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ABSTRACT

For large, complex simulation models, simulation metamodeling is crucial for enabling simulation-based-
optimization under uncertainty in operational settings where results are needed quickly. We enhance
simulation metamodeling in two important ways. First, we use graph neural networks (GrNN) to allow
the graphical structure of a simulation model to be treated as a metamodel input parameter that can be
varied along with real-valued and integer-ordered inputs. Second, we combine GrNNs with generative
neural networks so that a metamodel can rapidly produce not only a summary statistic like E[Y ], but also
a sequence of i.i.d. samples of Y or even a stochastic process that mimics dynamic simulation outputs.
Thus a single metamodel can be used to estimate multiple statistics for multiple performance measures.
Our metamodels can potentially serve as surrogate models in digital-twin settings. Preliminary experiments
indicate the promise of our approach.

1 INTRODUCTION

Simulation is a powerful tool for designing and operating complex real-world systems in the face of
uncertainty. Simulation can help both in the initial design phase and, importantly, during real-time operations
by predicting near-term impacts of equipment failures, personnel changes, and so on. However, the full
potential of simulation for better design and operation of real-world systems has not yet been realized due to
the high computational expense of executing large, complex simulation models. This issue is exacerbated in
the setting of decision making under uncertainty, especially in operational or tactical settings where results
are needed quickly: simulation-based optimization often requires expensive evaluation of a large range
of alternative designs, where each design requires multiple simulation replications. A key technique for
alleviating these concerns is to build simulation metamodels. This paper aims to enhance the effectiveness
of metamodeling methods by exploiting recent advances in neural networks.

Metamodeling for simulation optimization A simulation metamodel is a mathematical function f that
maps a vector of simulation inputs x = (x1, . . . ,xd) to an output y = f (x) that approximates the output that
would be produced by actually running the simulation; see (Barton 2020) for an introductory treatment and
further references. The inputs xi are real or integer-ordered and might represent, e.g., order arrival rates or
bin capacities. The output y is typically a real number; for a stochastic simulation model, it is often of the
form E[Y ], where Y is the stochastic output of interest, e.g., the (random) average daily order retrieval time
in a warehouse. The idea is to execute the simulation model multiple times using a variety of x-values and
for each x(i) observe the simulation output y(i). Then a “response surface” is fit to the (x(i),y(i)) pairs; that
is, we fit a function f and then, for an input x, we estimate the output for the simulation model as y = f (x)
rather than obtain y via a simulation run. For an input x that has never been simulated, evaluation of f (x)
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Figure 1: A stochastic activity network describing a task that comprises six activities.

usually amounts to a weighted interpolation of results from nearby inputs x′ at which the simulation was
performed during fitting. Classical methods take f to be a linear or polynomial function and fit the model
using regression techniques. Researchers have also considered simple neural network representations of
f ; see, for example, (Al-Hindi 2004; Kilmer et al. 1994). Metamodeling methodology has been extended
to quantify the uncertainty of a metamodel output by augmenting a function value f (x) with prediction
intervals (PIs). For example, “stochastic kriging” (Ankenman et al. 2010) combines a polynomial function
to model the mean response, a Gaussian random field to model the “extrinisic” or “metamodel” uncertainty
due to the interpolation, and Monte Carlo methods to assess the “instrinsic” uncertainty arising from the
stochastic nature of the simulation model. The approach has been extended to handle integer inputs (Salemi
et al. 2019), and Lam and Zhang (2021) recently suggested an alternative PI approach for neural networks,
based on an empirical optimization framework.

Metamodels usually execute faster than the original simulations by orders of magnitude. This is true of
both regression-style metamodels and deep neural network metamodels, with the high performance of the
latter due to the rapid development of powerful GPU hardware and specialized software for model training
and execution. From the very beginning, therefore, researchers have recognized the potential of metamodels
for simulation-based optimization; see (do Amaral et al. 2022) for an extensive literature review as well as
(Zhang et al. 2021) for a recent contribution. The idea is that instead of running a complicated (stochastic)
optimization algorithm together with the raw simulation to find high quality system designs and operating
policies, we can apply the optimization method to the fitted function f .

