 3) have proposed that the estimator bDCL de�ned in Section 3.3 be used to
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N bDuj1
bDuj2

bDSh2

1000 455 502 455
(47) (60) (51)

10,000 709 788 707
(125) (161) (128)

100,000 752 835 749
(141) (183) (144)

Table 1: Values of bDuj1, bDuj2, and bDSh2 for three hypothetical combined lists. (Standard
errors are in parentheses.)

estimate the number of classes, because the formula for bDCL does not involve the unknown
parameter N . When N is known, a slight modi�cation of the derivation of bDCL leads to
the unsmoothed second-order jackknife estimator bDuj2 (see App. B).

Our example is based on one discussed by Chao and Lee (1992), who borrowed data
�rst described and analyzed by Holst (1981). These data arose from an application in
numismatics in which 204 ancient coins were classi�ed according to die type in order to
estimate the number of di�erent dies used in the minting process. Among the die types on
the reverse sides of the 204 coins were 156 singletons, 19 pairs, 2 triplets, and 1 quadruplet
(f1 = 156, f2 = 19, f3 = 2, f4 = 1, d = 178). Because the total number of coins minted
is unknown in this case, model (1) is inappropriate for analyzing these data. But suppose
that the same data had arisen from an application in which N was known. For example,
suppose that the data were obtained by selecting a simple random sample of 204 names
from a sampling frame that had been constructed by combining 5 lists of 200 names each
(N = 1000), 50 lists of 200 names each (N = 10; 000), or 500 lists of 200 names each
(N = 100; 000). In each case our object is to estimate the number of unique individuals
on the combined list, based on the sample results. We focus on the three estimators bDuj1,bDuj2, and bDSh2. The estimates for the three cases are given in Table 1; the standard errors
displayed in Table 1 are estimated using the procedure outlined in Section 4.

We would expect similar inferences to be made from the same data under the multi-
nomial model and the �nite population model when N is very large. Indeed, the valuebDuj2 = 835 agrees closely with Chao and Lee's estimate bDCL = 844 (se 187) when

N = 100;000. Moreover, when N = 100;000 we �nd that 
̂2( bDuj1) � 0:13, which is the
same estimate of 
2 given by Chao and Lee. As the population size decreases, however,
both our assessment of the magnitude of D and our uncertainty about that magnitude
decrease, because we are observing a larger and larger fraction of both the population and
the classes.

The most extreme divergence between the estimate obtained using bDCL and estimates
obtained using bDuj1, bDuj2, or bDSh2 occurs when the sample consists of all singletons (f1 = n).

In that case, bDCL =1, whereas bDuj1 = bDuj2 = bDSh2 = N . This result indicates that when
the population size N is known, it is better to use an estimator that exploits knowledge
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of N than to sample with replacement and use the estimator bDCL. In some applications,
sampling with replacement is not even an option. For example, the only available sampling
mechanism in at least one current database system is a one-pass reservoir algorithm (as in
Vitter 1985).

The empirical results in Section 6 indicate that, of the three estimators displayed in
Table 1, bDuj2 is the superior estimator when 


2 is small (< 1). Thus for our example, bDuj2

would be the preferred estimator, since 
̂2( bDuj1) � 0:13 in all three cases. Note that bDuj2

consistently has the highest variance of the three estimators in Table 1. The bias of bDuj2

is typically lower than that of bDuj1 or bDSh2 when 
2 is small, however, so that the overall
rmse is lower.

6. Simulation Results

This section describes the results of a simulation study done to compare the performance
of the various estimators described in Section 3. Our comparison is based on the perfor-
mance of the estimators for sampling fractions of 5%, 10%, and 20% in 52 populations.
(Initial experiments indicated that the performance of the various estimators is best viewed
as a function of sampling fraction, rather than absolute sample size. This is in contrast to
estimators of, for example, population averages.)

We consider several sets of populations. The �rst set comprises synthetic populations of
the type considered in the literature. Populations EQ10 and EQ100 have equal class sizes of
10 and 100. In populations NGB/1, NGB/2, and NGB/4, the class sizes follow a negative
binomial distribution. Speci�cally, the fraction f(m) of classes in population NGB/k with
class size equal to m is given by

f(m) �
�
m� 1

k � 1

�
rk(1� r)m�k

for m � k, where r = 0:04. Chao and Lee (1992) considered populations of this type.
The populations in the second set are meant to be representative of data that could be
encountered when a sampling frame for a population census is constructed by combining a
number of lists which may contain overlapping entries. Population GOOD and SUDM were
studied by Goodman (1949) and Sudman (1976). Population FRAME2 mimics a sampling
frame that might arise in an administrative records census of the type described in Section 1.
One approach to such a census is to augment the usual census address list with a small
number of relatively large administrative records �les, such as AFDC or Food Stamps, and
then estimate the number of distinct individuals on the combined list from a sample. We
have constructed FRAME2 so that a given individual can appear at most �ve times, but
most individuals appear exactly once, mimicking the case in which four administrative lists
are used to supplement the census address list. Population FRAME3 is similar to FRAME2,
but for the FRAME3 population it is assumed that the combined list is made up of a number
of small lists (perhaps obtained from neighborhood-level organizations) rather than a few
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Name N D 
2 Skew
EQ10 15000 1500 0.00 0.00
EQ100 15000 150 0.00 0.00
NGB/4 82135 874 0.18 0.50
NGB/2 41197 906 0.37 0.81
NGB/1 20213 930 0.75 1.25

Table 2: Characteristics of synthetic popu-
lations.

