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ABSTRACT� We extend Hoe�ding�s inequalities for simple averages of random variables
to the case of cross	product averages� We also survey some new and existing Hoe�ding
inequalities for estimators of the mean� variance� and standard deviation of a subpopulation�
These results are applicable to two problems in object	relational database management
systems
 xed	precision estimation of the selectivity of a join and online processing of
aggregation queries� For the rst problem� the new results can be used to modify the
asymptotically e�cient sampling	based procedures of Haas� Naughton� Seshadri� and Swami
so that there is a guaranteed upper bound on the number of sampling steps� For the
second problem� the inequalities can be used to develop conservative condence intervals
for online aggregation� such intervals avoid the large intermediate storage requirements and
undercoverage problems of intervals based on large	sample theory�

Keywords� Hoe�ding inequality� join	selectivity estimation� query optimization� database
sampling� online aggregation





�� Introduction and Summary

In many applications� it is necessary to estimate a population mean

� �
�

m

mX
i��

v�i�

using random sampling� here m � � is a xed integer and v is a real	valued function dened
on the set f �� �� � � � �m g� Denote by L�� L�� � � � � Ln a random sample drawn uniformly with
replacement from the set f �� �� � � � �m g and by L��� L

�
�� � � � � L

�
n a random sample drawn

uniformly without replacement� For n � �� the estimators

Y n �
�

n

nX
i��

v�Li� �����

and

Y
�
n �

�

n �m

n�mX
i��

v�L�i� �����

are each unbiased for � in that E�Y n� � E�Y
�
n� � �� �Here n �m denotes the minimum of

n and m�� In a famous paper� Hoe�ding ���� Theorem �� shows that

E�f�Y
�
n�� � E�f�Y n�� �����

for n � � and any convex function f � In particular� it follows by taking f�x� � x� � �� in

����� that Var�Y
�
n� � Var

�
Y n

�
�

It is frequently useful to bound the probability that Y n �resp�� Y
�
n� deviates from �

by more than a specied amount� Suppose that the only information available prior to
sampling consists of lower and upper bounds a and b� respectively� on the function v


a � v�i� � b �����

for � � i � m� In ����� Hoe�ding not only establishes ������ but also shows that

P
� jY n � �j � t

� � �e��nt
���b�a�� �����

and

P
n
jY �

n � �j � t
o
� �e��n

�t���b�a�� � �����

for t � � and n � �� where

n� �

�
n if n � m�

�� if n � m�

�



In the following� we extend Hoe�ding�s results by allowing v to be a function of more
than one variable and establishing analogues of inequalities ������ ������ and ����� for �cross	
product averages�� We also survey some new and existing Hoe�ding inequalities for the
case in which we wish to estimate the mean� variance� or standard deviation of the numbers
f v�i� 
 i � S g� where S � f �� �� � � � �m g� We refer to S as a �subpopulation� and assume
that the membership or non	membership in S of an element i is discovered only when i is
sampled�

Our results� which are stated formally in the remainder of this section� have a number
of applications in object	relational database management systems �ordbms�s�� In Section �
we consider the problem of using sampling to estimate the selectivity of a join to within a
prespecied precision� Haas� Naughton� Seshadri� and Swami ��� have previously provided
an asymptotically e�cient procedure called f p cross for xed	precision estimation of selec	
tivities� We show how the new inequalities can be used to modify f p cross so that there
is a guaranteed upper bound on the number of sampling steps executed by the procedure�
In Section �� we show that our results are pertinent to online aggregation processing as
described in Hellerstein� Haas� and Wang ���� Section � contains the proofs of our results�

���� Cross�Product Averages

Let m��m�� � � � �mK �K � �� be nite positive integers and v be a real	valued function
dened on the set � � �� � �� � 	 	 	 � �K � where �k � f �� �� � � � �mk g for � � k � K� To
avoid trivialities we assume throughout that mk � � for � � k � K� Suppose we wish to
estimate the population mean

� �
�

m�m� 	 	 	mK

m�X
l���

m�X
l���

	 	 	
mKX
lK��

v�l�� l�� � � � � lK� �����

using random sampling� For � � k � K� denote by Lk��� Lk��� � � � � Lk�n a random sam	
ple of size n drawn uniformly with replacement from the set �k� Similarly� denote by
L�k��� L

�
k��� � � � � L

�
k�n a random sample drawn uniformly without replacement� We assume

throughout that the sampling mechanisms for sets ������ � � � ��K are mutually indepen	
dent� Set N � f �� �� � � � gK and� for n � �n�� n�� � � � � nK� � N� dene the cross�product

averages �Y n and �Y �
n
by

�Y n �
�

n�n� 	 	 	 nK
n�X
i���

n�X
i���

	 	 	
nKX
iK��

v�L��i� � L��i� � � � � � LK�iK � �����

and

�Y �
n
�

�
KY
k��

�nk �mk�

��� n��m�X
i���

n��m�X
i���

	 	 	
nK�mKX
iK��

v�L���i� � L
�
��i� � � � � � L

�
K�iK �� �����

�



respectively� It is straightforward to show that E � �Y n� � E � �Y �
n
� � � for n � N � Moreover�

�Y �
n

 � for all n � �n�� n�� � � � � nK� � N such that nk � mk for � � k � K�
Although �Y n can be viewed as a simple average of n�n� 	 	 	nK random variables �and

similarly for �Y �
n
�� the inequalities ������ ������ and ����� are not directly applicable� The

problem is that the random variables that make up the average are not mutually inde	
pendent
 in general� v�L��i� � L��i� � � � � � LK�iK � and v�L��j� � L��j� � � � � � LK�jK� are dependent
unless ik �� jk for � � k � K� An analogous remark applies to �Y �

n
�

Our rst result extends the inequality in ������

Theorem �� Let �Y n and �Y �
n
be de�ned as in ����� and ������ respectively� Then

E
�
f� �Y �

n
�
� � E �f� �Y n�� ������

for n � N and any convex function f � In particular� Var � �Y �
n
� � Var � �Y n��

Since �Y n and �Y �
n
are each unbiased� it follows from Theorem � that �Y �

n
has a lower mean

squared error than �Y n�
Our next result� Theorem � below� generalizes the inequalities in ����� and ����� and

bounds the probability that �Y n �resp�� �Y �
n
� deviates from � by more than a specied amount�

The inequalities require a priori knowledge only of lower and upper bounds a and b� respec	
tively� on the function v


a � v�l�� l�� � � � � lK� � b ������

for �l�� l�� � � � � lK� � �� For n � N� set

m�n� � min
��k�K

nk

and

m��n� � min
��k�K

n�k�

where

n�k �

�
nk if nk � mk�

�� if nk � mk

for � � k � K�

Theorem �� Let �Y n and �Y �
n
be de�ned as in ����� and ������ respectively� and let a and b

satisfy ������� Then

P f j �Y n � �j � t g � �e��m�n�t���b�a�� ������

and

P
� j �Y �

n
� �j � t

� � �e��m
��n�t���b�a�� ������

for t � � and n � N�

�



Clearly� the tighter the bounds a and b on the function v� the tighter the above inequalities�
Suppose as a worst	case scenario that the function v depends only upon the rst of its

