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Discrete-Event Stochastic Systems

I System changes state when events occur
I Stochastic state changes
I At strictly increasing sequence of random times

I Underlying stochastic process {X (t) : t ≥ 0 }
I X (t) = state of system at time t (a random variable)
I Piecewise-constant sample paths
I Typically not a continuous-time Markov chain
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Generalized Semi-Markov Processes [Matthes62, Whitt80]

I Classical model for discrete-event stochastic systems
I Subsumes: queueing networks, SMPs, CTMCs, SPNs
I Central to simulation theory

I Building blocks
I S = set of states (finite or countably infinite)
I E = set of events (finite)
I E (s) = active events in state s
I p(s ′; s, e∗) = state-transition probability

I One clock per event: records remaining time until occurrence
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Clocks (Event Scheduling)

I Active events compete to trigger state transition
I The clock that runs down to 0 first is the “winner”
I Can have simultaneous event occurrence: p(s ′; s,E∗)

I At a state transition s
e∗→ s ′: three kinds of events

I New events: Clock for e′ set according to F (x ; e′)
I Old events: Clocks continue to run down
I Cancelled events: Clock readings are discarded
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The GSMP Process

I The continuous-time process: {X (t) : t ≥ 0 }
I X (t) = the state at time t
I A very complicated process

I Defined in terms of Markov chain { (Sn,Cn) : n ≥ 0 }
I System observed after the nth state transition
I Sn = the state
I Cn = (Cn,1, . . . ,Cn,M) = the clock-reading vector
I Chain defined via GSMP building blocks
I initial distribution µ on state and clocks
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Definition of the GSMP
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Example: GI/G/1 Queue

I X (t) = “number of jobs in system at time t”

I S = { 0, 1, 2, . . . }
I E = { e1, e2 }

I e1 = “arrival”
I e2 = “service completion”

I E (0) = { e1 } and E (s) = { e1, e2 } for s > 0

I p(s + 1; s, e1) = 1 and p(s − 1; s, e2) = 1

I F ( · ; e1) = Finterarrival and F ( · ; e2) = Fservice
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Harris Recurrence: A Basic Form of Stability

I Definition for general chain {Zn : n ≥ 0 } with state space Γ

Pz {Zn ∈ A i.o. } = 1, z ∈ Γ whenever φ(A) > 0

I φ is a recurrence measure (often “Lebesgue-like”)
I Every “dense enough” set is hit infinitely often w.p. 1
I No “wandering off to ∞”
I Chain admits invariant measure π0:

∫
P(z ,A)π0(dz) = π0(A)

I Positive Harris recurrence:
I Chain admits invariant probability measure π
I Pπ {Z1 ∈ A } = π(A)
I Implies stationarity when initial dist’n is π

I When is { (Sn,Cn) : n ≥ 0 } (positive) Harris recurrent?
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Some Stability Conditions

I Density component g of a cdf F : F (t) ≥
∫ t
0 g(u) du

I s → s ′ iff p(s ′; s, e) > 0 for some e

I s ; s ′: either s → s ′ or s → s(1) → · · · → s(n) → s ′

I Assumption PD(q):
I State space S is finite
I GSMP is irreducible: s ; s ′ for all s, s ′ ∈ S
I There exists x̄ ∈ (0,∞) s.t. all clock-setting dist’n functions

I Have finite qth moment
I Have density component positive on [0, x̄ ]
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Positive Harris Recurrence in Light-Tailed GSMPs [Haas99]

I φ̄({s} × A) = Lebesgue measure of A ∩ [0, x̄ ]M

I Theorem: If Assumption PD(1) holds, then the (Sn,Cn) chain
is positive Harris recurrent with recurrence measure φ̄

I Implies Pµ { Sn = s i.o. } = 1 for all s ∈ S
with finite expected (continuous-time) hitting times

I Proof:
I Show that chain is “φ̄-irreducible”
I Establish Lyapunov drift condition and apply MC machinery

(Meyn and Tweedie, 1993)

I Alternate approach to recurrence: geometric-trials arguments
I Can drop positive-density assumption
I Use detailed analysis of specific GSMP structure
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Positive Recurrence in Heavy-Tailed GSMPs: It Depends

I Example 1: Uninfluential events
I For all s ∈ S : e ∈ E (s) and p(s; s, e) = 1
I No effect on state or other clocks
I If all heavy-tailed events are uninfluential and PD(1) holds

otherwise, then positive recurrence

I Example 2: e1 is heavy-tailed, so no positive-recurrence
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Recurrence in Heavy-Tailed GSMPs

I Sn = state just after nth state transition
I Conjecture: P { Sn = s i.o. } = 1 for each s under PD(0)

I State space S is finite
I GSMP is irreducible
I ∃ x̄ > 0 s.t. each F ( · ; e) has positive density on (0, x̄)

I Certainly true for CTMCs
I CONJECTURE IS FALSE for GSMPs!

