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Discrete-Event Stochastic Systems
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» System changes state when events occur
» Stochastic state changes
» At strictly increasing sequence of random times
» Underlying stochastic process { X(t): t >0}
» X(t) = state of system at time t (a random variable)
» Piecewise-constant sample paths
» Typically not a continuous-time Markov chain
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Generalized Semi-Markov Processes [Matthes62, Whitt80]

» Classical model for discrete-event stochastic systems

» Subsumes: queueing networks, SMPs, CTMCs, SPNs
» Central to simulation theory

» Building blocks

» S = set of states (finite or countably infinite)
» E = set of events (finite)

» E(s) = active events in state s

» p(s’;s, e*) = state-transition probability

» One clock per event: records remaining time until occurrence

clock reading
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Clocks (Event Scheduling)
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» Active events compete to trigger state transition

» The clock that runs down to O first is the “winner"”
» Can have simultaneous event occurrence: p(s’;s, E*)

» At a state transition s = s’: three kinds of events
» New events: Clock for €’ set according to F(x; e’)
» Old events: Clocks continue to run down
» Cancelled events: Clock readings are discarded
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The GSMP Process

» The continuous-time process: { X(t):t >0}
» X(t) = the state at time ¢t
» A very complicated process
» Defined in terms of Markov chain {(S5,,C,) :n >0}
System observed after the nth state transition
S, = the state
Co=(Ca1,..., Cym) = the clock-reading vector
Chain defined via GSMP building blocks
initial distribution p on state and clocks
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Definition of the GSMP
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Example: GI/G/1 Queue
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X(t) = "“number of jobs in system at time t”
» $={0,1,2,...}
> E={e,e}
» e = “arrival”
> e = “service completion”
» E(0)={e1} and E(s) ={e,e} fors >0

v

p(s+1;s,e1)=1and p(s—1;s,e) =1
F( o el) = Finterarrival and F( oy 62) = Fservice
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Harris Recurrence: A Basic Form of Stability

» Definition for general chain { Z, : n > 0} with state space I'

P,{Z,cAio.} =1,z whenever ¢(A)>0

¢ is a recurrence measure (often “Lebesgue-like")

Every “dense enough” set is hit infinitely often w.p. 1

No “wandering off to co”

Chain admits invariant measure mo: [ P(z,A) mo(dz) = mo(A)

vy v VvYy

» Positive Harris recurrence:

» Chain admits invariant probability measure 7
» P.{Z1e A} =x(A)
» Implies stationarity when initial dist'n is 7

» When is { (Sp, Cp) : n > 0} (positive) Harris recurrent?
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Some Stability Conditions

» Density component g of a cdf F: F(t) > fotg(u) du

> s — s iff p(s’;s,e) > 0 for some e

» s~ s eithers — s ors —s) ... 55 ¢

» Assumption PD(q):
» State space S is finite

» GSMP is irreducible: s ~ s’ for all s,s" € S
> There exists x € (0, 00) s.t. all clock-setting dist'n functions

» Have finite gth moment
» Have density component positive on [0, X]

9 Peter J. Haas, Peter W. Glynn ETH April 2009



Positive Harris Recurrence in Light-Tailed GSMPs [Haas99]

10

v

v

v

v

v

#({s} x A) = Lebesgue measure of AN [0,x]M

Theorem: If Assumption PD(1) holds, then the (S, C,) chain
is positive Harris recurrent with recurrence measure ¢

Implies £, {S, =sio.} =1forallse S

with finite expected (continuous-time) hitting times

Proof:

» Show that chain is “¢-irreducible”
» Establish Lyapunov drift condition and apply MC machinery
(Meyn and Tweedie, 1993)

Alternate approach to recurrence: geometric-trials arguments

» Can drop positive-density assumption
» Use detailed analysis of specific GSMP structure
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Positive Recurrence in Heavy-Tailed GSMPs: It Depends

» Example 1: Uninfluential events
» Forallse€ S: e € E(s) and p(s;s,e) =1
» No effect on state or other clocks
» If all heavy-tailed events are uninfluential and PD(1) holds
otherwise, then positive recurrence

» Example 2: e; is heavy-tailed, so no positive-recurrence
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Recurrence in Heavy-Tailed GSMPs
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Sp = state just after nth state transition
Conjecture: P{S, = s i.o.} =1 for each s under PD(0)
» State space S is finite
» GSMP is irreducible
» 3x > 0s.t. each F(-;e) has positive density on (0, x)
Certainly true for CTMCs
CONJECTURE IS FALSE for GSMPs!