K arguments and that n� � nk for � � k � K� Then the cross	product averages dened in
����� and ����� reduce to ordinary averages as in ����� and ������ and the inequalities ������
and ������ reduce to ����� and ������ These latter inequalities represent the best available
Hoe�ding bounds for this situation� In this sense� the inequalities in ������ and ������ can
be viewed as tight worst	case Hoe�ding bounds�

The bound in ������ sometimes can be tightened as follows� Fix n � N and suppose
that for some positive integer r � r�n� � K we have nk � mk for � � k � r and nk � mk

for r � k � K� Set

wn�l�� l�� � � � � lr� �
�

mr��mr�� 	 	 	mK

mr��X
lr����

mr��X
lr����

	 	 	
mKX
lK��

v�l�� l�� � � � � lr� lr��� lr��� � � � � lK�

������

for �l�� l�� � � � � lr� � �� � �� � 	 	 	 � �r� Let a�n� and b�n� be lower and upper bounds�
respectively� on the function wn� Applying Theorem � to the r	dimensional cross	product
average of the function wn� we nd that

P
� j �Y �

n
� �j � t

� � �e��m
��n�t���b�n��a�n��� ������

for t � � and n � N� The key point is that it is sometimes possible to choose a�n� and b�n�
such that a�n� � a and�or b�n� � b� so that the bound in ������ is tighter than the bound
in ������� see Section ��� below for an example� Of course� this approach to tightening
the bound in ������ can be applied with obvious modications when f k 
 nk � mk g is an
arbitrary strict subset of f �� �� � � � �K g�

When n � �n� n� � � � � n� for some n � �� we write �Y n and �Y �
n instead of �Y n and �Y �

n
�

respectively� so that

�Y n �
�

nK

nX
i���

nX
i���

	 	 	
nX

iK��

v�L��i� � L��i� � � � � � LK�iK � ������

and

�Y �
n �

�
KY
k��

�n �mk�

��� n�m�X
i���

n�m�X
i���

	 	 	
n�mKX
iK��

v�L���i� � L
�
��i� � � � � � L

�
K�iK �� ������

In this case� the inequalities ������ and ������ take the form

P f j �Y n � �j � t g � �e��nt
���b�a�� ������

and

P
� j �Y �

n � �j � t
� � ��e��nt

���b�a�� if n � max�m��m�� � � � �mK��

� if n � max�m��m�� � � � �mK�

�



for t � � and n � ��
Hoe�ding actually establishes his inequalities ������ ������ and ����� for an arbitrary

collection of mutually independent� real	valued random variables �not necessarily discrete��
The inequalities in ������� ������� and ������ also can be shown to hold at this level of
generality� Hoe�ding also establishes one	sided bounds� such as the following one	sided
analogues of �����


P
�
Y n � � � t

� � e��nt
���b�a��

and

P
�
�� Y n � t

� � e��nt
���b�a�� �

For each two	sided bound presented in this paper� there exists a pair of one	sided analogues
as in the above example�

In applications� the foregoing bounds are often �inverted� for purposes of obtaining
condence intervals� For example� it follows from ������ that for xed p � ��� �� and n � N

P
� j �Y �

n
� �j � �

� � p� ������

where

� � �b� a�

�
�

�m��n�
ln
	 �

�� p


����

� ������

Our nal result gives an analogue of ������ for the ratio of two cross	product averages�
Consider two real	valued functions f and g� each dened on �� along with nite constants
af � bf � ag �� ��� and bg such that

af � f�l�� � � � � lK� � bf and ag � g�l�� � � � � lK� � bg ������

for �l�� � � � � lK� � �� For p � ��� �� and n � N� set

�n�p �

�
�

�m��n�
ln
	 �

�� p


����

�

Also set

�n�p � �n�p

�
�Y �
n
�g��bf � af � � j �Y �

n
�f�j�bg � ag�

�Y �
n
�g�
	
�Y �
n
�g� � �bg � ag��n�p


 �
������

if �Y �
n
�g� � �bg�ag��n�p� otherwise� set �n�p ��� In ������� �Y �

n
�f� is dened as in ������ but

with v replaced by f � and similarly for �Y �
n
�g�� Dene corresponding population averages

��f� and ��g� analogously� Take ��� � ��

�



Theorem �� Suppose that ������ holds and ��g� � �� Then

P

�  �Y �
n
�f�

�Y �
n
�g�

� ��f�

��g�

 � �n�p

�
� p

for p � ��� �� and n � N� where �n�p is de�ned by �������

Theorem � applies to the case of sampling without replacement� but analogous results hold
for sampling with replacement� The previously	mentioned techniques for tightening bounds
also can be applied in the current setting� Condence intervals for other aggregates such as
VARIANCE also can be obtained by adapting the techniques used to establish Theorem ��

���� Subpopulations

We now consider the problem of estimating the mean� variance� and standard deviation
of the numbers f v�i� 
 i � S g� where v is a real	valued function dened on f �� �� � � � �m g
�with m � �� and S is a nonempty subset of f �� �� � � � �m g� We assume that the set S is
specied by means of an indicator function u


u�i� �

�
� if i � S�

� if i � f �� �� � � � �m g � S
������

for � � i � m� We also assume that it is not possible to sample directly from S� as in
previous sections� each element in the sample is selected randomly and uniformly from the
set f �� �� � � � �m g� The function u is then applied to determine whether the sampled element
is a member of S�

������ Mean

Denote by ��S� the average of the function v over the set S


��S� �
�

jSj
X
i�S

v�i� �

Pm
i�� u�i�v�i�Pm
i�� u�i�

� ������

where jSj denotes the number of elements in S� We refer to ��S� as the subpopulation mean

over S�
Dene random indexes L�� L�� � � � � Ln and L��� L

�
�� � � � � L

�
n as at the beginning of Sec	

tion �� For n � �� two possible estimators of ��S� are

Y n�S� �
�

In

nX
i��

u�Li�v�Li� ������

�



and

Y
�
n�S� �

�

I �n

n�mX
i��

u�L�i�v�L
�
i�� ������

where

In �

nX
i��

u�Li� ������

and

I �n �
n�mX
i��

u�L�i�� ������

We take Y n�S� � � when In � � and similarly for Y
�
n�S�� Neither Y n�S� nor Y

�
n�S� is

unbiased for �� As n becomes large� however� the bias of each estimator approaches � and
each estimator converges to � with probability ��

Because Y n�S� and Y
�
n�S� are each biased estimators� it appears quite di�cult to de	

velop Hoe�ding inequalities analogous to ������ and ������� In practice� however� it su�ces

to bound the conditional probability that Y n�S� �resp�� Y
�
n�S�� deviates from � by more

than a specied amount� given the observed value of In �resp�� I �n�� The key observation �cf
Section ���� in Cochran ���� is as follows
 given that In � k �where k � ��� the estimator
Y n�S� is distributed as ���k�

Pk
i�� v�L

�
i �� where fL��� L��� � � � � L�k g is a random sample of

size k drawn from the set S uniformly with replacement� An analogous statement holds
for the conditional distribution of Y

�
n�S� given I �n � k� Thus� Y n�S� and Y

�
n�S� are con	

ditionally unbiased for ��S� and� using the inequalities in ����� and ������ we obtain the
bounds