Name N D 
2 Skew
GOOD 10000 9595 0.04 5.64

FRAME2 33750 19000 0.31 1.18
FRAME3 111500 36000 0.52 1.92

SUDM 330000 100000 1.87 2.71

Table 3: Characteristics of \merged list"
populations.

Name N D 
2 Skew
Z20A 50000 247 114.38 14.60
Z15 50000 772 166.18 23.44

Z20B 50000 10384 234.81 73.54

Table 4: Characteristics of \ill-conditioned" populations.

large lists. The populations in the third set, denoted by Z20A, Z20B, and Z15, are used
to study the behavior of the estimators when the data are extremely ill-conditioned. The
class sizes in each of these populations follow a generalized Zipf distribution (see Knuth
1973, p. 398). Speci�cally, Nj=N / j��, where � equals 1.5 or 2.0. These populations
have extremely high values of 
2. Descriptive statistics for these three sets of populations
are given in Tables 2, 3, and 4. The column entitled \skew" displays the dimensionless
coe�cient of skewness �, which is de�ned by

� =

PD
j=1(Nj �N)3=D�PD

j=1(Nj �N)2=D
�3=2 :

The �nal set comprises 40 real populations that demonstrate the type of distributions
encountered when estimating the number of distinct values of an attribute in a relational
database. Speci�cally, the populations studied correspond to various relational attributes
from a database of enrollment records for students at the University of Wisconsin and a
database of billing records from a large insurance company. The population size N ranges
from 15,469 to 1,654,700, with D ranging from 3 to 1,547,606 and 
2 ranging from 0 to
81.63 (see App. D for further details). It is notable that values of 
2 encountered in the
literature (Chao and Lee 1992; Goodman 1949; Shlosser 1981; Sudman 1976) tend not to
exceed the value 2, and are typically less than 1, whereas the value of 
2 exceeds 2 for more
than 50% of the real populations.

For each estimator, population, and sampling fraction, we estimated the bias and rmse
by repeatedly drawing a simple random sample from the population, evaluating the esti-
mator, and then computing the error of each estimate. (When evaluating the estimator,
we truncated each estimate below at d and above at N .) The �nal estimate of bias was
obtained by averaging the error over all of the experimental replications, and rmse was
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sample

size 
2 bDuj1
bDsj1

bDuj2
bDsj2

bDSh
bDSh2

bDSh3 
̂2

5% � 0 and < 1 Average 13.48 14.20 11.84 12.27 79.17 13.23 202.16 56.65
Maximum 43.81 45.14 39.56 39.67 428.25 46.59 3299.10 96.72

� 1 and < 50 Average 38.14 39.17 65.34 45.25 54.30 36.67 93.92 46.51

Maximum 70.47 70.48 186.15 186.15 218.02 66.82 1042.73 91.70
� 50 Average 74.11 75.92 388.77 77.78 28.13 71.23 21.45 74.72

Maximum 85.09 88.49 564.57 112.13 47.63 83.71 38.58 85.55

all Average 30.95 31.91 68.61 34.44 62.33 29.86 132.06 52.78
Maximum 85.09 88.49 564.57 186.15 428.25 83.71 3299.10 96.72

10% � 0 and < 1 Average 11.30 12.14 9.05 9.71 33.09 11.19 22.68 49.68
Maximum 39.80 42.32 31.73 31.90 200.79 44.83 131.15 90.68

� 1 and < 50 Average 31.41 32.59 90.96 38.74 34.96 29.16 50.17 38.34

Maximum 61.27 61.28 267.08 186.15 107.16 54.03 357.43 83.12
� 50 Average 63.92 65.88 682.55 115.77 15.50 58.82 11.51 64.43

Maximum 76.47 81.21 1133.61 281.98 28.97 73.14 21.81 76.89

all Average 25.79 26.89 103.38 32.94 32.71 24.18 36.10 44.93
Maximum 76.47 81.21 1133.61 281.98 200.79 73.14 357.43 90.68

20% � 0 and < 1 Average 8.89 9.86 5.77 6.53 12.91 8.30 9.05 40.65
Maximum 33.01 37.28 29.82 27.49 79.16 30.14 79.16 81.03

� 1 and < 50 Average 23.44 24.81 123.00 32.79 18.14 20.88 17.91 28.65

Maximum 46.77 49.73 369.77 186.15 49.20 43.38 74.99 67.42
� 50 Average 50.10 52.19 1093.07 130.30 7.73 42.58 6.32 50.51

Maximum 62.96 69.06 2010.61 381.51 15.12 56.72 10.62 63.37

all Average 19.62 20.88 150.28 29.69 15.23 17.47 13.44 35.18
Maximum 62.96 69.06 2010.61 381.51 79.16 56.72 79.16 81.03

Table 5: Average and maximum rmse (%) for various estimators.

estimated as the square root of the averaged square error. We used 100 replications, which
was su�cient to estimate the rmse with a standard error below 5% in nearly all cases;
typically the standard error was much less.