Limitations of existing metamodeling methods Existing metamodeling methodology has a couple of
key limitations. First, an input x must be a fixed-length vector of real or integer-ordered values. Thus a
metamodel cannot easily represent variations in system structure—such as changes to the layout of aisles,
bins, or items in a warehouse—or changes to the sequencing and synchronization constraints on a set of
activities that comprise a task such as preparing an outgoing order. In principle, structural aspects can be
encoded via discrete variables—e.g., an adjacency matrix can describe bin layouts. However, such naive
representations are highly inefficient, do not easily allow for structures whose representations have varying
dimensions, and are further hampered by a lack of “permutation invariance”, with mere relabeling of
nodes non-intuitively yielding differing predictions (Marti 2019). The second limitation is that the output
of a metamodel is a real number such as E[Y ]. If the user decides that they are interested in a different
performance measure Y ′ (say, the maximum daily order retrieval time), then a new metamodel must be
fitted. Indeed, a new metamodel is required even if the user remains interested in Y but wants to assess
other aspects of Y ’s distribution such as moments, quantiles, or exceedance probabilities.

Order-assembly example The following simple example concretely illustrates the foregoing limitations.
Consider custom order-assembly tasks performed at a warehouse; each task comprises a set of activities
that can be modeled via a stochastic activity network (SAN) as in Figure 1. In this graph representation, each
node represents an activity having a random duration. The edges represent precedence relationships between
activities: an activity cannot start until its parent activities have completed. The random duration of the ith
activity is modeled as an Exp(λi) random variable, where λi depends on the skill level of the worker assigned
to the activity. Both the pool of available workers and the structures of the custom-assembly tasks are
constantly changing. Given an arriving assembly task and the current pool of available workers, the manager
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Figure 2: Graphical metamodeling overview. We extract the annotated graph representation of a simulation
model and encode it into a numerical vector using a GrNN. We then run the simulation model to generate
output quantities of interest. The encoded vector, together with the simulation outputs, form one training
point. Multiple training points—corresponding to simulations having different annotated graph structures—
are used to train a neural network metamodel. The figure illustrates the training process; during deployment,
we extract the annotated graph and feed it into the trained GrNN; the resulting encoded vector is then
passed to a trained MLP, CVAE, or CVAE+LSTM, depending on the type of metamodel.

must decide immediately how to best assign workers to minimize the mean task completion time E[Y ]. (A
more complex version of this problem might also involve a pool of shared resources, such as shared tools
among workers.) Simulating the task on the fly to find an optimal worker-assignment strategy for each task
that comes along would be prohibitively costly, but a traditional metamodel also will not suffice. Ignoring
the graphical structure and just inputting the λi’s to a metamodel degrades the prediction accuracy. E.g.,
looking at the example SAN, it may be intuitively clear that an activity lying in the critical paths of many
downstream activities should be assigned a skilled worker. A traditional metamodel would not incorporate
this intuition when modeling the response surface. Moreover, the training data (x(1),y(1)), . . . ,(x(n),y(n))
represent different SAN graphs with different numbers of required workers, so that the x(i) vectors have
different dimensions, thwarting existing methods. In addition, if the manager starts to worry about risk and
wants to estimate a probability of the form P(Y > τ), then a new metamodel would need to be built.

Modeling stochastic processes with neural networks To enhance simulation output metamodeling, we
build upon our prior work on simulation input modeling. Specifically, in (Cen et al. 2020) we developed
a framework called NIM (for Neural Input Modeling) that uses a type of neural net called a variational
autoencoder (VAE) to automatically learn a complex distribution from a set of i.i.d. samples and then rapidly
generate new samples from the learned distribution on demand. Furthermore, we showed how incorporating
Long Short-Term Memory (LSTM) neural network components into a VAE allows learning and generation
not just of i.i.d. sequences but also of autocorrelated stochastic processes, while allowing a very compact
neural network representation. We have recently extended the framework to allow the VAE to take an extra
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piece of information called the “condition” as an input; Zhang et al. (2021) recently proposed a similar
idea for numerical conditions in a non-generative metamodeling setting. Conditional VAEs (CVAEs) can
generate samples from a probability distribution conditioned on the extra information, e.g., the interarrival
times to an ice-cream shop given the outside temperature (Cen and Haas 2022).

Our contributions In this paper, we overcome the limitations of existing simulation metamodeling methods
by using graph neural networks (GrNNs) to represent the graph structure of a simulation model in an
effective manner and then combining the GrNNs with generative neural networks. Our approach leverages
the fact that many simulations of real-world systems have aspects that can be represented by a graph
structure. Incorporating this structural information yields insights into the inner workings of a system and
leads to more accurate simulation metamodels. Use of GrNNs and generative neural networks has been
receiving increasing attention from the model-based reinforcement learning (RL) community over the past
few years (Moerland et al. 2022) in applications like robotics and physics, where the typical setting is a
discrete-time Markov decision process. To our knowledge, the current paper is the first to apply these ideas
to metamodeling of discrete-event simulations for operations management.