P
� jY n�S�� ��S�j � t

 In � k
� � �e��kt

���b�a��

for t � �� n � �� and � � k � n� and

P
n
jY �

n�S�� ��S�j � t
 I �n � k

o
� �e��kt

���b�a�� ������

for t � �� n � �� and � � k � jSj � n�

������ Variance and Standard Deviation� Sampling with Replacement

Denote by 	��S� the variance of the function v over the set S


	��S� �
�

jSj
X
i�S

	
v�i�� ��S�


�
�

Pm
i�� u�i�

	
v�i� � ��S�


�Pm
i�� u�i�

� ������

�



We refer to 	��S� and 	�S� as the subpopulation variance over S and subpopulation standard

deviation over S� respectively�
First suppose that S � f �� �� � � � �m g and that this fact is known a priori� �The value

of m need not be known�� In this case we write � for ��S� and 	� for 	��S�� Fix n � � and
dene the sample average Y n as in ������ It is well	known that the estimator

Zn �
�

n� �

nX
i��

�v�Li�� Y n�
� ������

is unbiased for 	�� see� for example� Cram�er ��� p� ����� As pointed out by Hoe�ding �����
Zn can be written in the form

Zn �
�

n�n� ��

X
i��j

g
	
v�Li�� v�Lj�



�

where g�x� y� � �x � y����� that is� Zn is a �one	sample U 	statistic� as dened in ����
���� Hoe�ding�s inequalities for U statistics ���� Section �a� therefore can be applied in a
straightforward manner to yield inequalities for Zn� These computations� which have been
carried out by Kra�t and Schmitz ����� yield the inequalities

P
�
Zn � 	� � t

� � e��bn��ct
���b�a�� � ������

P
�
	� � Zn � t

� � e��bn��ct
���b�a�� � ������

and

P
� jZn � 	�j � t

� � �e��bn��ct
���b�a�� ������

for t � � and n � �� where bxc denotes the largest integer less than or equal to x�
The random variable

p
Zn often serves as an estimator of the standard deviation 	� To

obtain a bound analogous to that in ������� observe that

p
x�p

y � �x� �
p
xy � y���� � p

x� y

for � � y � x� Using ������� we nd that

P
np

Zn � 	 � t
o
� P

np
Zn � 	� � t

o
� P

�
Zn � 	� � t�

� � e��bn��ct
���b�a�� �

������

A similar argument using ������ yields the same bound for P
�
	 �p

Zn � t
�
� and combi	

nation of the two bounds yields the inequality

P
n pZn � 	

 � t
o
� �e��bn��ct

���b�a�� � ������

�



Now suppose that S is an arbitrary nonempty subset of f �� �� � � � �m g� The quantity
	��S� can be estimated by

Zn�S� �
�

In � �

nX
i��

u�Li�
	
v�Li�� Y n�S�


�
�

where u� Y n�S�� and In and are dened as in ������� ������� and ������� respectively� Using
the above results and arguing as in the case of the subpopulation mean� we obtain the
conditional inequalities

P
� jZn�S�� 	��S�j � t

 In � k
� � �e��bk��ct

���b�a��

and

P
n pZn�S�� 	�S�

 � t
 In � k

o
� �e��bk��ct

���b�a��

for t � �� n � �� and � � k � n�

������ Variance and Standard Deviation� Sampling without Replacement

Suppose at rst that S � f �� �� � � � �m g� that this fact is known a priori� and that m is

known� Fix n � � and dene the sample average Y
�
n as in ������ It is well	known that the

estimator

Z �
n �

�
m� �

m

�
�

�n �m�� �

n�mX
i��

�v�L�i�� Y
�
n�

� ������

is unbiased for 	�� see� for example� ��� Theorem ����� In analogy with ������ we have the
following result�

Proposition �� Let Zn and Z �
n be de�ned as in ������ and ������� respectively� Then

E
�
f�Z �

n�
� � E �f�Zn��

for n � � and any convex function f � In particular� Var �Z �
n� � Var �Zn��

Pathak ���� gives a proof of this result based on the Rao	Blackwell inequality� In Section �
we give a �rst principles� proof along the lines of the original argument used by Hoe�ding
to establish ������

As in Hoe�ding�s proof of ������ the inequality in Proposition � can be combined with
the results in Section ����� to establish inequalities for Z �

n and
p
Z �
n�

�



Theorem �� Let Z �
n be de�ned as in ������� and let a and b satisfy ������ Then

P
� jZ �

n � 	�j � t
� � �e��bn��ct

���b�a�� ������

and

P
n pZ �

n � 	
 � t

o
� �e��bn��ct

���b�a�� ������

for t � � and � � n � m�

The inequality ������ is stated in ����� but the supporting proof is incomplete�
Now suppose that S is an arbitrary nonempty subset of f �� �� � � � �m g� If jSj is known�

then for n � � the estimator

Z �
n�S� �

� jSj � �

jSj
�

�

I �n � �

n�mX
i��

u�L�i�
	
v�L�i�� Y

�
n


�
�

is conditionally unbiased for 	��S�� given the value of I �n� Arguing as in previous sections�
we obtain the conditional inequalities

P
� jZ �

n�S�� 	�j � t
 I �n � k

� � �e��bk��ct
���b�a��

and

P
n pZ �

n�S�� 	
 � t

 I �n � k
o
� �e��bk��ct

���b�a��

for t � �� n � �� and � � k � jSj�n� If jSj is unknown� we cannot use the estimator Z �
n�S��

If S is known to contain a sizable number of elements� however� a reasonable estimator
can be obtained by ignoring the troublesome bias	correction term �jSj � ���jSj and simply
computing the sample variance over all elements of S observed so far� This approach yields
a biased estimator of 	��S� given by

Z ��
n�S� �

�

I �n � �

n�mX
i��

u�L�i�
	
v�L�i�� Y

�
n�S�


�
� ������

where Y
�
n�S� and I �n are dened as in ������ and ������� respectively� Because Z ��

n also
is biased when given the value of I �n� it is di�cult to obtain even conditional Hoe�ding
inequalities without some extra information� When jSj is large relative to �b � a�� and a
good lower bound d � jSj is available� the following inequality can be useful�

Theorem �� Let Z ��
n�S� be de�ned as in ������ and let d � jSj� Then

P
� jZ ��

n�S�� 	��S�j � t
 I �n � k

� � �e��bk��c�
���b�a�� ������

��



and

P
n
j
p
Z ��
n�S�� 	�S�j � t

 I �n � k
o
� �e��bk��c�

���b�a�� ������

for t � �� n � �� and � � k � jSj � n� where


 � 
�t� d� a� b� �
d� �

d
t� �b� a��

��d� ��

and

� � ��t� d� a� b� �
d� �

d
t� � �b� a��

��d � ��
�

Note that� given I �n � k� we can set d � k if k is su�ciently large�

���� Some Further Re	nements

Kra�t and Schmitz ���� provide several techniques that can be used to tighten the
various bounds given in this section� The rst �trivial� observation is that if a � v � b�
then� for example� P f j �Y n � �j � t g � � for t � b�a� where �Y n and � are as in Theorem ��
Similarly� it follows from the inequality in ����� below that jZn � 	�j � t�n for n � �� where
Zn and 	� are as in ������ and

t�n �
n�b� a��

��n� ��
�

Thus� P
� jZn � 	�j � t

�
� � for t � t�n and P

� jpZn � 	j � t
�
� � for t �

p
t�n� All of

the other inequalities in this section can be tightened in a similar manner�
A less trivial result is obtained after rewriting ������� ������� and ������ in the form

