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1 Introduction 
 
The vast amount of data in warehouses and on the web poses a major challenge for 
users who want to run BI or OLAP queries, execute advanced analytical, mining, and 
statistical algorithms, or interactively explore their data. Most of these tasks simply do 
not scale to the hundreds of terabytes of data often found in modern repositories. At the 
same time, users are demanding that decision support systems be increasingly fast, 
flexible, and responsive. This pressure by users arises both from the ever-increasing 
pace of e-business and from the development of applications that support real-time 
interaction with data, such as spreadsheets and OLAP tools. Although increases in CPU 
and disk speeds are helpful in dealing with massive data, hardware improvements alone 
do not suffice. Indeed, there is evidence that computer systems are getting slower in that 
the volume of online data is growing at a rate faster than Moore's law. 
 
To help users address these increasingly difficult scalability problems, DB2 UDB will 
support random sampling in SQL queries, starting with Fixpack 2 of V8.1. Sampling 
techniques permit the computation of approximate query results — which often suffice in 
practice — in a fraction of the time required to compute an exact answer. For example, 
Figure 1 shows the result of executing the simple SQL aggregation query 
 

SELECT SUM(sales) FROM transactions GROUP BY year 
 
on the entire transactions table and on a 1% sample of the table. As can be seen, 
the results for the sampled table are almost indistinguishable from those for the entire 
table, while the required processing time is reduced by over two orders of magnitude. 
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Figure 1: Effect of sampling on an aggregation  query 

 
Figure 2 shows how sampling can be combined with more sophisticated analyses. 
Specifically, we use the DB2 linear regression functions to fit a line to a set of data points 
by executing the query 
 

SELECT REGR_SLOPE(t.y,t.x), REGR_INTERCEPT(t.y,t.x) FROM t 
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on a million row table and on an 0.01% sample from the table. Again, the results are 
almost indistinguishable, and the query against the sampled table executed orders of 
magnitude faster than the query against the original table. In general, sampling 
techniques are ideally suited to discovering general trends and patterns in data. 
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Figure 2: Effect of sampling on regression query 

 
Perhaps the most common application of sampling is for aggregation queries, that is, 
queries having column functions such as AVG, SUM, and COUNT in the SELECT list. A 
sample can also be used for auditing purposes, interactive data exploration, or as input 
to a mining or analysis application. In these latter settings, a sample can be viewed as a 
synopsis or compressed version of a set of data. 
 
In the following sections, we describe how sampling will work in DB2 UDB and show 
how the power of sampling can be greatly enhanced by combining DB2’s basic sampling 
functionality with the expressive power of SQL. 
 

2 Sampling Syntax and Semantics 
 

2.1 The New SQL Sampling Clause 
 
Any stored table appearing in the FROM clause of a SELECT query can have an 
appended sampling clause. The basic syntax of a sampling clause is as follows 
(illustrated here for a single table): 
 
SELECT select_list 
FROM table_name TABLESAMPLE sampling_method (P) [ REPEATABLE (S) ] 
 
Here TABLESAMPLE is a new SQL keyword that tells DB2 to process only a sample of 
rows from table_name rather than all of the rows, sampling_method specifies the 
method used to sample the rows, and P specifies the target percentage of rows to 
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retrieve (between 0 and 100). The optional REPEATABLE clause, discussed below, is 
useful for debugging sampling queries. DB2’s syntax is consistent with the ISO SQL-
200n Change Proposal that has nominally been approved by ISO's Database 
Languages Working Group. 
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Figure 3: Minimum fraction of pages retrieved for BERNOULLI sampling as a function of 
fraction of rows sampled 

 
Although the proposed ISO syntax permits a sampling clause to be associated with any 
table reference, DB2 will initially restrict sampling to stored tables. Thus a materialized 
query table (MQT/AST) or global temporary table can be sampled, but sampling will not 
be allowed on logical views, nicknames (in federated databases), table expressions, 
table functions, and so forth. 
 