We develop a series of increasingly powerful metamodels by combining the GrNN component with
different types of neural network components. Figure 2 gives an overview of our approach.

Graphical metamodels (GMMs) In our basic GMM approach, we take a simulation model and extract
the graph structure of interest, e.g., a task graph or a warehouse layout. Each node in the graph can be
annotated with a vector of numerical input values, or “features”. For a SAN as in our example, each
node i is annotated with an activity-completion rate λi corresponding to the worker who is assigned to the
activity. A GrNN is then used to encode the annotated graph structure into a high-dimensional vector, or
“embedding”, which summarizes the information in the graph. The encoding efficiently and automatically
captures the “important” aspects that differentiate one annotated graph structure from another. The encoded
graph representation hG is then input into a simple multilayer perceptron (MLP) neural network that
predicts the output y of interest, such as an expected task completion time y = E[Y ]. GMMs provide the
first simulation metamodeling framework that allows leveraging of this type of structural information and
hence allows a single metamodel to capture a broad variety of structurally varying simulation models.

Generative graphical metamodels (GGMMs) To build a metamodel that can capture the entire distribution
of a performance measure Y , we combine the GrNN with the simplest version of a CVAE. Specifically, we
train a GGMM by considering each annotated graph structure in a training set. For the ith graph structure,
we run the simulation model multiple times to generate a sequence of i.i.d. outputs Y (i)

1 ,Y (i)
2 , . . . ,Y (i)

m (where
each output is, e.g., a sample from the distribution of the daily average retrieval time) and feed these
points into a CVAE, where the “condition” is the graph encoding from the GrNN. Then, given a previously
unseen graph structure, the trained GGMM can rapidly generate a sequence of i.i.d. samples {Yj} j≥1
from (approximately) the distribution of the performance measure Y (conditioned on the graph structure),
allowing us to estimate the entire distribution of Y and as well as providing point estimates and confidence
intervals for statistics of interest such as moments, quantiles, and so on, using a single metamodel.

Dynamic GGMMs (D-GGMMs) To extend our metamodeling framework to capture an entire stochastic
output sequence from a simulation model, we proceed as with GGMMs, but now incorporate LSTM
components into our CVAE. In more detail, the training data for a D-GGMM is a sample path of simulation
outputs, for example, an autocorrelated sequence of item retrieval times in a warehouse. Then, given a new
graph structure, the trained D-GGMM can generate a stochastic sequence of retrieval times {Rt}t≥1 that
mimics a simulated sequence. This additional flexibility allows for estimating multiple performance measures
from a single model, e.g., the median daily retrieval time, maximum daily retrieval time for a certain category
of item, and so on. Moreover, as with the GGMM, we can estimate multiple statistics of the distributions of
the multiple performance measures. Put another way, the trained D-GGMM essentially becomes a surrogate
for the original simulation model. The surrogate model produces output much faster, since it uses fast matrix
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operations (which can be performed, e.g., by GPUs) rather than the painstaking time-advance mechanism
required by the original simulation. A D-GGMM can potentially be used as a surrogate model component
in a large-scale system optimization model, e.g., for a distribution center (Honeywell-Intelligrated 2021).
Fast surrogate models can potentially be very useful in digital-twin settings, where fast re-planning on the
fly can be important in the face of “structural shocks” (Marquardt, Cleophas, and Morgan 2021). Gaussian
process models have already been identified as useful components of digital twins—see, e.g., (Wright and
Davidson 2020)—so D-GGMMs can provide equivalent speed but richer functionality.

2 GRAPHICAL METAMODELING

In Sections 2.1–2.3, we describe the GMM, GGMM, and D-GGMM frameworks in more detail.

2.1 Basic GMM

We consider graph structures that are extracted from simulation models. A graph is represented as G= (V,E),
where V is the set of nodes and E is the set of edges. We currently extract the simulation graph manually; in
ongoing work we are investigating methods for automatically extracting graphs from simulation programs.
Each node i can be annotated with a feature vector xi ∈ Rd representing properties specific to the node. In
our SAN example, each xi is one-dimensional and contains the exponential activity-completion rate λi.