P f j �Y n � �j � t g � �e�m�n���t��b�a�� �

P
� jZn � 	�j � t

� � �e�bn��c���t��b�a�
���

and

P
n pZn � 	

 � t
o
� �e�bn��c���t

���b�a����

respectively� where ��x� � �x�� It follows from results in ���� that the above inequalities
hold with � replaced by ��� where

���x� � �x� �
�

�
x	 �

�

�
x
�

All of the other inequalities in this section can be rewritten and tightened in a similar
manner�
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�� Application to Join�Selectivity Estimation

A �select	�join query with K �� �� input relations R�� R�� � � � � RK species a subset of
the cross product R� � R� � 	 	 	 � RK � For each element �j�� j�� � � � � jK� in this subset�
tuples j�� j�� � � � � jK are concatenated to form a tuple of the output relation R������� �K � The
�selectivity of the join� is the number of tuples in R������� �K divided by the number of
elements in the cross product of the input relations� Selectivity estimates play a key role in
query optimization for ordbms�s as well as for capacity planning� cost estimation for online
queries� system access control� load balancing� and statistical studies�

Our formulation of the selectivity	estimation problem follows ���� For j� � R�� j� �
R�� � � � � jK � RK � set v��j�� j�� � � � � jK� � � if tuples j�� j�� � � � � jK join �that is� if these
tuples are concatenated to form a tuple of R������� �K�� otherwise� set v��j�� j�� � � � � jK� � ��
The function v� is determined by the join and selection predicates that make up the query�
We wish to estimate the selectivity �� dened as

� �
jR������� �K j

jR� � 	 	 	 �RK j �
�

jR� � 	 	 	 �RK j
X
j��R�

X
j��R�

	 	 	
X

jK�RK

v��j�� j�� � � � � jK��

A na !ve method for estimating the selectivity � is to use a �tuple level� independent�
sampling scheme� denoted by t indep� At the nth sampling step of t indep� a tuple is
selected randomly and uniformly from each input relation� The observation Xn is then
computed from the K selected tuples� where Xn � � if the tuples join� and Xn � �
otherwise� In other words� Xn is the selectivity of the K	way join of the randomly selected
tuples� The tuples are then discarded prior to the next sampling step� For each n �
�� the observations X��X�� � � � �Xn are identically distributed� and the average of these
observations is an unbiased estimator of �� if samples are drawn with replacement� then
these observations are also mutually independent�

An alternative approach is to estimate � using the �page	level� cross	product� sampling
scheme proposed in Hou� Ozsoyoglu� and Taneja ���� and analyzed in ��� ���� We denote this
scheme by p cross� At each sampling step of p cross and for each of the K input relations�
a page of tuples is selected randomly and uniformly from among the pages that make up
the relation� this randomly selected page is stored in main memory� At the nth sampling
step� nK � �n� ��K observations are generated by computing

�i� the selectivity of the K	way join of the pages selected at the current sampling step�
and

�ii� the selectivities of all possible K	way joins among pages selected at the current sam	
pling step and pages selected at previous sampling steps�

Although p cross examines many more tuples per sampling step than t indep� the resulting
observations are not mutually independent� even when samples are drawn with replacement�

Haas et al� ��� compare p cross and t indep when samples are drawn with replacement�
They show that� for any xed number of sampling steps� selectivity estimators based on

��



the p cross scheme always have variance less than or equal to that of estimators based on
the t indep scheme� In practice� the variance of the selectivity estimator can be smaller by
orders of magnitude when p cross is used� We therefore focus throughout on the p cross

sampling scheme and its variants�
The sampling cost of p cross sometimes can be reduced by using �index	assisted� sam	

pling as proposed by Lipton� Naughton� and Schneider ���� ��� and extended in ���� Suppose�
for example� that we wish to estimate the selectivity of an equijoin of relations R� and R�

using the t indep scheme and that R� has an index on its join attribute� that is� the join
predicate is �R��a � R��a� and R� has an index on attribute a� At each sampling step� one
tuple is selected randomly and uniformly from relation R� and the total number of tuples
from R� that join with this random tuple is computed using the index� no sampling from
R� is required� Thus� we obtain jR�j observations at each sampling step� This idea extends
in a straightforward manner to the p cross scheme and to general K	way joins when one
or more of the input relations has a combined index on �the concatenation of� all relevant
join and selection attributes�

In the following� we assume that samples are drawn with replacement� We also assume
that tuples are stored and brought into main memory in pages� where each page contains
N �� �� tuples� To discuss page	level and index	assisted sampling schemes in a unied
way� we consider a generalized scheme in which� for � � k � K� the tuples in relation Rk

are partitioned into mk blocks B�k� ��� B�k� ��� � � � � B�k�mk� with tk �� jRkj�mk� tuples
per block� For each relation Rk� a block of tuples is selected at each sampling step� and
all of the tuples in the block are brought into main memory� When t� � 	 	 	 � tK � N
we have pure page	level sampling� When tj � jRj j for one or more values of j we have
index	assisted sampling� �As indicated above� we don�t actually bring all of the tuples in an
indexed relation into memory� we just perform an index lookup� Such a lookup� however�
is equivalent to examining all of the tuples in the indexed relation� as far as their join
and selection attributes are concerned� In general� one or more I�O�s may be required to
perform the lookup� see ��� for a detailed discussion of sampling costs�� We assume that at
most K � � indexes are available� Ganguly� Gibbons� Matias� and Silberschatz ��� provide
an estimation procedure when K � � and there is an index on each input relation�

For �l�� l�� � � � � lK� � �� denote by v�l�� l�� � � � � lK� the selectivity of the join of blocks
B��� l��� B��� l��� � � � � B�K� lK�


v�l�� l�� � � � � lK� �
�

t�t� 	 	 	 tK
X

j��B���l��

X
j��B���l��

	 	 	
X

jK�B�K�lK�

v��j�� j�� � � � � jK��

The function v is called the selectivity function for the join� Observe that the selectivity �
can be represented as a cross	product average of the form ������ Denote by Lk�i �resp�� L

�
k�i�

the random index of the block of tuples selected from relation Rk at the ith sampling step
when samples are drawn with �resp�� without� replacement� Then for n � � the estimators
�Y n and �Y �

n dened by ������ and ������� respectively� are each unbiased for ��
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Suppose that we wish to estimate the selectivity � to within �� with probability p�
where � � � and p � ��� ��� In general� it is impossible to satisfy the precision criterion
with a probability exactly equal to p� To address this problem� Haas et al� ��� introduced
a xed	precision estimation procedure called f p cross� In this procedure� the basic p cross

sampling procedure is executed for a random number of sampling steps� After each sampling
step of p cross� a stopping rule is used to determine whether to continue sampling or to
stop sampling and return the cross	product average based on all of the blocks sampled so
far� The nal estimate �Y ��� is given by �Y ��� � �Y N���� where �Y n is dened by ������ for
n � � and N��� is the random number of sampling steps executed by the procedure�

The stopping rule for f p cross is obtained by approximating the distribution of �Y ���
by a normal distribution� Use of this approximation leads to an estimate of the probabil	
ity that the precision criterion is satised� If the estimated probability is greater than or
equal to the prespecied probability� then no further samples are taken� see ��� for details�
It is shown in ��� that the f p cross procedure is �asymptotically consistent� in the sense
that the probability of satisfying the precision criterion converges to the prespecied value
as the precision criterion becomes increasingly stringent
 lim��� P f j �Y ���� �j � � g � p�
Moreover� f p cross is �asymptotically e�cient� in the sense that the total number of sam	
pling steps converges to the theoretical minimum number of required steps as � becomes
small� The number of sampling steps required by f p cross is independent of the size of the
input relations� Thus� for a xed precision criterion� the cost of sampling relative to the
cost of computing � exactly decreases as the size of input relations increases� see Haas and
Naughton ��� for further discussion�

One shortcoming of f p cross is that there is no guaranteed upper bound on the number
of sampling steps� This can be an issue because the normal approximation that underlies
the stopping rule is exact only in the limit as � �� For xed positive �� the probability that
the precision criterion is satised can be underestimated� resulting in too many sampling
steps�

We can use the results in Section ��� to alleviate this problem and provide a guaranteed
upper bound on the number of sampling steps� �See ���� for a related discussion of �sanity
bounds��� Set

n� � n���� p� �

�
�

���
ln

�
�

�� p

��
�

where dxe denotes the smallest integer greater than or equal to x� Then the idea is to stop
sampling in f p cross after min

	
n�� N���



steps� where N��� is the number of steps executed

in the original f p cross procedure� It follows from ������ that no more than n� sampling
steps are ever needed to satisfy the precision criterion�

The bound n� can be improved upon when there is additional a priori information on
the selectivity of the join� For example� consider a join query consisting of the single join
predicate

R��a� � R��a� and R��a� � R��a� and 	 	 	 and RK���aK�� � RK �aK���

��



Suppose it is known a priori that each tuple in relation Rk �� � k � K � �� joins with at
most �k�� tuples in relation Rk��� where �k�� � tk��� Then � � v�l�� l�� � � � � lK� � u for
all l�� l�� � � � � lK � where u �

QK
k����k�tk� � �� It follows from ������that

P
� j �Y n��u� � �j � �

� � p�

where

n��u� � n��u� �� p� �

�
u�

���
ln

�
�

�� p

��
� n��

�� Application to Online Aggregation

Users of an ordbms often execute �aggregation queries� in order to obtain statistical
summaries of large� complex data sets� Aggregation queries are processed by rst executing
a �typically complex� sequence of joins and selections on the base relations to create an
output relation� each tuple of the output relation is then mapped to a real number and
aggregate quantities such as the sum� mean� or variance are computed from the numbers�
The rows of the output table sometimes are divided into groups based on values of the data
attributes and aggregates are computed separately for each group�

We focus on scientic and decision	support applications in which the user explores a
data set by executing a sequence of aggregation queries in an interactive manner� The
formulation of each successive query is in"uenced by the results of previous queries� In
this setting it is crucial that the processing time for each query be as short as possible�
Moreover� since the typical goal is simply to get a rough feel for the data� approximate
results often su�ce� Unfortunately� current database systems do not adequately support
such interactive exploration
 the result of an aggregation query is not returned to the user
until the query has run to completion and the exact answer has been computed� Such an
exact computation� which can involve the processing of many terabytes of data� can take an
extremely long time� Moreover� there is no feedback during processing� a user can lose much
valuable time before discovering that a particular query is misguided or uninformative�

In an e�ort to address these problems� Hellerstein� Haas� and Wang ��� have proposed
an online aggregation interface to an ordbms� This interface lets users both observe the
progress of their aggregation queries and control the execution of these queries on the "y�
The idea is to retrieve the pages of each base table in random order� so that the rows re	
trieved so far can be viewed as a random sample� At each time point� the system displays
a running estimate of the nal value of the aggregate based on all of the pages retrieved
so far� The system also indicates the estimated proximity of each running estimate to the
corresponding nal result by means of a running condence interval� The user can abort
processing of the query as soon as the intervals become su�ciently short� When aggregates
are being computed for multiple groups� some online	aggregation prototype systems main	
tain a running condence interval for each group and permit the user to increase�decrease
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the relative processing speed for an individual group on the "y or abort processing for an
individual group�

Classical condence	interval formulas based on results for i�i�d� observations cannot be
applied in the setting of online aggregation because of the complicated correlation structure
induced by the joins and selections executed prior to the nal aggregation step� Large	
sample condence intervals suitable for online aggregation are given in ��� ��� such intervals
are based on central limit theorems� Although the large	sample intervals are useful in the
earlier stages of query processing� the set of auxiliary statistics needed to compute the
intervals can become very large as the processing proceeds� Also� the intervals rest on the
approximating assumption that samples are obtained with replacement� and this assumption
becomes untenable as the sample size �number of records scanned� becomes large� Finally�
the actual coverage probability for the intervals can be less than the nominal value�

The results in Section � can be used to obtain conservative running condence intervals
for a variety of online aggregation queries� That is� for a prespecied parameter p � ��� ���
a number � is displayed such that the current value of the running estimate is within ��
of the nal answer � with probability � p� Although conservative condence intervals are
wider in general than large	sample intervals� the computations for the conservative intervals
require minimal memory and CPU time and avoid the undercoverage problem alluded to
above�

In the following subsections� we illustrate the application of our results to online ag	
gregation processing by means of an extended example� Consider an online aggregation
interface to a relational database system containing the following three relation schemes


Supplier�scheme � �part�num� supplier� price�

Inventory�scheme � �part�num� location� quantity�

Sales�scheme � �item� month� day� location� number�sold�

Assume that there are m� pages of tuples �with t� tuples per page� in the Supplier relation�
m� pages of tuples �with t� tuples per page� in the Inventory relation� and m� pages of
tuples �with t� tuples per page� in the Sales relation� Tuples are retrieved from each input
relation a page at a time� Denote by Supplier�i� the ith tuple in the Supplier relation� and
similarly for the Inventory and Sales relations�

���� Complex SUM
 COUNT
 and AVERAGE Queries

As a rst example� consider the query that returns the total value � of inventory stored
at the San Jose warehouse


SELECT SUM�Supplier�price � Inventory�quantity�

FROM Supplier� Inventory

WHERE Supplier�part�num � Inventory�part�num

AND Inventory�location � �San Jose�	
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For � � i � m�t� and � � j � m�t�� set

v��i� j� �
	
Supplier�i��price


� 	Inventory�j��quantity

if Supplier�i��part�num � Inventory�j��part�num and Inventory�j��location � �San Jose��
otherwise� set v��i� j� � �� Also set

v�l�� l�� � m�m�

X
i�B���l��

X
j�B���l��

v��i� j�� �����

where B��� k� and B��� k� denote the kth page of tuples from the Supplier relation and
Inventory relation� respectively� Observe that � is of the form ����� with v dened as above�
Suppose it is known that

�i� no part has a price greater than p� and

�ii� no more than q units of a given part type are stored at the San Jose warehouse
simultaneously�

Such information often can be deduced from statistics that are maintained in the database
system catalog for use by the query optimizer� It follows that maxi�j v��i� j� � pq and the
function v satises the bounds a � v � b with a � � and b � m�m�t�t�pq� Tighter bounds
on v can be obtained by observing that the part�num attribute is in fact a key for the
Supplier table� that is� there are no duplicate part�num values in Supplier� �Otherwise� the
query is not well posed�� We can take b � m�m�t�pq� since each row in the Inventory table
joins with at most one row in the Supplier table�

Suppose that at a given time point n� pages have been retrieved from the Supplier

relation and n� pages have been retrieved from the Inventory relation� Then the estimator
�Y �
n
dened by ����� is unbiased for �� where n � �n�� n��� It follows from ������ that a

conservative ���p# condence interval for � is given by � �Y �
n
� �� �Y �

n
� ��� where � is dened

by ������ with a and b as above� If the assumptions in �i� and �ii� hold and

�iii� all of the pages in the Supplier relation and a portion of the pages in the Inventory

relation have been retrieved� so that n� � m� and n� � m��

then we can obtain a tighter interval than the one given above� In analogy to ������� set

wn�l�� �
�

m�

m�X
l���

v�l�� l�� � m�

m�X
l���

X
i�B���l��

X
j�B���l��

v��i� j�

for � � j � m�� Since at most t� terms in the above sum are positive �with the value of a
positive term equal to at most pq�� we can obtain a tighter interval � �Y �

n
� ��n�� �Y �

n
� ��n��

by setting

� �
	
b�n�� a�n�


� �

�m��n�
ln
	 �

�� p


����

� �����

��



where a�n� � � and b�n� �m�t�pq�
The formula ������ for the precision parameter � assumes that pages� but not necessarily

tuples� are retrieved in random order� That is� the attribute values of a tuple may depend
on the page on which the tuple resides� When such dependence is present� the tuples
are said to be clustered on the pages� otherwise� they are said to be unclustered� If it is
known that rows are unclustered� the lengths of the conservative condence intervals can
be considerably reduced� To see this� suppose that the assumptions in �i� and �ii� hold�
Also suppose that n� �� m�� pages have been retrieved from the Supplier table and n�
�� m�� pages have been retrieved from the Inventory table� If the rows are clustered on
the pages then � is computed from ������ with n � �n�� n�� as discussed above� If the
rows are unclustered� however� then rows �and not just pages� are retrieved in random
order� and � can be computed using the same formula as in the clustered case except that
n � �t�n�� t�n��� Similarly� if the assumptions in �i�$�iii� hold� then � is computed from
����� with n � �n�� n�� in the clustered case and n � �t�n�� t�n�� in the unclustered case�

As a second example of an aggregation query� consider the query that returns the total
number � of part types at the San Jose warehouse that are supplied by the Acme company


SELECT COUNT���

FROM Supplier� Inventory

WHERE Supplier�part�num � Inventory�part�num

AND Supplier�supplier ��Acme� AND Inventory�location � �San Jose�	

We assume here that the combined attribute �part�num� location� is a key for the Inventory
relation� Set

v��i� j� � �

if Supplier�i��part�num � Inventory�j��part�num� Supplier�i��supplier � �Acme�� and
Inventory�j��location � �San Jose�� otherwise� set v��i� j� � �� Dening v�i� j� as in ������
we see that � is of the form ������ With no additional assumptions about the data� the
function v satises the bounds a � v � b with a � � and b � m�m�t�t�� As with the SUM
query discussed above� tighter bounds on v may be obtainable� Since � has the same math	
ematical form as the result of the SUM query discussed above� the previous discussion for
the SUM query carries over to the current setting almost unchanged� only the specic form
of the function v and the value of b are di�erent� In particular� the estimator �Y �

n
dened

by ����� is unbiased for � and conservative choices for the condence interval half	width �
are of the form ������� Moreover� the result in ������ can be applied as described for SUM
queries�

Finally� consider the query that returns the average price � of the part types supplied
by the Acme company and stored in San Jose


SELECT AVERAGE�Supplier�price�

FROM Supplier� Inventory

WHERE Supplier�part�num � Inventory�part�num

AND Supplier�supplier ��Acme� AND Inventory�location � �San Jose�	
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For � � i � m�t� and � � j � m�t�� set

f��i� j� � Supplier�i��price

if Supplier�i��part�num � Inventory�j��part�num� Supplier�i��supplier � �Acme�� and
Inventory�j��location � �San Jose�� otherwise� set f��i� j� � �� Also set

f�l�� l�� �
X

i�B���l��

X
j�B���l��

f��i� j��

Similarly� set

g��i� j� � �

if Supplier�i��part�num � Inventory�j��part�num� Supplier�i��supplier � �Acme�� and
Inventory�j��location � �San Jose�� otherwise� set g��i� j� � �� Also set

g�l�� l�� �
X

i�B���l��

X
j�B���l��

g��i� j��

Then � is of the form ��f����g� as in Theorem �� Under assumption �i� above� a conser	
vative ���p# condence interval for � is given by � �Y �

n
� �n�p� �Y

�
n
� �n�p�� where �n�p is given

by ������ with af � �� bf � t�p� ag � �� and bg � t�� �As above� we have used the fact that
the part�num attribute is a key for the Supplier table��

���� Summary Statistics De	ned on Selections

We assume throughout that the online aggregation system retrieves tuples from each re	
lation in random order� As discussed above� this assumption is stronger than the assumption
that the system retrieves pages in random order and implies that tuples are unclustered�

Consider the query that returns the average daily number ��S� of widgets sold in De	
cember


SELECT AVG�Sales�number�sold�

FROM Sales

WHERE Sales�month��December�

AND Sales�item��widget�	

For � � i � m�t�� set v�i� � Sales�i��number�sold� Also set u�i� � � if Sales�i��item �
�widget� and Sales�i��month � �December�� otherwise� set u�i� � �� Then ��S� is of the
form ������ with u and v dened as above� Suppose that no location stocks more than w
widgets on any day� Then the function v satises the bounds a � v � b with a � � and
b � w�

Suppose that at a given time point n tuples �equivalently� n�t� pages� have been retrieved
from the Sales relation and k �� �� of these tuples correspond to widgets sold in December�
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The estimator Y
�
n�S� dened by ������ �with I �n � k� is conditionally unbiased for ��S�� By

������� a conservative ���p# condence interval is given by �Y
�
n�S�� �� Y

�
n�S� � ��� where

� � �b� a�

�
�

�k
ln
	 �

�� p


����

�

Note that an alternative condence interval is given by Theorem �� Neither interval domi	
nates the other in all cases� and the shorter of the two intervals should be used�

Now consider the query that returns the variance 	��S� of the daily number of widgets
sold in December


SELECT VARIANCE�Sales�number�sold�

FROM Sales

WHERE Sales�month��December�

AND Sales�item��widget�	

Dening u and v as above� we see that 	��S� is of the form ������� As above� suppose that
n tuples have been retrieved from the Sales relation and k of these tuples correspond to
widgets sold in December� We can estimate 	��S� by Z ��

n�S�� where this estimator is dened
by ������ �with I �n � k�� It follows from ������ that a conservative ���p# condence interval
is given by �Z ��

n�S�� ��� Z
��
n�S� � ���� where

�� �
d�b� a��

��d� ���
�
d�b� a��

d� �

�
�

�bk��c ln
	 �

�� p


����

�

In the above expression� d is a lower bound on the total number jSj of tuples that correspond
to widgets sold in December� The parameter d can be taken equal to k� if a larger lower
bound on jSj is available� then d should be taken equal to this lower bound� If the quantity
of interest is the standard deviation rather than the variance� then

p
Z ��
n�S� can be used

to estimate 	�S�� By ������� a conservative ���p# condence interval is given by �Z ��
n�S��

�� Z ��
n�S� � ��� where � �

p
���

�� Proofs

Proof of Theorem �� Fix a vector n � N� For � � k � K let Nk �� nk� be the unique
random integer such that Sk � fLk�i 
 � � i � Nk g contains exactly nk distinct values�
denote the set of these distinct values by Tk � fL�k�i 
 � � i � nk g� Observe that Tk
coincides with a random sample of size nk drawn uniformly without replacement from �k�
Set S � �S�� S�� � � � � SK� and T � �T�� T�� � � � � TK�� We can view �Y n� �Y �

n
� and T as

functions of S� Write

E � �Y n j T � � �

n� 	 	 	nK
n�X
i���

	 	 	
nKX
iK��

E �v�L��i� � � � � � LK�iK � j T � � �����

��



It follows from symmetry considerations that

P fLk�i � l j l � Tk g � �

nk
�

for � � l � mk� � � i � nk� and � � k � K� so that

E �v�L��i� � � � � � LK�iK � j T � �
�

n� 	 	 	nK
n�X
i���

	 	 	
nKX
iK��

v�L���i� � � � � � L
�
K�iK

�� �����

Substituting ����� into ������ we nd that �Y �
n
� E � �Y n j T �� The desired result now follows

from the Rao	Blackwell Theorem� because T is a su�cient statistic for the sampling scheme
that generates S� see Pathak ���� for denitions and details�

We now prove Theorem � using an approach developed by Hoe�ding in the setting of
U 	statistics and averages of m	dependent random variables� see ���� Section ���

We rst recall the following elementary but useful inequality� attributed by Hoe�ding ����
to S� N� Bernstein


P fX � � g � inf
h	�

E
h
ehX

i
�����

for any random variable X� The inequality in ����� holds since P fX � � g � E �g�X���
where

g�x� �

�
� if x � ��

� if x � ��

and g�x� � ehx for all real x and h � �� We also need the following proposition�

Proposition �� Let Y � p�U� � p�U� � 	 	 	 � pmUm� where each of U�� U�� � � � � Um is the

average of n � � independent random variables taking values in ��� �� and p�� p�� � � � � pm are

nonnegative numbers such that p��p�� 	 	 	�pm � �� The random variables U�� U�� � � � � Um

need not be mutually independent� but are assumed to have common mean �� Then

inf
h	�

E
h
eh�Y���t�

i
� e��nt

�

for t � ��

This proposition follows almost immediately from results in Sections �� � and � in �����
Indeed�

E
h
eh�nY�n��nt�

i
�

mX
i��

piE
h
eh�nUi�n��nt�

i
�

��



for h � � by the inequality that is stated just prior to ����� in ����� On the other hand� it
follows from ����� and ������ in ���� that

E
h
eh�nUi�n��nt�

i
� e�hnt�h

�n��

for � � i � m and h � �� The right side of the above inequality is minimized when h � �t�
so that

inf
h	�

E
h
eh�nUi�n��nt�

i
� e��nt

�

for � � i � m� and the asserted inequality follows directly�

Proof of Theorem �� Fix t � � and n � N� and set

m � m�n� � min�n�� n�� � � � � nK��

Assume without loss of generality that n� � m� Also assume without loss of generality that
� � v � �� the general result follows by considering the function v��	� � 	

v�	�� a


��b� a��

Set

U�i�� i�� � � � � iK� �
�

n�

n�X
j��

v�L��j � L��i��j� � � � � LK�iK�j�

for �i�� i�� � � � � iK� � f �� �� � � � � n� g�f �� �� � � � � n� g� 	 	 	 � f �� �� � � � � nK g� where an index
of the form �ik � j� is interpreted as

	
�ik � j � �� mod nk



� � �that is� the indices �wrap

around��� For example� when K � �� n� � �� n� � �� and n� � �� we have

U��� �� �
v�L���� L��	� L���� � v�L���� L���� L���� � v�L���� L���� L����

�
�

Observe that

�Y n �
�

n�n� 	 	 	nK
n�X
i���

n�X
i���

	 	 	
nKX
iK��

U�i�� i�� � � � � iK��

Indeed� for specied values of i�� i�� � � � � iK the quantity v�L��i� � L��i� � � � � � LK�iK � appears
exactly once as the i�	st term in the representation of U�i�� i�� i�� i�� � � � � iK � i��� where
indices wrap around as described above� By construction� each U�i�� i�� � � � � iK� is the
average of n� i�i�d� random variables� It follows from ����� and Proposition � that

P f �Y n � � � t g � inf
h	�

E
h
eh�

�Y n���t�
i
� e��nt

�

�

A symmetric argument establishes the same bound for P f�� �Y n � t g� and ������ follows�

��



We can now use ������ to establish ������ in the same way that Hoe�ding uses ����� to
establish ������ First suppose that nk � mk for � � k � K� and dene m � m�n� as above�
Observe that m is also equal to m��n� in this case� Since the function g�x� � ehx is convex
for h � �� it follows from ����� and Theorem � that

P
�
�Y � � � � t

� � E
h
eh�

�Y �

n
���t�

i
� e�h���t�E

h
eh

�Y �

n

i
� e�h���t�E

h
eh

�Y n
i

for h � �� so that� by Proposition ��

P
�
�Y � � � � t

� � inf
h	�

E
h
eh�

�Y n���t�
i
� e��nt

�

�

A symmetric argument establishes the same bound for P f�� �Y �
n
� t g� and ������ follows�

Now suppose without loss of generality that for some integer r � r�n� with � � r � K we
have nk � mk for � � k � r and nk � mk for r � � � k � K� Observe that we can write

�Y �
n
�

�

n�n� 	 	 	nr
n�X
i���

n�X
i���

	 	 	
nrX
ir��

wn�L
�
��i� � L

�
��i� � � � � � L

�
r�ir��

where wn is dened as in ������� The desired result follows by applying the previous
argument to the r	dimensional cross	product average of the function wn� The only case not
considered so far is when nk � mk for � � k � K� but for this case the desired result follows
trivially�

To prove Theorem �� we need the following lemma�

Lemma �� Suppose that there exist real numbers Yi� �i� �i �i � �� �� such that ��� �� � ��
Y� � �� and Yi � �i � �i � Yi � �i for i � �� �� Then���� � Y�

Y�

 � Y��� � jY�j��
Y��Y� � ���

�

Proof� We have ���� � Y�
Y�

 � Y��� � Y���
Y���

 � jY��� � Y���j
Y��Y� � ���

�

The set A � fY� � ��� Y� � �� g � f Y� � ��� Y� � �� g contains the value of ���� ��� that
maximizes the numerator of the rightmost term� Observe that jY��� � Y���j � Y���� jY�j��
for any ���� ��� � A�

Proof of Theorem �� By ������� we have

P
�  �Y �

n
�h�� ��h�

 � �bh � ah��n�p
� � �� � p���

for h � f� g� It then follows from Bonferroni�s inequality �see Miller ���� p� ��� that