DB2 supports the two sampling methods currently specified in the ISO proposal: 
BERNOULLI and SYSTEM. BERNOULLI sampling (with sampling percentage P) “flips a 
weighted coin” for each row individually, including that row in the sample with probability 
P/100 and excluding it with probability 1- P/100, independently of the other rows. For this 
reason the BERNOULLI sampling method is sometimes called row-level Bernoulli 
sampling. Although on average the sample contains P percent of the rows in the table, 
the actual sample size is random, and hence may differ on subsequent executions of the 
query.  
 
When there is no index available, BERNOULLI sampling retrieves each row in the table, 
so that there is no I/O savings and sampling performance can be poor. When there is an 
index on one or more of the columns on the table, then DB2 performs the Bernoulli “coin 
flips” on the RIDs in the index leaf pages, thereby retrieving only those pages that 
contain at least one sampled row. As shown in Figure 3, however, even under the most 
efficient implementation of BERNOULLI sampling, a large fraction of the pages must be 
retrieved unless the sampling fraction is extremely low. 
 
SYSTEM sampling permits the query optimizer to determine the most efficient manner in 
which to perform the sampling.  In most cases, SYSTEM sampling applied to a table 
means that each page of the table is included in the sample with probability P/100 and 
excluded with probability 1 - P/100.  For each page that is included, all rows on that page 
qualify for the sample. This sampling method is called page-level Bernoulli sampling. 
SYSTEM sampling generally executes much faster than BERNOULLI sampling, since 
many fewer data pages need to be retrieved. SYSTEM sampling can, however, yield 
less accurate estimates for aggregate functions, e.g., SUM(SALES), especially if there 
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are many rows on each page or if the rows of the table are clustered on any of the 
columns referenced in the query. The optimizer may, in certain circumstances, decide 
that it is more efficient to perform SYSTEM sampling as if it were BERNOULLI sampling, 
for example when a predicate can be applied by an index and is much more selective 
than the sampling rate P.  
 
In general, BERNOULLI sampling is most appropriate when materializing a sample of 
rows that is to be used for auditing purposes or as an input to a sequence of 
sophisticated mining or analysis procedures. In this setting, the higher cost of producing 
the sample can often be amortized over the multiple analyses. BERNOULLI sampling is 
also appropriate when the column values are clustered on pages and it is important to 
obtain a sample that is as representative of the set of rows in the table as possible. 
SYSTEM sampling is most appropriate when the goal is to produce quick approximate 
answers. 
 
The optional REPEATABLE clause allows the results of a sample to be reproducible 
over repeated executions of the query. For a fixed value of the argument S, the same set 
of rows is sampled from the table each time the query is run. Thus S performs the same 
role as the seed in a random number generator. The REPEATABLE clause is very 
useful for purposes of debugging. Of course, repeatability over subsequent query 
executions is only guaranteed if the data is not updated, reorganized, repartitioned, etc. 
between executions. To guarantee that the same sample from a table is used across 
multiple queries, the use of a global temporary table is recommended.  Alternatively, the 
multiple queries could be combined into a single query having multiple references to the 
sample, which is defined using a WITH clause. 
 
Semantically, sampling of a table occurs before any other query processing, such as 
applying predicates or performing joins. One can envision the original tables referenced 
in a query being initially replaced by temporary “reduced” tables containing sampled 
rows, and then normal query processing commencing on the reduced tables. (For 
performance reasons, actual processing may not occur in exactly this manner.) It follows, 
for example, that repeated accesses of a sampled table within the same query, such as 
in a nested-loop join or a correlated subquery, will see the same sample of that table 
within a single execution of that query.   
 

2.2 Some Illustrative Examples 
 
The following examples illustrate the syntax and semantics of sampling.  
 
Suppose we wish to estimate the sum of sales over a set of transactions using a 2% 
SYSTEM sample. Then we can use the following query: 
 

SELECT SUM(sales) / 0.02  
FROM transactions TABLESAMPLE SYSTEM(2); 

 
Because we have computed the sum of sales over only about 2% of the rows in the 
table, we need to scale up our answer by a factor of 50 (i.e., 1/0.02) to estimate the sum 
over the entire table. (Such a scaleup would not have been needed had we used 
AVERAGE instead of SUM.) If we modifiy the query to look as follows: 



5 

 
SELECT SUM(sales) / 0.02  
FROM transactions TABLESAMPLE SYSTEM(2) REPEATABLE(3); 

 
then we will take the exact same sample from transactions every time that we 
execute the query, and hence compute the same estimate every time (assuming that 
transactions is not modified between query executions). If we change the argument 
of REPEATABLE from 3 to 17, then we will get the same estimate every time we run the 
modified query, but this latter estimate will differ from the estimate that we obtain using a 
REPEATABLE argument equal to 3. 
 