Summary results from the simulations are displayed in Tables 5 and 6. Table 5 gives the
average and maximum rmse's for each estimator of D over all populations with 0 � 
2 < 1,
with 1 � 
2 < 50, and with 
2 � 50, as well as the average and maximum rmse's for
each estimator over all populations combined. Similarly, Table 6 gives the average and
maximum bias for each estimator. In these tables, the rmse and bias are each expressed as
a percentage of the true number of classes. Tables 5 and 6 also display the rmse and bias
of the estimator 
̂2( bDuj1) used in the second-order jackknife estimators; the rmse and bias
are expressed as a percentage of the true value 
2 and are displayed in the column labelled

̂2.

Comparing Tables 5 and 6 indicates that for each estimator the major component of
the rmse is almost always bias, not variance. Thus, even though the standard error can be
estimated as in Section 4, this estimated standard error usually does not give an accurate
picture of the error in estimation of D. Another consequence of the predominance of bias
is that when 
2 is large, the rmse for the second-order estimator bDuj2 does not decrease
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sample

size 
2 bDuj1
bDsj1

bDuj2
bDsj2

bDSh
bDSh2

bDSh3 
̂2

5% � 0 and < 1 Average -12.71 -13.43 -10.76 -11.38 71.11 -10.98 90.57 -55.75
Maximum -43.77 -45.10 -39.51 -39.62 427.53 -46.59 958.74 -94.97

� 1 and < 50 Average -37.95 -38.99 42.77 -16.83 39.13 -36.35 61.98 -46.19

Maximum -70.32 -70.32 186.15 186.15 218.01 -66.49 663.26 -91.70
� 50 Average -74.10 -75.91 382.88 -22.16 22.92 -71.22 3.17 -74.71

Maximum -85.09 -88.49 556.68 110.28 44.65 -83.71 33.44 -85.54

all Average -30.54 -31.51 47.31 -15.04 50.80 -28.79 69.00 -52.24
Maximum -85.09 -88.49 556.68 186.15 427.53 -83.71 958.74 -94.97

10% � 0 and < 1 Average -10.93 -11.78 -8.38 -9.31 28.12 -9.47 17.66 -48.87
Maximum -39.79 -42.31 -31.47 -31.88 200.49 -44.83 130.80 -90.59

� 1 and < 50 Average -31.16 -32.34 74.62 -10.44 25.41 -28.61 35.20 -37.98

Maximum -61.00 -61.00 261.47 186.15 107.16 -53.88 264.38 -83.12
� 50 Average -63.91 -65.87 677.18 24.90 11.57 -58.78 3.10 -64.41

Maximum -76.47 -81.21 1125.89 280.63 27.09 -73.13 18.47 -76.88

all Average -25.51 -26.62 87.45 -7.26 25.44 -23.20 25.65 -44.41
Maximum -76.47 -81.21 1125.89 280.63 200.49 -73.13 264.38 -90.59

20% � 0 and < 1 Average -8.57 -9.55 -4.99 -6.20 9.99 -6.75 5.73 -39.71
Maximum -33.01 -37.27 -17.83 -22.67 45.86 -28.38 28.17 -81.00

� 1 and < 50 Average -23.12 -24.49 112.39 -3.41 12.09 -20.13 10.02 -28.23

Maximum -46.54 -49.73 362.12 186.15 49.20 -43.38 49.34 -67.36
� 50 Average -50.09 -52.17 1087.89 60.47 5.03 -42.53 1.72 -50.49

Maximum -62.96 -69.06 2003.12 381.51 13.90 -56.71 8.23 -63.36

all Average -19.32 -20.59 140.02 0.38 10.70 -16.45 7.65 -34.58
Maximum -62.96 -69.06 2003.12 381.51 49.20 -56.71 49.34 -81.00

Table 6: Average and maximum bias (%) for various estimators.

monotonically as the sampling fraction increases. (In all other cases the rmse decreases
monotonically.)

Comparing bDuj1 with bDsj1 and then comparing bDuj2 with bDsj2, we see that smoothing a
�rst-order jackknife estimator never results in a better �rst-order estimator. On the other
hand, smoothing a second-order jackknife estimator can result in signi�cant performance
improvement when 
2 is large.