GrNNs A graph neural network (Scarselli et al. 2008) is designed to efficiently process graph data structures—
which model complex interactions among entities—to create an effective compressed representation that can
be used for downstream analytics. For example, GrNNs have been successfully used to predict the chemical
properties of molecules that are represented as graphs (Gilmer et al. 2017) and to recommend interesting
items based on a complex social network of users and items (Fan et al. 2019). The node annotations
correspond to the usual numerical input parameters used in simulation metamodeling. GrNNs are thus
well suited to simulation metamodeling of complex environments such as logistics systems, hospitals,
warehouses, factories, and so on.

Our GMM network uses a specific type of GrNN called a Message-Passing Neural Network (MPNN),
originally introduced by Gilmer et al. (2017). An MPNN performs a prediction task by encoding a graph
into a “graph-level” high-dimensional embedding hG. The graph embedding hG then is passed through an
MLP to predict E[Y ]. In this way, graph structures input to the metamodel can be varied just like numerical
input parameters. Consider, e.g., prediction of the expected completion time for a task described by a
SAN. The MPNN would first transform the graph and the task-completion rates attached to nodes into a
k-dimensional embedding. The transformation will place similar SAN configurations near each other in
the embedding space.

GMMs in detail The MPNN creates a graph-level embedding of the SAN by propagating ”neural messages”
between neighboring nodes and then aggregating the messages over all the nodes in the SAN. This procedure
is called “message passing”. Over multiple message-passing iterations, information at local nodes spreads
to the entire network. The aggregation of messages allows nodes to “borrow” information from each other,
while respecting the local network structure.

Mathematically, an MPNN performs three steps: initialization, message passing, and regression. In the
initial (0th) iteration, the message-passing algorithm transforms each node annotation xi to a k-dimensional
embedding h(0)i via multiplication by a weight matrix W1 and addition of a “bias” b1: h(0)i = W1xi + b1.
In general, there may be several different types of nodes and the dimension of the feature vector x may
vary by type. In a warehouse-design application, for example, the feature vectors for bins and items may
have different dimensions. In this case we use a different weight matrix for each type, designed so that the
resulting feature embedding is k-dimensional regardless of type.

Next, the algorithm executes L (> 1) message-passing iterations. At each iteration l, each node i acts
as a sender and then a receiver. As a sender, node i sends its current feature embedding h(l−1)

i as a neural
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Figure 3: CVAE training and generation architectures.

message to all its immediate neighbors. Next, as a receiver, node i aggregates the neural messages from
itself and its neighbors and applies a nonlinear function σ to the aggregated message. Formally,

h(l)i = σ(W2h(l−1)
i +W3 ∑

j∈N(i)
h(l−1)

j +b2),

where N(i) is the set of node i’s immediate neighbors in an undirected graph or the parents of node i in
a directed graph. As with W1 and b1, the weights W2, W3 and bias b2 are learned using training data. In
general, the weights and biases may vary from iteration to iteration, but for simplicity we reuse the weights
and biases across message-passing iterations; we found this approach to be sufficient for many practical
applications. After performing L message-passing iterations, we compute the final embedding hG of the
entire graph by summing the final values of the node embeddings: hG = ∑i h(L)i . We have thereby encoded
a complex simulation graph into a k-dimensional embedding.

Finally, we use an MLP to perform the regression task, i.e., to predict E[Y ] given an encoded graph
hG. The MLP comprises three layers of neurons: an input layer, a hidden layer and an output layer. In the
hidden layer and the output layer, each artificial neuron receives a signal from one or more neurons in
the previous layer, applies a nonlinear “activation function”, and then sends the result to the next layer or
outputs it, respectively. Formally, the computations for deriving an estimate ŷ of E[Y ] given an encoded
graph hG are

g1 = ReLU(W4hG +b3), g2 = dropout(g1, p), ŷ =W5g2 +b4,

where the ReLU activation function is defined by ReLU(x) = max(0,x) and, for each element in vector
g1, the function dropout(g1, p) independently sets the element to zero with probability p and retains its
current value otherwise (see below). The training data for the GMM consists of points of the form (G̃,y),
where G̃ is an annotated graph and y is the estimate of E[Y ] produced by the simulator. During training, the
weights and biases of the GrNN and MLP are iteratively adjusted to minimize the discrepancies between
the true y-values and the predicted ŷ-values.

Hinton et al. (2012) proposed the dropout technique as an effective regularization method to avoid
overfitting to the data during MLP training, thereby increasing the neural network’s generalization ability.
The dropout mechanism can also be used to assess the uncertainty of the MLP model during the prediction
phase by first computing hG and then executing the MLP calculation multiple times, resulting in different
sets of dropped-out entries and hence different predictions of E[Y ]; see (Gal and Ghahramani 2016).