> In the presence of heavy-tailed clock-setting dist'ns
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A Counterexample
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S={1,2,3}and E ={e,e,e3}
Event sets: E(s) ={e1,er, e3} forall s
(renewal processes)
p(s';s,e*)=0or1
Clock-setting distributions:
» F(t;e)=1—(1+1t)@
» F(t;e)=1—(1+1t)7#
» F(-;e3) is Uniform[0, 3]
with 3>1/2anda+ (<1
GSMP hits state s = 2 only if:

» ¢e; occurs and then e occurs
with no intervening occurrence of e;

Claim: P{S,=21i.0.} =0

» Intuition: heavy clocks are rarely small

simultaneously
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Proof

» Observe: P{S,=2i0.} =0iff P{B,io0.} =0
» By ={G(T,) < G(T,)}
» T, = nth occurrence time of ¢
» Ci(t) = clock reading for ¢; at time t

» Borel-Cantelli: suffices to show that >~ P{B,} < o
» Bound P{ B, } by an integral:
P{Bn} < [y P{G(t) < a}f"(t)dt
» f*" = density of T, = n-fold convolution of 7(-;e;)
» Sum over n:
Ynti P{By} < fy~ h(t)un(t) dt

» h(t)=P{G(t)<a}
» u; = renewal density function for F(-;e;)

> So suffices to show that [ h(t)uy(t) dt < oo
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Proof—Continued

» To show: [;° h(t)ui(t)dt < oo where h(t) = P{Cy(t) < a}

» Renewal argument: h= U, x Q
» U, = renewal function for F(-; &)
> Q(t) = F(t+ are) — F(t; &)
» Heavy-tail key renewal theorem [Erickson70]:
» Light-tail KRT: h( )—> m2( )/ ma(o0)
> where my(t) = [ F(u;e)du=(1+t)""?/(1-p)
» F=1- F
» Regular variation: G € RV, iff lim;_o, G(tx)/G(t)
» Erickson: h(t) = O(1/my(t))
» Thus h(t) = O(t7 1)
N(D
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Proof—Continued

» To show: [;° h(t)ui(t) dt < oo
where h(t) = O(t°~1)
» Tauberian theorems: l_-_( -;e1) € RV_, = Ui € RV,
» U; = renewal function for F(-;e)
» Landau’s theorem: wu; ultimately monotone = u; € RV, 1

» Temporarily assume ultimate monotonicity
» Result in Feller = v (1) = O(t* 1)

» Combine: [°h(t)ui(t) dt = [;° O(t*TPT2) dt < o0
sincea+f[F+e<1
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Ultimate-Monotonicity Proof (Sketch)

> L(f)(s) = as®e°T(—a,s), where
(a,s) :/ e tta gt
S

+ et = {2

L(fi)(s)
> L(ug)(s) = m — u1(0+) = g(s), where
g(s) = aseT(~as) e

1 —as®esT(—a, s)

> g(s) is analytic except at origin

17 Peter J. Haas, Peter W. Glynn

ETH April 2009



Ultimate-Monotonicity Proof — Continued
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» Inversion formula: uj(t) = 2/ e*g(s)ds
Tl J1—ico

» Apply Cauchy's integral theorem:
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Summary and Conjecture

# HT Clocks RW Equiv. Recurrent?

" Positive Recurrent”?

0 — Yes
1 2
>2 >4 Depends

Yes
Depends
Depends
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A Special Case

» Hazard rate: h(x;e) = f(x;e)/F(x;e)
» Theorem: P{S, =si.o.} =1 for each s if

» State space S is finite

» GSMP is irreducible

» 3x > 0s.t. each F(-;e) has positive density on (0, x)

» At most one active event with heavy-tailed clock-setting dist'n
a(e) < h(x; e) < B(e) for each light-tailed event e

v

» Proof uses regenerative structure [Glynn89] + geometric trials
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Questions?

www.almaden.ibm.com/cs/people/peterh

:
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