Similarly, using higher-order Taylor expansions leads to mixed results. Second-order
estimators perform better than �rst-order estimators when 
2 is relatively small, but not
when 
2 is large. The di�culty is partially that the estimator 
̂2( bDuj1) tends to underes-
timate 
2 when 
2 is large, leading to underestimates of the number of classes. Moreover,
the Taylor approximations underlying bDuj1, bDsj1, bDuj2, and bDsj2 are derived under the as-
sumption of not too much variability between class sizes; this assumption is violated when

2 is large. There apparently is no systematic relation between the coe�cient of skewness
for the class sizes and the performance of second-order jackknife estimators.

As predicted in Sections 3.4 and 4, the estimators bDSh and bDSh3 behave poorly when

2 is relatively small, and bDSh3 performs better than bDSh when 
2 is large. For small to
medium values of 
2, the modi�ed estimator bDSh2 has a smaller rmse than bDSh or bDSh3, and
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sample

size 
2 bDuj2
bDuj2a

bDSh2
bDSh3

bDhybrid

5% � 0 and < 1 Average 11.84 19.46 13.23 202.16 11.84
Maximum 39.56 192.64 46.59 3299.10 39.56

� 1 and < 50 Average 65.34 27.47 36.67 93.92 27.47

Maximum 186.15 54.51 66.82 1042.73 54.51
� 50 Average 388.77 23.00 71.23 21.45 26.17

Maximum 564.57 36.60 83.71 38.58 39.20

all Average 68.61 23.89 29.86 132.06 21.06
Maximum 564.57 192.64 83.71 3299.10 54.51

10% � 0 and < 1 Average 9.05 13.26 11.19 22.68 9.05
Maximum 31.73 120.14 44.83 131.15 31.73

� 1 and < 50 Average 90.96 19.22 29.16 50.17 19.55

Maximum 267.08 48.12 54.03 357.43 48.12
� 50 Average 682.55 17.82 58.82 11.51 11.51

Maximum 1133.61 27.30 73.14 21.81 21.81

all Average 103.38 16.71 24.18 36.10 14.69
Maximum 1133.61 120.14 73.14 357.43 48.12

20% � 0 and < 1 Average 5.77 8.12 8.30 9.05 5.77
Maximum 29.82 79.16 30.14 79.16 29.82

� 1 and < 50 Average 123.00 17.44 20.88 17.91 17.69

Maximum 369.77 76.57 43.38 74.99 76.57
� 50 Average 1093.07 37.30 42.58 6.32 6.32

Maximum 2010.61 83.69 56.72 10.62 10.62

all Average 150.28 15.20 17.47 13.44 12.00
Maximum 2010.61 83.69 56.72 79.16 76.57

Table 7: Average and maximum rmse (%) of bDuj2, bDuj2a, bDSh2, bDSh3, and bDhybrid.

its performance is comparable to the generalized jackknife estimators. For extremely large
values of 
2 and also for large sample sizes, the estimator bDSh3 has the best performance
of the three Shlosser-type estimators. (For a 20% sampling fraction, bDSh3 in fact has the
lowest average rmse of all the estimators considered.)

As indicated earlier, smoothing can improve the performance of the second-order jack-
knife estimator bDuj2. An alternative ad hoc technique for improving performance is to

\stabilize" bDuj2 using a method suggested by Chao, Ma, and Yang (1993). Fix c � 1 and
remove any class whose frequency in the sample exceeds c; that is, remove from the sample
all members of classes fCj : j 2 B g, where B = f 1 � j � D : nj > c g. Then compute

the estimator bDuj2 from the reduced sample and subsequently increment it by jBj to pro-

duce the �nal estimate, denoted by bDuj2a. (Here jBj denotes the number of elements in

the set B.) When computing bDuj2 from the reduced sample, take the population size as

N �Pj2B
bNj, where each bNj is a method-of-moments estimator of Nj as in Section 3.2.3.

If n�Pj2B nj = 0, then simply compute bDuj2 from the full sample. The idea behind this

procedure is as follows. When 
2 is large, the population consists of a few large classes
and many smaller classes. By in e�ect removing the largest classes from the population,
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we obtain a reduced population for which 
2 is smaller, so that D is easier to estimate;
the contribution to D from the jBj removed classes is then added back at the �nal step
of the estimation process. (We also experimented with another stabilization technique in
which the k most frequent classes are removed for some �xed k, but this technique is not
as e�ective.) Preliminary experiments indicated that c approximately 50 yields the best
performance. For larger values of c, not enough of the frequent classes are removed; for
smaller c, the size of the reduced sample is too small, and the resulting inaccuracy of bDuj2

when computed from this sample o�sets the bene�ts of the reduction in 
2. We therefore
take c = 50 in our experiments. As can be seen from Table 7, the rmse for bDuj2a is indeed

much lower than that for bDuj2 when 

2 exceeds 1. Moreover, by comparing the rmse of bDsj2

and bDuj2a in Tables 5 and 7, respectively, it can be seen that stabilization is more e�ective

than smoothing. Observe, however, that the performance of bDuj2a is worse than that ofbDuj2 when 

2 is small. Interestingly, experiments indicate that none of the other estimators

that we consider appears to bene�t from stabilization, and we apply this technique only
to bDuj2. Overall, the most e�ective estimators appear to be bDuj2a, which has the smallest

average rmse over the various populations, and bDSh2, which has the smallest worst-case
rmse.