P
�  �Y �

n
�h�� ��h�

 � �bh � ah��n�p for h � f� g
� � p�

The desired result now follows from Lemma ��

��



Proof of Proposition �� Set Yi � v�Li� and Y �
i � v�L�i� for � � i � n� Throughout� we use

the algebraic identities

Zn �
�

n

nX
i��

Y �
i �

�

n�n� ��

nX
i��

nX
j�i��

YiYj

and

Z �
n �

m� �

m

�� �

n�

n�X
i��

�Y �
i �

� � �

n��n� � ��

n�X
i��

n�X
j�i��

Y �
i Y

�
j

�A �

where n� � n �m�
Fix a convex function f and assume rst that n � m� Using Jensen�s inequality �see ���

p� ����� and the fact that Z �
n 
 	� when n � m� we have

E
�
f�Z �

n�
�
� f�	�� � f �E �Zn�� � E �f�Zn�� �

Now assume that n � m� We establish the desired inequality by mimicking the argument
in Section � of ����� For y � �y�� y�� � � � � yn� � �n� set

zn�y� �
�

n

nX
i��

y�i �
�

n�n� ��

nX
i��

nX
j�i��

yiyj

and

z�n�y� �
m� �

m
zn�y��

Thus� Zn � zn�Y � and Z �
n � z�n�Y

��� where Y � �Y�� Y�� � � � � Yn� and Y � � �Y �
� � Y

�
� � � � � � Y

�
n��

Also set

Qn � f q � �q�� q�� � � � � qn� � f�� �� � � � � ngn 
 q� � q� � 	 	 	 � qn � n g
and denote by %n the set of permutations of f �� �� � � � � n g� For  � %n and y � �y�� y�� � � � �
yn� � �n� we abuse notation slightly and denote the vector �y	���� y	���� � � � � y	�n�� by �y��
Finally� for y � �y�� y�� � � � � yn� � �n and q � �q�� q�� � � � � qn� � Qn� set bzn�q� y� � zn�by��
where byi � y� for � � i � q�� byi � y� for q� � i � q� � q�� and so forth� For example�
when n � � and q � ��� �� �� �� ��� we have bzn�q� y� � zn�y�� y�� y�� y�� y	�� Similarly to
Equation ����� in ����� we can write

E �f�Zn�� � E
�
f
	
zn�Y �


�
� E

�
gn�Y

�� f�
�
� �����

where gn is a function of the form

gn�y� f� �
X
q�Qn

X
	�n

p�q� �f
�bzn	q� �y�
�

��



with each coe�cient p�q� � independent of f andX
q�Qn

X
	�n

p�q� � � ��

The representation in ����� can be interpreted as follows
 a realization y of the random
vector Y can be obtained by generating a realization y� of the random vector Y �� permuting
the components of y� according to a randomly selected permutation  � %n� and then
forming a new vector of length n by replacing each component of �y�� by � or more copies
of the component in accordance with a randomly selected vector q � Qn� The quantity
p�q� � is the probability that the components of y� are permuted according to  and then
the components of �y�� are duplicated in accordance with q�

Symmetry considerations imply that there exist numbers f p�q� 
 q � Qn g such that
p�q� � � p�q� for  � %n and q � Qn� so that

gn�y� f� �
X
q�Qn

p�q�

�X
	�n

f
�bzn	q� �y�
�

�
�

For xed q � �q�� q�� � � � � qn� � Qn and y � �y�� y�� � � � � yn� � �n� observe thatX
	�n

bzn	q� �y�


�
X
	�n

�� �

n

nX
i��

qiy
�
	�i� �

�

n�n� ��

nX
i��

nX
j�i��

qiqjy	�i�y	�j� �
�

n�n� ��

nX
i��

qi�qi � ��

�
y�	�i�

�A

� �n� ��&
nX
i��

y�i �
����n� ��&

n�n� ��

nX
i��

nX
j�i��

qiqj

�A nX
i��

nX
j�i��

yiyj

�
�

�n� ��&

n�n� ��

nX
i��

qi�qi � ��

�
nX
i��

y�i

�
n&

n� �

�
n� �

n

nX
i��

q�i

�
zn�y��

Denoting the identity function by h� we see that gn�y�h� � czn�y� for some constant c� It
follows from ����� and the unbiasedness of both Zn and Z �

n for 	� that

E
�
gn�Y

��h�
�
� E �zn�Y �� �

m� �

m
E
�
zn�Y

��
�
�

��



so that c � �m� ���m and thus gn�y�h� � z�n�y�� Using Jensen�s inequality� we have

gn�y� f� �
X
q�Qn

X
	�n

p�q� �f
�bzn	q� �y�
�

� f

��X
q�Qn

X
	�n

p�q� �bzn	q� �y�

�A

� f
	
gn�y�h�



� f

	
z�n�y�



�

Since y is arbitrary�

E �f�Zn�� � E
�
gn�Y

�� f�
� � E

�
f
	
z�n�Y

��

�

� E
�
f�Z �

n�
�
�

and the desired result follows�

Proof of Theorem 	� Fix t � � and n � f �� �� � � � �m g� We have

P
�
Z �
n � 	� � t

� � e�h�

��t�E

h
ehZ

�

n

i
� e�h�


��t�E
h
ehZn

i
for h � �� where the rst inequality follows from ����� and the second inequality follows
from Proposition �� Kra�t and Schmitz ���� show that

inf
h	�

e�h�

��t�E

h
ehZn

i
� e��bn��ct

���b�a�� �

so that

P
�
Z �
n � 	� � t

� � e��bn��ct
���b�a�� �

A symmetric argument establishes the same bound for P
�
	� � Z �

n � t
�
� and the inequality

in ������ follows� An argument as in ������ then establishes �������

Proof of Theorem 
� Fix 
 � �� n � f �� �� � � � �m g� and k � f �� �� � � � � jSj � n g� Since for
any random variable � � X � � we have

Var �X� � E
�
X�
��E� �X� � E �X��E� �X� � max

��u��
�u� u�� �

�

�
� �����

it follows that

	��S� � �b� a��

�
� jSj�b� a��

��jSj � ��
� d�b� a��

��d � ��
�

��



Using this result� Theorem �� and an argument as in the derivation of ������� we nd that

P

�
Z ��
n�S�� 	��S� � d

d� �

 �

d�b� a��

��d � ���

 I �n � k

�
� P

�
Z ��
n�S�� 	��S� � d

d� �

 �

	��S�

�d� ��

 I �n � k

�
� P

�
d� �

d
Z ��
n�S�� 	��S� � 


 I �n � k

�
� P

� jSj � �

jSj Z ��
n�S�� 	��S� � 


 I �n � k

�
� e��bk��c�

���b�a��

Similarly�

P

�
Z ��
n�S�� 	��S� � � d

d� �

 � d�b� a��

��d� ���

 I �n � k

�
� P

n
Z ��
n�S�� 	��S� � �


 I �n � k
o

� P

� jSj � �

jSj Z ��
n�S�� 	��S� � �


 I �n � k

�
� e��bk��c�

���b�a��

Thus�

P

�
jZ ��

n�S�� 	��S�j � d

d� �

 �

d�b� a��

��d� ���

 I �n � k

�
� �e��bk��c�

���b�a��

and ������ follows directly� The inequality in ������ now follows by an argument as in
�������
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