ON RECURRENCE AND TRANSIENCE IN HEAVY-TAILED GSMP'S

Peter J. Haas¹ Peter W. Glynn²

¹IBM Almaden Research Center San Jose, CA

²Dept. of Management Science and Engineering Stanford University

ETH April 2009

Discrete-Event Stochastic Systems

- System changes state when events occur
 - Stochastic state changes
 - At strictly increasing sequence of random times
- Underlying stochastic process $\{X(t): t \ge 0\}$
 - X(t) = state of system at time t (a random variable)
 - Piecewise-constant sample paths
 - Typically not a continuous-time Markov chain

Generalized Semi-Markov Processes [Matthes62, Whitt80]

- Classical model for discrete-event stochastic systems
 - Subsumes: queueing networks, SMPs, CTMCs, SPNs
 - Central to simulation theory
- Building blocks
 - S = set of states (finite or countably infinite)
 - E = set of events (finite)
 - E(s) = active events in state s
 - $p(s'; s, e^*) = \text{state-transition probability}$

One clock per event: records remaining time until occurrence

Clocks (Event Scheduling)

Active events compete to trigger state transition

- The clock that runs down to 0 first is the "winner"
- Can have simultaneous event occurrence: $p(s'; s, E^*)$
- At a state transition $s \xrightarrow{e^*} s'$: three kinds of events
 - ▶ New events: Clock for e' set according to F(x; e')
 - Old events: Clocks continue to run down
 - Cancelled events: Clock readings are discarded

The GSMP Process

• The continuous-time process: $\{X(t) : t \ge 0\}$

- X(t) = the state at time t
- A very complicated process

• Defined in terms of Markov chain $\{(S_n, C_n) : n \ge 0\}$

- System observed after the *n*th state transition
- $S_n =$ the state
- $C_n = (C_{n,1}, \ldots, C_{n,M}) =$ the clock-reading vector
- Chain defined via GSMP building blocks
- initial distribution μ on state and clocks

Definition of the GSMP

Example: GI/G/1 Queue

- X(t) = "number of jobs in system at time t"
 S = {0,1,2,...}
 E = {e₁, e₂}
 e₁ = "arrival"
 e₂ = "service completion"
 E(0) = {e₁} and E(s) = {e₁, e₂} for s > 0
- ▶ $p(s+1; s, e_1) = 1$ and $p(s-1; s, e_2) = 1$
- $F(\cdot; e_1) = F_{interarrival}$ and $F(\cdot; e_2) = F_{service}$

Harris Recurrence: A Basic Form of Stability

• Definition for general chain $\{ Z_n : n \ge 0 \}$ with state space Γ

 $P_z \{ Z_n \in A \text{ i.o.} \} = 1, \ z \in \Gamma \text{ whenever } \phi(A) > 0$

- ϕ is a recurrence measure (often "Lebesgue-like")
- Every "dense enough" set is hit infinitely often w.p. 1
- No "wandering off to ∞ "
- Chain admits invariant measure π_0 : $\int P(z, A) \pi_0(dz) = \pi_0(A)$
- Positive Harris recurrence:
 - Chain admits invariant probability measure π
 - $P_{\pi} \{ Z_1 \in A \} = \pi(A)$
 - Implies stationarity when initial dist'n is π

• When is $\{(S_n, C_n) : n \ge 0\}$ (positive) Harris recurrent?