Our next observation is based on a comparison of the bias and rmse of bDuj1 and bDSh2

for all of the populations studied. The behavior of the two estimators is quite similar: the
correlation between the bias of the estimators is 0.990 and the correlation between the rmse
is 0.993. The rmse and bias of bDuj1 are usually slightly greater than the rmse and bias,

respectively, of bDSh2. On the other hand, using bDSh2 requires computation of f1; f2; : : : ; fn,
whereas using bDuj1 requires computation only of f1. Thus, if computational resources are

limited, then it may be desirable to use bDuj1 as a surrogate for bDSh2; the quantity f1 can be
computed e�ciently using \Bloom �lter" techniques as described by Ramakrishna (1989).

The experimental results show that the relative performance of the estimators is strongly
in
uenced by the value of 
2. As can be seen from Table 7, the estimator bDuj2 has the

smallest average rmse when 0 � 
2 < 1, the estimator bDuj2a has the smallest average

rmse when 1 � 
2 < 50, and the estimator bDSh3 has the smallest average rmse when

2 � 50. These results indicate that it may be desirable to allow an estimator to depend
explicitly on the (estimated) value of 
2. To illustrate this idea, we consider a simple ad
hoc branching estimator, denoted by bDhybrid. The idea is to estimate 
2 by 
̂2( bDuj1), �x
parameters 0 < �1 < �2, and set

bDhybrid =

8><>:
bDuj2 if 0 � 
̂2( bDuj1) < �1;bDuj2a if �1 � 
̂2( bDuj1) < �2;bDSh3 if 
̂2( bDuj1) � �2:

(33)

Table 7 displays the estimated rmse for bDhybrid when �1 = 0:9 and �2 = 30. As can

be seen, the rmse for the combined estimator bDhybrid almost never exceeds that for bDuj2,bDuj2a, or bDSh3 separately.
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7. Conclusions

Both new and previous nonparametric estimators of the number of classes in a �nite
population can be viewed as generalized jackknife estimators. This viewpoint has suggested
ways to improve Shlosser's original estimator and has shed new light on certain Horvitz-
Thompson estimators as well as estimators based on notions of \sample coverage." We
have used delta-method arguments to develop estimators of the standard error of generalized
jackknife estimators. As indicated by the example in Section 5, knowledge of the population
size can lead to more precise estimation of the number of classes.

Of the estimators considered, the best appears to be the branching estimator bDhybrid

de�ned by (33), in which a modi�ed Shlosser estimator is used when the coe�cient of
variation of the class sizes is estimated to be extremely large and unsmoothed second-order
jackknife estimators are used otherwise. The systematic development of such branching
estimators is a topic for future research. If a nonbranching estimator is desired, then we
recommend the stabilized unsmoothed second-order jackknife estimator bDuj2a, followed by

the modi�ed Shlosser estimator bDSh2. If computing resources are scarce, then bDuj1 is a
reasonable estimator.

The various estimators of D discussed in this article embody di�erent approaches for
dealing with the di�culties caused by variation in the class sizes N1; N2; : : : ; ND. Such
variation is re
ected by large values of 
2. First-order estimates simply approximate each
Nj by N . It is well-known in the literature that such an approach tends to yield down-
wardly biased estimates (see Bunge and Fitzpatrick 1993). More sophisticated approaches
considered here include

� Taylor corrections to the �rst-order approximation, as in the estimators bDuj2 and bDsj2;

� the stabilization technique of Section 6, in which the population is in e�ect modi�ed
so that the variation in class sizes is reduced;

� the Horvitz-Thompson approach, in which the �rst-order assumption is avoided by
estimating explicitly each Nj such that nj > 0; and

� Shlosser's approach, which replaces the �rst-order assumption with the assumption in
(25) and in its purest form results in the estimators bDSh and bDSh3.