2.2 Generative GMM

To allow generation of i.i.d. samples of a performance measure Y rather than just outputting a single
numerical value such as E[Y ] as in classical metamodeling, we replace the MLP component of a GMM
with a conditional variational autoencoder (CVAE) to form a GGMM.

VAE overview An ordinary (unconditional) VAE can learn the probability distribution P(Y ) of the simulation
output Y from observed samples of Y and then efficiently generate new samples from P(Y ); see (Cen et al.
2020) for details. The VAE generative model for the observed data assumes that a data sample is created
by (1) sampling a latent variable from a prior N(0,1) distribution, (2) feeding that latent variable into a
function that outputs a data-generation distribution, and (3) drawing a sample from the data-generation
distribution. The VAE approaches the learning and generation tasks via a pair of MLP neural networks: an
encoder E and a decoder D. The encoder E in the VAE learns to infer the latent-variable values that likely
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...[
zt , ŷt−1,hG
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Figure 4: CVAE+LSTM architecture.

produced the observed data samples. Thus a trained encoder maps an observed data value y into a latent
value z that serves as the internal representation of y. The mapping is stochastic in nature: the encoder maps
y to a pair (µ̃, σ̃) =

(
µ̃(y), σ̃(y)

)
and then generates z from a N(µ̃, σ̃2) distribution. The decoder D learns the

function used in (2) above, taking a latent-variable sample z and outputting the data-generation distribution
from which the final sample is drawn. Specifically, the decoder maps z to a pair (µ̂, σ̂) =

(
µ̂(z), σ̂(z)

)
and then generates the output sample ŷ from a N(µ̂, σ̂2) distribution. Note that the input z to the decoder
depends on whether we are in the training or generation phase. During training, a sample from the N(µ̃, σ̃2)
distribution will be input to the decoder function; during generation, z is a sample from N(0,1). The loss
function used to train the VAE ensures that (i) given i.i.d. N(0,1) z-values, the decoder will produce µ̂(z)
and σ̂2(z) values such that the resulting ŷ-values will jointly look like i.i.d. samples from P(Y ), and (ii) a
set of z-values produced by the encoder, taken together, look like i.i.d. samples from a N(0,1) distribution,
since this is what is needed during generation. Importantly, the loss term corresponding to objective (ii)
functions as a regularizer and prevents overfitting to the data. The basic VAE architecture can be modified
to exploit known distributional properties of Y —such as nonnegativity and multimodality—in order to
increase accuracy and speed, as well as to handle multivariate processes, categorical-valued processes, and
extrapolation beyond the training data for certain nonstationary processes (Cen and Haas 2022).

Conditional VAEs The basic VAE model can be modified such that the encoder and the decoder can learn
a conditional distribution P(Y |C) and then, given a value c, generate samples from P(Y |C = c); see (Cen
and Haas 2022). CVAEs leverage information from simulation runs corresponding to various values of C
to generate samples for a value C = c that has never been observed before. In our setting, we choose the
“condition” to be the encoded graph structure hG learned by the GrNN. The resulting CVAE architectures
for training and generation are shown in Figure 3. Note that, in the figure, an input pair [y,hG] for the
encoder (during training) comprises an observation y of the output of the simulator when the annotated
graph structure has encoding hG. The output ŷ from the decoder during generation is (approximately) a
sample from P(Y | hG). Other conditional information besides hG can also be included in a CVAE.
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2.3 Dynamic GGMM

We can extend the GGMM framework to allow mapping of an annotated graph G to a stochastic pro-
cess of (autocorrelated) outputs {Yi}i≥1—e.g., a sequence of item retrieval times in a warehouse—that
mimics the output of the original simulation model; that is, G is mapped to a surrogate model. To do
this, we modify our CVAE architecture by replacing the MLP components in both the encoder and de-
coder with Long Short-Term Memory units, yielding a dynamic GGMM (D-GGMM). An LSTM is a
type of recurrent neural network that can concisely capture statistical dependencies across time (Cen
et al. 2020; Hochreiter and Schmidhuber 1997; Lipton 2015). For each D-GGMM training point (G,y),
the simulation-output component y is now a sample path y = (y1,y2, . . . ,yt) with corresponding latent
variable z = (z1,z2, . . . ,zt). Instead of feeding a latent variable z directly to the decoder during training
or generation, we pass triples (z1,0,hG),(z2,y1,hG), . . . ,(zt ,yt−1,hG) to the decoder during training, and
triples (z1,0,hG),(z2, ŷ1,hG), . . . ,(zt , ŷt−1,hG) during generation. Figures 4a and 4b show the training and
generation architectures. In our implementation, we only need to store one copy of hG, in memory.