Here is a slightly more complicated example, in which we estimate the sum of sales of 
widgets for each city:  
 

SELECT SUM SALES / 0.02 
FROM transactions AS t TABLESAMPLE BERNOULLI(2) 
WHERE t.product = `widget` 
GROUP BY t.city; 

 
Note that the operations of sampling and application of predicates (including predicates 
implicit in a GROUP BY query) are interchangeable. 
 
We can also compute the join of two samples: 
 

SELECT s.a, t.b 
FROM s TABLESAMPLE SYSTEM(1), t TABLESAMPLE SYSTEM(1) 
WHERE s.key = t.fkey; 

 
In general, the join of samples has very different statistical properties from the sample of 
a join, e.g., as computed by the following query: 
 

CREATE USER TEMPORARY TABLESPACE; 
DECLARE GLOBAL TEMPORARY TABLE r(a REAL, b REAL); 
INSERT INTO SESSION.r 
  (SELECT s.a, t.b FROM s,t WHERE s.key = t.fkey); 
SELECT a, b FROM SESSION.r TABLESAMPLE SYSTEM(0.01); 

 
(We use a global temporary table for this query because such tables are inexpensive to 
create and modify: no entries are created in the system catalog and the table persists 
only for the duration of the database connection.) 
 
Sampling can be used to obtain quick estimates of simple aggregates that are computed 
over joins, provided that the appropriate scaleup factor is used; e.g., a SUM must be 
scaled up by a factor of 1 / (product of sampling rates). For example, suppose we want 
to quickly estimate the answer to the following query:  
 
 

SELECT SUM(s.a * t.b) 
FROM s, t 
WHERE s.c > s.d; 
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To this end, we can execute the following sampling query: 
 

SELECT SUM(s.a * t.b) / (0.05 * 0.01) 
FROM s TABLESAMPLE SYSTEM(5), t TABLESAMPLE SYSTEM(1) 
WHERE s.c > s.d; 

 
The estimate computed by this query is unbiased for the true value in that if we execute 
the sample query over and over, then we obtain the correct answer on average.  
 
In the following example, we want to select each employee whose salary exceeds the 
estimated average salary for his department: 
 
 

SELECT name, salary FROM emp e 
WHERE salary > (SELECT AVG(salary) 
                FROM emp e1 TABLESAMPLE BERNOULLI(1.0) 
                WHERE e1.deptno = e.deptno 
               ); 

 
The semantics of DB2 sampling imply that the estimated average salary is fixed for each 
department within a single query execution,  because e1 is sampled only once. Of 
course, the estimated average salary for each department varies over different 
executions of the query, because the REPEATABLE clause is not present. 
 

3 Combining Sampling and SQL 
 
The scope of DB2’s basic sampling tools can be greatly enhanced using the expressive 
power of SQL. In this section we provide some examples that show tricks for 
implementing non-native sampling methods, estimating the precision of quick 
approximate answers, drilling down into “fuzzy” datacubes, and other tasks. 
 
We have already introduced two useful techniques. As we have seen, sampling can be 
combined with DB2’s analytical functions, such as linear regression, to scale these 
functions to large datasets. We have also shown one technique for sampling from 
complex query expressions, namely, the use of global temporary tables. We now look at 
other ways of combining sampling and SQL. 
 