The poor performance of the Horvitz-Thompson estimators indicates that approaches based
on direct estimation of the Nj's are unlikely to be successful. The second-order Taylor
correction is e�ective mainly for small values of 
2, and both the stabilization technique
and Shlosser's approach are e�ective mainly for large values of 
2. Thus, until a better
solution is found, the best estimators will result from a judicious combination of the various
approaches considered here.
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A. Estimators Based On Hypergeometric Probabilities

As in Section 3, denote by nj the number of elements in the sample that belong to
class j for 1 � j � D. Under the hypergeometric model (1), we have

P fnj = k g

=

�
Nj

k

��
N �Nj

n� k

� � �
N

n

�
=

�
Nj

k

��
n(n� 1) � � � (n� k + 1)

N(N � 1) � � � (N � k + 1)

��
(N � n)(N � n� 1) � � � (N � n�Nj + k + 1)

(N � k)(N � k � 1) � � � (N �Nj + 1)

�
=

�
Nj

k

� 
q(q � 1

N ) � � � (q � k�1
N )

1(1 � 1
N ) � � � (1� k�1

N )

! 
(1� q)(1� q � 1

N ) � � � (1� q � Nj�k�1
N )

(1� k
N )(1 � k+1

N ) � � � (1� Nj�1
N )

!
for 1 � j � D and 0 � k � min(n;Nj), where q = n=N . When N is large relative to Nj , we
have the approximate equality given in (8). That is, P fnj = k g is approximately equal to
the probability that nj = k under the Bernoulli sampling model.

Estimators analogous to those in Section 3 can be derived using the exact hypergeometric
probabilities. The starting point in such a derivation is the pair of identities

P fnj = 0 g = hn(Nj)

and

P fnj = 1 g =
�

nNj

N � n+ 1

�
hn�1(Nj);

where

hn(x) =

(
�(N�x+1)�(N�n+1)
�(N�n�x+1) �(N+1) if x � N � n;

0 if x > N � n

for x � 0. (By an elementary property of the gamma function,

hn(Nj) =

�
N �Nj

n

� � �
N

n

�
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for 1 � j � D.) It follows that the optimal value of the parameter K in (4) is given by

K =

PD
j=1 hn(Nj)PD

j=1

�
Nj

N�n+1

�
hn�1(Nj)

:

First-order and second-order jackknife estimators can now be derived using arguments par-
allel to those in Section 3.2. The second-order Taylor approximations use the identity

h0n(x) = �hn(x)gn(x)

for x > 0 and n � 1, where

gn(x) =

nX
k=1

1

N � x� n+ k
:

The estimators analogous to those in Section 3.2 are

bDuj1 =

�
dn � f1

n

��
1� (N � n+ 1)f1

nN

��1
;

bDuj2 =

�
1� (N � ~N � n+ 1)f1

nN

��1 
dn +

(N � ~N � n+ 1)gn�1( ~N)
̂2( bDuj1)f1
n

!
;

and bDsj2 = (1� hn( ~N ))�1
�
dn +N
̂2( bDuj1)gn�1( ~N)hn( ~N)

�
;

where ~N = N= bDuj1 and


̂2(D) = max
�
0;

(N � 1)D

Nn(n� 1)

nX
i=1

i(i� 1)fi +
D

N
� 1
�
:

Moreover, the smoothed �rst-order jackknife estimator bDsj1 is de�ned as the value of bD
that solves the equation

bD�1� hn(N= bD)
�
= dn:

Finally, Horvitz-Thompson estimators can be derived in a manner similar to that in Sec-
tion 3.2.3. For each j such that nj > 0, de�ne the method-of-moments estimator bNj of Nj

as the value of bN that solves the equation

nj =
q bN

1� hn( bN)
:
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Then de�ne the estimator of b�(g) of �(g) =PD
j=1 g(Nj) as

b�(g) = X
fj:nj>0g

g( bNj)

1� hn( bNj)
:

We compared the estimators based on the Bernoulli approximation (8) against the es-
timators based on the exact hypergeometric probabilities, using the populations described
in Section 6. The error induced by the approximation (8) turned out to be less than 1% in
all cases.

The derivation of bDuj2 and bDsj2 using the exact hypergeometric probabilities assumes
that Nj � N � n for 1 � j � D. Without this assumption, Taylor approximations of
hn(Nj) fail because hn is not continuous, and the subsequent derivation for each estimator

is inappropriate. We conclude by providing a technique for modifying bDuj2 and bDsj2 to deal
with this problem. For concreteness, we focus on the unsmoothed second-order jackknife
estimator bDuj2. Denote by J the set of indices of the \big" classes: J = f j : Nj > N � n g.
(Observe that if n < N=2, then J can contain at most one element.) If j 2 J , then with
probability 1 class j is represented in the sample. We can decompose D according to

D = jJ j+ j f 1; 2; : : : ;D g � J j: (34)

The �rst term on the right side of (34) is the number of big classes, and the second term
represents the number of classes in the reduced population that is formed by removing the
big classes. We can estimate jJ j by the number of elements in the set bJ = f j : bNj > N�n g,
where bNj is a method-of-moments estimator of Nj de�ned as the numerical solution of the
equation E [nj j nj > 0] = nj (cf. Sec. 3.2.3). Since we assume a hypergeometric sampling

model, bNj is de�ned more precisely as the solution of the equationbNj(n=N)

1� hn( bNj)
= nj :