3 EXPERIMENTS

We describe several preliminary experiments in which GMMs, GGMMs, and D-GGMMs were used for
prediction, estimation, optimization, and surrogate modeling in the context of SAN, warehouse, and queuing
models. For all experiments, we used an AMD Ryzen 5 3600 6-Core CPU processor with 48 GB of RAM
to run the SAN and warehouse simulations in order to generate training and testing points; the simulation
is written in Rust 1.62.0 with the Rayon 1.5 data-parallelism library to fully utilize the six cores so that we
can generate these points in parallel. In general, the overall processing time for running these independent
simulations will decrease linearly as more processors are added. To train the neural networks, we used an
NVIDIA GeForce GTX 1660 SUPER GPU. GrNNs were trained using L = 4 message-passing iterations.

3.1 A GMM for Predicting Expected Task Completion Time in a SAN

We first used a GMM—with hidden-state dimension k = 32 for the GrNN and with 32 neurons for the
MLP component—to predict the expected completion time of a SAN of the type shown in Figure 1. Our
training dataset consisted of 2,000 randomly generated SANs and, for each, their corresponding expected
completion time estimated over 100 replications; it took 4.44s to create the dataset via parallel simulation.
We constructed a random SAN by (i) selecting the number of activities N randomly and uniformly from
the range [3..10], (ii) generating a random graph by adding a directed edge between each node pair (i, j)
with probability 0.5, independently of all other pairs, and (iii) assigning an activity rate λi to each node i
chosen uniformly from [1,4]. In step (ii), we actually restrict attention to pairs (i, j) with i < j to ensure
that the SAN graph is acyclic, and we add edges from the start node and to the end node as needed to
ensure that each intermediate node is contained in at least one path from the start to the end node. We tested
our method on a dataset comprising 2,000 SANs (generated independently of the SANs used for training).
Each SAN was simulated 10,000 times to obtain a highly accurate estimate of the expected completion
time that served as the ground truth. The mean absolute error (MAE) for the GMM with respect to the
ground truth was 2.80%. Interestingly, the MAE between GMM and ground-truth predictions was smaller
than the observed MAE of 3.37% between the ground truth and estimates using the training data (i.e.,
based on 100 simulation replications for each SAN in the training set). This result indicates that, when
estimating the mean task completion time for a given SAN, the GMM was able to interpolate results from
a collection of similar SANs that were observed during GMM training, increasing the effective number of
observed replications well beyond the 100 replications used for direct simulation of the given SAN.

As a baseline, we also predicted expected task completion times for previously unseen SANs using
scikit-learn implementations of linear regression (LR) metamodeling and Gaussian-process metamodeling
(GPM) with a radial-basis-function kernel (Rasmussen and Williams 2006, Algorithm 2.1) and default
hyperparameters. For LR and GPM, we cannot input the precise graph structure of the SAN in a reasonable
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way, so the input to each of these metamodels is simply a vector x, where xi = λi is the completion rate
for the ith task. As an “ablation” test, we also considered a simple MLP (two layers of 64 neurons each)
that takes the same simplified input x as above. Note that this simplified representation actually contains
some information about the graph structure since lower-numbered tasks tend to precede higher-numbered
tasks. As before, we used a training dataset of 2,000 SANs, each simulated 100 times, and a test dataset of
2,000 SANs, each simulated 10,000 times. Also, for this comparison experiment, we require that all SANs
have exactly 15 nodes since neither LR or GPM can handle input points x that vary in length. The training
times were 1.29s for the MLP metamodel and 74s for the GMM. The MAE values were 8.39% for LR,
12.94% for GPM, and 8.77% for MLP; the MAE for GMM was 2.59%, a significant improvement.