3.1 Estimating the Precision of Quick Approximate Answers 
 
Quick approximate answers to an aggregation query vary between successive query 
executions because (in the absence of the REPEATABLE clause) the samples of rows 
on which the aggregate is based vary between executions. Assessing the variability, and 
hence precision, of a sampling-based estimate is therefore an important task. One 
common statistical measure of an estimate’s variability is the associated standard error. 
A rough rule of thumb is that, with high probability, the true value of an aggregate with lie 
within plus or minus two standard errors of the estimated value. Therefore, the smaller 
the standard error, the more precise and less variable the estimate. The following query 
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shows how to compute the standard error of a estimated SUM when using BERNOULLI 
sampling on a single table, using a well known formula for the standard error: 

 
SELECT SUM(sales) / :samp_rate AS est_sales, 
  SQRT((1e0/:samp_rate)*((1e0/:samp_rate) - 1e0) 
     *SUM(sales*sales)) AS std_err 
FROM transactions TABLESAMPLE BERNOULLI(100 * :samp_rate); 
 

(This example assumes that the sampling rate is contained in a host variable.) The 
following query is similar, but for AVERAGE instead of sum: 
 

WITH dt AS 
 (SELECT COUNT(*) / :samp_rate as est_count, 
         SUM(sales) / COUNT(*) AS est_avg, 
         (1e0/:samp_rate)*((1e0/:samp_rate)-1e0)  
            *SUM(sales*sales) AS v_sum, 
         (1e0/:samp_rate)*((1e0/:samp_rate)-1e0)*COUNT(*) 
            AS v_count, 
         (1e0/:samp_rate)*((1e0/:samp_rate)-1e0)*SUM(sales) 
            AS cov_cs 
  FROM trans TABLESAMPLE BERNOULLI(100*:samp_rate)) 
SELECT est_avg, 
       SQRT(v_sum-2e0*est_avg*cov_cs+est_avg*est_avg 
          *v_count)/est_count AS std_err 
FROM dt; 
 

This query is more complicated than the previous one because an AVERAGE is a SUM 
divided by a COUNT, which makes the standard error computation more difficult. 
 
The current proposed ISO standard is not quite powerful enough to permit standard error 
computations under SYSTEM sampling. IBM and others are currently working on 
enhancing the proposed standard to address this issue. Under one enhancement 
tentatively proposed by several vendors, the following query could be used to estimate 
the sum of sales, along with the standard error of the estimate: 
 

WITH 
  dt1 AS (SELECT sales, SAMPLE UNIT FOR trans AS s_u 
          FROM trans TABLESAMPLE SYSTEM(100*:samp_rate)), 
  dt2 AS (SELECT SUM(sales) AS s_sales 
          FROM dt1 
          GROUP BY s_u), 
  dt3 AS (SELECT SUM(s_sales*s_sales) AS ss_sales, 
                 SUM(s_sales) AS tot_samp_sales 
          FROM dt2) 
SELECT tot_samp_sales / :samp_rate AS est_sales, 
       SQRT((1e0/:samp_rate)*((1e0/:samp_rate)-1e0)  
         *ss_sales) AS std_err 
FROM dt3;  
 

The new extension to SQL is the SAMPLE UNIT clause. The idea is to assign to each 
sampled row a vendor-defined “sample-unit ID” having the following property: rows r and 
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s have the same sample-unit ID if and only if they are always jointly excluded from or 
included in the sample. So under BERNOULLI sampling each row has a unique sample-
unit ID, whereas under page-level Bernoulli sampling two rows have the same sample-
unit ID if and only if they lie on the same page. Using the SAMPLE UNIT clause, the 
following query estimates average sales, along with a standard error: 
 

WITH 
  dt1 AS (SELECT SUM(sales) AS s_sales, COUNT(*) AS c_sales 
          FROM transactions TABLESAMPLE 
SYSTEM(100*:samp_rate) 
          GROUP BY SAMPLE UNIT FOR transactions), 
  dt2(est_count, est_avg, v_sum, v_count, cov_cs) AS 
    (SELECT SUM(c_sales) / :samp_rate, 
            SUM(s_sales) / SUM(c_sales), 
            (1e0/:samp_rate)*((1e0/:samp_rate)-1e0) 
              *SUM(s_sales*s_sales), 
            (1e0/:samp_rate)*((1e0/:samp_rate)-1e0) 
              *SUM(c_sales*c_sales), 
            (1e0/:samp_rate)*((1e0/:samp_rate)-1e0)  
              *SUM(s_sales*c_sales) 
     FROM dt1) 
SELECT est_avg, 
       SQRT(v_sum-2e0*est_avg*cov_cs+est_avg*est_avg* 
         v_count)/est_count AS std_err  
FROM dt2 
 

The foregoing SAMPLE UNIT functionality is under consideration for a future release of 
DB2, when the ISO standard becomes finalized. 
 