To estimate the remaining term in (34), apply the unsmoothed second-order jackknife
estimator to the reduced population obtained by removing the classes in bJ . Set N� =
N �P

j2 bJ
bNj, n

� = n�P
j2 bJ

nj, d
�
n = dn � j bJ j, f�1 = jf j : nj = 1 and j 62 bJ gj, and

bD�
uj1 =

�
d�n �

f�1
n�

��
1� (N� � n� + 1)f�1

n�N�

��1
:

(Observe that bNj = 1, and hence j 62 bJ , whenever nj = 1, so that f�1 = f1.) The modi�ed

version of bDuj2 is then given by

bD�
uj2 = j bJ j+�1� (N� � ~N� � n� + 1)f�1

n�N�

��1
�
 
d�n +

(N� � ~N� � n� + 1)gn��1( ~N
�)
̂2( bD�

uj1)f
�
1

n�

!
;
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where ~N� = N�= bD�
uj1. If nj = n for some j, then bNj = N and bD�

uj2 = 1. If bNj > N� � n�

for some j 62 bJ , then the foregoing process can be repeated. Similar modi�cations can be
made to the estimators bDsj1 and bDsj2.

B. Derivation of bDuj1 and bDuj2 Based on Sample Coverage

For a �nite population of size N , the sample coverage is de�ned as

C =

DX
j=1

(Nj=N)I[nj > 0]:

Using the approximation in (8), we have to �rst order

E [C] =
DX
j=1

Nj

N
P fnj > 0 g �

DX
j=1

Nj

N

�
1� (1� q)Nj

� � 1� (1� q)N : (35)

Similarly, E [dn] � D
�
1� (1� q)N

�
, so that D � E [dn] =E [C]. Observe that by (35) and

(13),

E [C] � 1� (1� q)E [f1]

n
:

The foregoing relations suggest the method-of-moments estimator bD = dn= bC, where
bC = 1� (1� q)f1

n
:

This estimator is identical to bDuj1.
To derive a second-order estimator, use a Taylor approximation as in Section 3.2.2 to

obtain

E [C] �
DX
j=1

Nj

N

�
1� (1� q)Nj

�
� 1� 1

N

DX
j=1

Nj

�
(1� q)N + (1� q)N ln(1� q)(Nj �N)

�
= 1� (1� q)N � (1� q)N ln(1� q)N
2;

where 
2 is the squared coe�cient of variation of N1; N2; : : : ; ND. It follows that

E [dn]

E [C]
�

D
�
1� (1� q)N

�
1� (1� q)N � (1� q)N ln(1� q)N
2

� D

 
1 +

(1� q)N ln(1� q)N
2

1� (1� q)N

!
;
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and hence

D � E [dn]

E [C]
� (1� q)N ln(1� q)N
2

1� (1� q)N
� 1

E [C]

�
E [dn]� E [f1] (1� q) ln(1� q)N
2

n

�
(36)

where we have used the relations (35) and (13). De�ne 
̂2 as in (16). Estimating E [dn] by
dn, E [f1] by f1, 


2 by 
̂2( bDuj1), and E [C] by bC in (36), we obtain the formula for bDuj2.

C. Asymptotic Variance

In this appendix we study the asymptotic variance of an estimator bD as D becomes
large. Consider an in�nite sequence C1; C2; : : : of classes with corresponding class sizes
N1; N2; : : : and construct a sequence of increasing populations in which the Dth population
comprises classes C1; C2; : : : ; CD. As in (8), approximate the hypergeometric sample design
by a Bernoulli sample design. Although the population size N depends on D, as does each
sample statistic fi, we suppress this dependence in our notation. Suppose that there exists
a �nite, positive integer M and a positive real number � such that

Nj �M (37)

for j � 1 and

lim
D!1

p
D

�
N

D
� �

�
= lim

D!1

p
D

 
1

D

DX
i=1

(Nj � �)

!
= 0: (38)

Also suppose that there exists a nonnegative vector � = (�1; �2; : : : ; �M ) 6= 0 and a non-
negative symmetric matrix � = k�i;i0k 6= 0 such that

lim
D!1

p
D

�
E [fi]

D
� �i

�
= lim

D!1

p
D

0@ 1

D

DX
j=1

(�j;i � �i)

1A = 0; (39)

lim
D!1

Var [fi]

D
= lim

D!1

1

D

DX
j=1

�j;i(1� �j;i) = �i;i; (40)

and

lim
D!1

Cov [fi; fi0 ]

D
= lim

D!1
� 1

D

DX
j=1

�j;i�j;i0 = �i;i0 (41)

for 1 � i; i0 �M , where

�j;i =

�
Nj

i

�
qi(1� q)Nj�i:
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The conditions in (37){(41) are satis�ed, for example, when the class-size sequenceN1; N2; : : :
is of the form I1; I2; : : : ; Ir; I1; I2; : : : ; Ir; : : : , where I1; I2; : : : ; Ir are �xed nonnegative in-
tegers; in e�ect, this sequence of populations is obtained from an initial population by
uniformly scaling up the initial Fi's.