3.2 A GMM for Optimizing a Warehouse Layout

We next applied a GMM to an optimization task. Specifically, we used a trained GMM to search for an
item-placement strategy in a simple warehouse system. The warehouse layout is illustrated in Figure 5. The
warehouse has 16 bins and 16 items; each bin holds one item. We denote by I = {1,2, . . . ,16} the set of
items. Item i weighs (14+ i)/15 kg for i ∈ I. The warehouse receives orders, each of which specifies four
distinct items. We generate each order randomly, as follows. The items are partitioned into four equal-sized
groups, where I1 = {1,2,3,4}, I2 = {5,6,7,8}, and so on. An initial item i0 is selected at random from I;
denote by I0 the group that contains i0. The remaining items are selected sequentially: at each step we select
an item according to the probability distribution π , where π(i) = 0.3 for i ∈ I0 −{i0} and π(i) = 0.1/12
for i ∈ I − I0. If a selected item already appears in the order, we ignore the selection and try again; the
sampling steps are repeated until four items are chosen. Thus items in the same group have similar weights
and are more likely to appear together in an order. Once an order has been received, an unmanned vehicle
starts from its base at node 17, goes to the first lane from the top that contains an item in the order, and
enters the lane to pick it up. Once the vehicle enters a horizontal lane it cannot turn around and must go
to the end of the lane before it can switch to another lane. The vehicle has an initial speed of 1.0. Every
time the vehicle picks up an item, its speed is reduced by 0.1× (item weight). The goal is to determine
the placement of items in the bins that minimizes the expected order-retrieval time.

For this experiment, we simulated 10,000 randomly-generated placements, each with 100 random
orders, to obtain an estimate of the expected retrieval time; it took 11.21s to generate the training data.
We then trained the GMM to predict the expected retrieval time given the item placement graph of the
warehouse; the total training time was 68s. After training, we used a simple local search algorithm to find the
optimal placement. The algorithm starts with a random placement. It then repeatedly evaluates the placement
obtained by swapping the items in a randomly selected pair of bins, only keeping the updated placement
if the GMM predicts a smaller expected retrieval time. After 2,000 iterations, the local search algorithm
produced a placement having a mean retrieval time (MRT) of 21.048. Based on 100,000 replications the
simulator estimates the true MRT for this placement to be 21.033, a difference of 0.07%. To estimate the
true optimal placement, we used the local search algorithm together with the actual simulator; the simulator
evaluated 10k placements, each simulated 100k times. The best placement found has an MRT of 20.932.
The solution found by the GMM has an optimality gap of 0.49%, whereas an average solution has a gap of
2.00%, i.e., finding the best solution is nontrivial. The local-search optimization algorithm was written in
Python, and the total time spent on optimization was 2.4s. The fast execution time shows GMM’s potential
for real-time planning. For a baseline comparison, if we run the local search algorithm for 2,000 iterations
but simulate each candidate placement on the fly using 100 replications, it takes 12s to return a placement
with MRT 21.18; thus use of the GMM yields a 5x speedup even for this relatively simple simulation.

As a sanity check, we also considered a simplified model where eight items weigh 2 kg each and the
others weigh 1 kg each, and the items in an order are chosen randomly. After 2,000 iterations, the local
search algorithm produced the placement shown in Figure 5, which has an expected retrieval time of 31.31.
The solution is intuitive since the vehicle travels from top to bottom lanes, and placing heavier items in
the top two lanes would prematurely reduce the vehicle’s speed.
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Figure 5: Warehouse layout. Outer number
is the bin index; inner number is the weight
of stored item.

Figure 6: Histograms of i.i.d. SAN-completion-time sam-
ples from the simulation and from the GGMM.

Table 1: MAE for statistics of the SAN task completion-time distribution.

Mean Variance 25% 50% 75% 90% 99%

GGMM 3.15% 12.36% 3.62% 3.06% 2.93% 3.36% 6.51%
Training 3.80% 16.15% 5.58% 4.85% 4.70% 5.82% 10.29%

3.3 A GGMM for Estimating the Distribution of the Task Completion Time in a SAN

Next, we used a GGMM to estimate properties of the entire distribution of the task completion time in a
SAN. We created the SANs the same way as in Section 3.1. Again, we generated 2,000 SANs, simulated
the ith SAN 100 times, and collected the resulting random completion times Y (i)

1 , . . . ,Y (i)
100. Now, instead of

taking the average of the 100 samples to approximate the mean E[Y (i)], the raw data points were used to
train the GGMM; the training time was 185s. At test time, for each of an independent set of 2,000 SANs,
we sampled the GGMM 100,000 times and estimated the mean, variance, and 25%, 50%, 75%, 90%, and
99% quantiles of the completion time. We compared these estimates to the ground-truth values obtained
by simulating every SAN 100,000 times. The results are summarized in Table 1. We again observe that
the GGMM estimates are consistently closer to the ground truth than are direct estimates based on 100
simulation replications per SAN in the training data, especially for the tail of the distribution, i.e., the 90%
and 99% quantiles. Also, for a specific SAN with six activities and all activity rates equal to 2, we sampled
the GGMM 10,000 times and plotted the histograms of the completion times as well as of the completion
times obtained by simulating the actual SAN. As can be seen in Figure 6, the histograms indicate a close
match between the ground-truth distribution and the distribution generated by GGMM.