3.2 Implementing Non-Native Sampling Schemes 
 
BERNOULLI and SYSTEM sampling can be combined with SQL to implement other 
sampling schemes. For example, the method of simple random sampling (without 
replacement) selects a specified number of rows, say n,  randomly and uniformly from 
among all of the rows in a table. More precisely, the probability of selecting any two 
subsets of n rows is the same. To materialize a simple random sample of rows, we can 
first select a BERNOULLI sample of m > n rows and then select a random subset of n 
rows. To select the random subset, we randomly sort the m rows and then return the first 
n of these rows. Here is a sample query for selecting a simple random sample of 75 
rows from a 10,000 row table: 
 

WITH dt AS (SELECT * FROM mytable TABLESAMPLE BERNOULLI(1)) 
SELECT * FROM dt ORDER BY RAND() 
FETCH FIRST 75 ROWS ONLY 

 
Here RAND is the built-in function that returns a pseudorandom number between 0 and 1.  
 
Another popular sampling method is stratified sampling, in which the rows are divided 
into disjoint sets, or strata, such that the column values of interest are relatively 
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homogeneous within each stratum. Then a fixed number of rows are sampled from each 
stratum. This sampling method can lead to highly precise estimates, because 
observation of a few random column values from within a stratum yields a large amount 
of information about all of the column values within the stratum. Another reason why 
stratified sampling is effective is that it helps prevent any given column value from being 
over- or under-represented in the sample due to sheer chance. The following query 
stratifies rows by the gender attribute and collects a simple random sample of 75 rows 
from each stratum: 
 

(SELECT name,address,salary,gender  
  FROM census TABLESAMPLE BERNOULLI(10) 
  WHERE gender = 'M' 
  ORDER BY RAND() SELECT FIRST 75 ROWS ONLY) 
UNION 
(SELECT name,address,salary,gender 
 FROM census TABLESAMPLE BERNOULLI(10) 
 WHERE gender = 'F' 
 ORDER BY RAND() SELECT FIRST 75 ROWS ONLY) 

 

3.3 Drilling Down in Fuzzy Datacubes 
 
As a final example of how sampling and SQL can work together synergistically, we 
provide a query that permits drilldown into a “fuzzy” datacube of sales data: 
 

SELECT country, state, city, year, month, 
  AVG(value) AS avg_sales,  
FROM trans TABLESAMPLE SYSTEM(:samp_rate), loc 
WHERE trans.locid = loc.locid 
GROUP BY ROLLUP(country, state, city), 
         ROLLUP(year, month) 
HAVING COUNT(*) > 100 

 
The idea is to sample from the fact table trans and drill down by increasing the sampling 
rate. Observe that this query returns the average sales only for those cells in the ROLLUP 
cube where the average is based on at least 100 sampled rows. Thus at low sampling rates, 
the query will only return values for highly aggregated cells such as (year), (country), or (year, 
country). At higher sampling rates, we will start seeing average sales for less aggregated 
cells such as (year, month, country, state, city) and so forth. The sampling-based approach 
is very natural in the sense that drilling down to greater depths requires processing of more 
data; in contrast, the usual (non-sampling-based) ROLAP computation processes more data 
for highly aggregated cells than for less aggregated cells. 
 

4 Conclusion 
 
Sampling will be a powerful enhancement to DB2’s capabilities, potentially speeding up 
query processing by orders of magnitude. DB2 will support almost the entire proposed 
ISO standard; we expect that additional sampling methods and other enhancements will 
be added both to the standard and to DB2 over time. By judiciously combining DB2’s 
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native sampling support with the SQL language, the DB2 user can effectively apply BI, 
OLAP, mining, and analysis techniques even in the face of massive data volumes. 