As in Section 4, suppose that the estimator bD is a function of the sample only through
f = (f1; f2; : : : ; fM ) and satis�es the condition in (31). Also suppose that the di�erentia-
bility assumption in Section 4 holds, so that bD is continuously di�erentiable at the point
(�; �).

Write fi =
PD

j=1 I[nj = i] for 1 � i � M and observe that, under the foregoing
assumptions, each fi is the sum of D independent (but not identically distributed) Bernoulli
random variables. An application of Theorem 5.1.2 in Chung (1974) followed by (39) shows
that

lim
D!1

(f ; N ) = (�; �) (42)

with probability 1, where f = f=D and N = N=D. Similarly, since (39){(41) hold by
assumption, an application of Theorem B in Ser
ing (1980, Sec. 1.9.2) and then Slutsky's
Theorem (see Ser
ing 1980, Sec. 1.5.4) shows that

p
D(f��)) N(0;�) as D !1, where

\)" denotes convergence in distribution and N denotes a multivariate normal random
variable. It then follows from (38) and Theorem 4.4 in Billingsley (1986) that

p
D
�
(f ; N )� (�; �)

�) �
N(0;�); 0

�
:

Since bD is assumed di�erentiable at (�; �), an application of the Delta Method (see Bishop,
Fienberg, and Holland 1975, Sec. 14.6) shows that

p
D
� bD(f ; N)� bD(�; �)

�) N(0;Bt�B) (43)

as D ! 1, where B = r1
bD(�; �), r1

bD denotes the gradient of bD(u; k) with respect to
u, and N(0;Bt�B) is a univariate normal random variable. Using (31) we can rewrite the
foregoing limit as

1p
D

� bD(f ; N) � bD(D�;D�)
�) N(0;Bt�B);

so that the asymptotic variance of bD(f ; N) is equal to (Bt�B)D.
To approximate this asymptotic variance, set A = r1

bD(f ; N) and let C = C(f) be
the covariance matrix of the random vector f . It follows from (31) that r1

bD(cu; ck) =
r1
bD(u; k) for any c; k > 0 and nonnegative M -dimensional vector u. Thus,

lim
D!1

A = lim
D!1

r1
bD(f ; N) = lim

D!1
r1
bD(f ; N ) = r1

bD(�; �) = B (44)
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Name N D 
2 Skew Name N D 
2 Skew
DB01 15469 15469 0.00 0.00 DB21 15469 131 3.76 3.79
DB02 1288928 1288928 0.00 0.00 DB22 624473 168 3.90 3.06
DB03 624473 624473 0.00 0.00 DB23 1547606 21 6.30 3.26
DB04 597382 591564 0.01 17.61 DB24 1547606 49 6.55 2.70
DB05 113600 110074 0.04 6.87 DB25 1463974 535328 7.60 639.24
DB06 621498 591564 0.05 4.70 DB26 1547606 909 7.99 7.70
DB07 1341544 1288927 0.05 9.95 DB27 1463974 10 8.12 2.66
DB08 1547606 51168 0.23 0.24 DB28 931174 73 12.96 6.43
DB09 1547606 3 0.38 -0.67 DB29 597382 17 14.27 3.73
DB10 147811 110076 0.47 7.41 DB30 633756 221480 15.68 454.61
DB11 113600 3 0.70 0.08 DB31 633756 213 16.16 7.36
DB12 173805 109688 0.93 4.84 DB32 173805 72 16.98 7.14
DB13 1463974 624472 0.94 4.77 DB33 931174 398 19.70 7.89
DB14 1654700 624473 1.13 4.38 DB34 113600 6155 24.17 54.66
DB15 633756 202462 1.19 3.53 DB35 1654700 235 30.85 10.35
DB16 597382 437654 1.53 114.62 DB36 173805 61 31.71 7.04
DB17 931174 110076 1.63 4.51 DB37 1341544 37 33.03 5.82
DB18 931174 29 3.22 4.29 DB38 147811 62 34.68 7.22
DB19 1547606 33 3.33 1.66 DB39 1463974 233 37.75 11.06
DB20 1547606 194 3.35 2.97 DB40 624473 14047 81.63 69.00

Table 8: Characteristics of \database" populations

with probability 1, where the third equality follows by (42) and the assumed continuity of
r1
bD. Using (40), (41), and (44), we �nd that

lim
D!1

AtCA

Bt(D�)B
= 1

with probability 1, and the asymptotic variance of bD can be approximated by AtCA.

D. Detailed Experimental Results

This section contains further details about the experiments described in Section 6. Ta-
ble 8 displays characteristics of the \database" populations used in the experiments. The
printouts on the following pages contain simulation results for all of the estimators and
for each experimental population. In the printouts, \Psize" denotes the population size,
\Nclass" denotes the number of classes in the population, and \gm2hat" denotes the esti-
mator 
̂2( bDuj1) used to estimate 
2 in the second-order jackknife estimators.
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