I In the presence of heavy-tailed clock-setting dist’ns
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A Counterexample

I S = { 1, 2, 3 } and E = { e1, e2, e3 }
I Event sets: E (s) = { e1, e2, e3 } for all s

(renewal processes)

I p(s ′; s, e∗) = 0 or 1
I Clock-setting distributions:

I F (t; e1) = 1− (1 + t)−α

I F (t; e2) = 1− (1 + t)−β

I F ( · ; e3) is Uniform[0, a]

with β > 1/2 and α + β < 1
I GSMP hits state s = 2 only if:

I e1 occurs and then e2 occurs
with no intervening occurrence of e3

I Claim: P { Sn = 2 i.o. } = 0

I Intuition: heavy clocks are rarely small
simultaneously
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Proof

I Observe: P { Sn = 2 i.o. } = 0 iff P {Bn i.o. } = 0
I Bn = {C2(Tn) ≤ C3(Tn) }
I Tn = nth occurrence time of e1

I Ci (t) = clock reading for ei at time t

I Borel-Cantelli: suffices to show that
∑∞

n=1 P {Bn } <∞
I Bound P {Bn } by an integral:

P {Bn } ≤
∫∞
0

P {C2(t) ≤ a } f ∗n1 (t) dt

I f ∗n1 = density of Tn = n-fold convolution of f ( · ; e1)

I Sum over n:∑∞
n=1 P {Bn } ≤

∫∞
0

h(t)u1(t) dt

I h(t) = P {C2(t) ≤ a }
I u1 = renewal density function for F ( · ; e1)

I So suffices to show that
∫∞
0 h(t)u1(t) dt <∞
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Proof–Continued

I To show:
∫∞
0 h(t)u1(t) dt <∞ where h(t) = P {C2(t) ≤ a }

I Renewal argument: h = U2 ∗ Q
I U2 = renewal function for F ( · ; e2)
I Q(t) = F (t + a; e2)− F (t; e2)

I Heavy-tail key renewal theorem [Erickson70]:
I Light-tail KRT: h(t)→ m2(a)/m2(∞)

I where m2(t) =
∫ t

0
F̄ (u; e2) du = (1 + t)1−β/(1− β)

I F̄ = 1− F

I Regular variation: G ∈ RVλ iff limt→∞ G (tx)/G (t) = xλ

I Erickson: h(t) = O
(
1/m2(t)

)
I Thus h(t) = O(tβ−1)
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Proof–Continued

I To show:
∫∞
0 h(t)u1(t) dt <∞

where h(t) = O(tβ−1)

I Tauberian theorems: F̄ ( · ; e1) ∈ RV−α ⇒ U1 ∈ RVα

I U1 = renewal function for F ( · ; e1)

I Landau’s theorem: u1 ultimately monotone ⇒ u1 ∈ RVα−1

I Temporarily assume ultimate monotonicity
I Result in Feller ⇒ u1(t) = O(tα−1+ε)

I Combine:
∫∞
0 h(t)u1(t) dt =

∫∞
0 O(tα+β+ε−2) dt <∞

since α + β + ε < 1
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Ultimate-Monotonicity Proof (Sketch)

I L(f1)(s) = αsαesΓ(−α, s), where

Γ(a, s) =

∫ ∞
s

e−tta−1 dt

I L(u1)(s) =
L(f1)(s)

1− L(f1)(s)

I L(u′1)(s) =
sL(u1)(s)

1− L(u1)(s)
− u1(0+) = g(s), where

g(s) =
αsα+1esΓ(−α, s)

1− αsαesΓ(−α, s)
− α

I g(s) is analytic except at origin
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Ultimate-Monotonicity Proof — Continued

I Inversion formula: u′1(t) =
1

2πi

∫ 1+i∞

1−i∞
estg(s) ds

I Apply Cauchy’s integral theorem:

u′1(t) ≈ −
ctα−2 sin

(
π(1− α)

)
π

< 0
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Summary and Conjecture

# HT Clocks RW Equiv. Recurrent? ”Positive Recurrent”?

0 − Yes Yes
1 2 Yes Depends
≥ 2 ≥ 4 Depends Depends
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A Special Case

I Hazard rate: h(x ; e) = f (x ; e)/F̄ (x ; e)
I Theorem: P { Sn = s i.o. } = 1 for each s if

I State space S is finite
I GSMP is irreducible
I ∃ x̄ > 0 s.t. each F ( · ; e) has positive density on (0, x̄)
I At most one active event with heavy-tailed clock-setting dist’n
I α(e) ≤ h(x ; e) ≤ β(e) for each light-tailed event e

I Proof uses regenerative structure [Glynn89] + geometric trials
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Questions?

www.almaden.ibm.com/cs/people/peterh
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