3.4 A GGMM for Minimizing Task Completion Cost under a Chance Constraint

Our next experiment shows how GGMMs can be used for constrained stochastic optimization. The goal is
to minimize the cost of completing the task in Figure 1 under the constraints that (i) the workers’ activity
rates satisfy λ

−1
i ∈ Λ

∆
= {2,2.25,2.5,2.75,3} for i ∈ [1..6] and (ii) 60% of the time, the task completion

time Y is less than 15 minutes. We use the harmonic mean H(λ1, . . . ,λ6) of the workers’ activity rates as
a proxy for the cost because a higher rate usually means a more skilled worker and thus a higher cost.
Mathematically, we have the following optimization problem:

minimize H(λ1, . . . ,λ6) s.t. P(Y < 15)≥ 0.6 and λ
−1
i ∈ Λ for i ∈ [1..6].
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We reused the GGMM trained in the experiment of Section 3.3 and used local search for optimization
(incorporating a feasibility check). For each iteration, 10,000 samples were generated from the metamodel
to estimate P(Y < 15). After 200 iterations, which took 53.1s, the search algorithm returned the assignment
{λ

−1
i }1≤i≤6 = (3,3,2,3,3,2.75), which has a cost of 0.36. This small problem allowed for an exhaustive

search, which returned an optimal assignment of (2,3,3,3,3,3), which has a cost of 0.35. Our objective
value is thus within 3% of optimal. In contrast, the average objective value for a feasible assignment is
0.40, i.e., 14% above optimal.

3.5 D-GGMM for Surrogate Simulation of Queue Departure Times

Finally, we applied D-GGMM to create a proxy model for sequences {Yi}i≥0 of successive departures times
of jobs from a queueing network. To generate sample paths for training, we simulated 1,000 queueing
networks with different network topologies for ten times each and collected the first 50 inter-departure
times; data generation took 24.2s. The topologies of the networks were created using the same procedure
as for SANs in Section 3.1. Here, an edge (i, j) indicates that upon completion of service at queue i, the job
goes to queue j with probability p = 1/out-degree(i). The number of queues is uniformly randomly sampled
from [5..7]. Each interarrival time is an i.i.d. sample from a Gamma(2,2) distribution, and the service times
for the i-th queue have an Exp(λi) distribution, where λi is uniformly randomly sampled from [1,10]. It took
701s to train the D-GGMM. During testing, we used the trained model to generate 1,000 sample paths of
length 50, and these sample paths were compared against 1,000 ground truth (i.e., simulated) sample paths.
To compare these complex, nonstationary stochastic processes, we took the 1,000 ground-truth sample
paths and computed empirical correlation coefficients ρ̂GT

i j = Ĉorr[Yi,Yj] for 1 ≤ i, j ≤ 50. We similarly
computed ρ̂D-GGMM

i j for the sample paths generated by D-GGMM. We did this of each of two queueing
networks, denoted QN1 and QN2, having different network topologies and different service rates. Overall,
the average of the differences δi j = |ρ̂D-GGMM

i j − ρ̂GT
i j | is 0.0343 for QN1 and 0.0347 for QN2, indicating

good agreement.

4 CONCLUSIONS AND FUTURE WORK

Our preliminary results indicate the potential usefulness of GrNNs and generative neural networks for
enhancing simulation metamodeling and thereby facilitating operational and tactical decision making in
complex, uncertain environments. As mentioned, one open problem is how best to automatically extract
the graph structure from a simulation. While extracting graph structure from, e.g., stochastic Petri nets
(Haas 2002) or queueing networks is relatively straightforward, extraction is challenging for commercial
simulation packages. Another challenge is uncertainty quantification. Recall that dropout methods, when
used during prediction, can be used to quantify metamodel uncertainty, and Lam and Zhang (2021) discuss
other potential approaches. This raises the possibility of using sequential experimental design techniques to
speed up training, as well as combining metamodel and simulation uncertainty to provide an overall measure
of prediction uncertainty. We further plan to test our techniques on large-scale simulation methods and state-
of-the-art stochastic optimization methods. Our code is available at https://github.com/cenwangumass/gmm.
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