Some Stability Conditions

- Density component g of a cdf F: $F(t) \ge \int_0^t g(u) du$
- $s \rightarrow s'$ iff p(s'; s, e) > 0 for some e
- $s \rightsquigarrow s'$: either $s \rightarrow s'$ or $s \rightarrow s^{(1)} \rightarrow \cdots \rightarrow s^{(n)} \rightarrow s'$
- Assumption PD(q):
 - State space S is finite
 - GSMP is irreducible: $s \rightsquigarrow s'$ for all $s, s' \in S$
 - ▶ There exists $\bar{x} \in (0,\infty)$ s.t. all clock-setting dist'n functions
 - Have finite qth moment
 - Have density component positive on $[0, \bar{x}]$

Positive Harris Recurrence in Light-Tailed GSMPs [Haas99]

- $\bar{\phi}({s} \times A) = \text{Lebesgue measure of } A \cap [0, \bar{x}]^M$
- ► Theorem: If Assumption PD(1) holds, then the (S_n, C_n) chain is positive Harris recurrent with recurrence measure φ
- Implies P_µ { S_n = s i.o. } = 1 for all s ∈ S with finite expected (continuous-time) hitting times
- Proof:
 - Show that chain is " $\bar{\phi}$ -irreducible"
 - Establish Lyapunov drift condition and apply MC machinery (Meyn and Tweedie, 1993)
- ► Alternate approach to recurrence: geometric-trials arguments
 - Can drop positive-density assumption
 - Use detailed analysis of specific GSMP structure

Positive Recurrence in Heavy-Tailed GSMPs: It Depends

Example 1: Uninfluential events

- ▶ For all $s \in S$: $e \in E(s)$ and p(s; s, e) = 1
- No effect on state or other clocks
- If all heavy-tailed events are uninfluential and PD(1) holds otherwise, then positive recurrence

► Example 2: *e*₁ is heavy-tailed, so no positive-recurrence

Recurrence in Heavy-Tailed GSMPs

- S_n = state just after *n*th state transition
- Conjecture: $P \{ S_n = s \text{ i.o.} \} = 1 \text{ for each } s \text{ under } PD(0)$
 - State space S is finite
 - GSMP is irreducible
 - $\exists \bar{x} > 0$ s.t. each $F(\cdot; e)$ has positive density on $(0, \bar{x})$
- Certainly true for CTMCs
- CONJECTURE IS FALSE for GSMPs!
 - In the presence of heavy-tailed clock-setting dist'ns

A Counterexample

- $S = \{1, 2, 3\}$ and $E = \{e_1, e_2, e_3\}$
- Event sets: E(s) = { e₁, e₂, e₃ } for all s (renewal processes)
- $p(s'; s, e^*) = 0 \text{ or } 1$
- Clock-setting distributions:
 - $F(t; e_1) = 1 (1+t)^{-\alpha}$
 - $F(t; e_2) = 1 (1+t)^{-\beta}$
 - ► F(·; e₃) is Uniform[0, a]

with $\beta > 1/2$ and $\alpha + \beta < 1$

- GSMP hits state s = 2 only if:
 - e₁ occurs and then e₂ occurs with no intervening occurrence of e₃
- Claim: $P \{ S_n = 2 \text{ i.o.} \} = 0$
- Intuition: heavy clocks are rarely small simultaneously

Proof

• Observe: $P \{ S_n = 2 \text{ i.o.} \} = 0 \text{ iff } P \{ B_n \text{ i.o.} \} = 0$

•
$$B_n = \{ C_2(T_n) \le C_3(T_n) \}$$

- $T_n = n$ th occurrence time of e_1
- $C_i(t) = \text{clock reading for } e_i \text{ at time } t$

▶ Borel-Cantelli: suffices to show that $\sum_{n=1}^{\infty} P\{B_n\} < \infty$

• Bound $P \{ B_n \}$ by an integral:

 $P\{B_n\} \le \int_0^\infty P\{C_2(t) \le a\} f_1^{*n}(t) dt$

• f_1^{*n} = density of $T_n = n$ -fold convolution of $f(\cdot; e_1)$

Sum over n:

 $\sum_{n=1}^{\infty} P\left\{ B_n \right\} \leq \int_0^{\infty} h(t) u_1(t) \, dt$

• $h(t) = P \{ C_2(t) \le a \}$

• u_1 = renewal density function for $F(\cdot; e_1)$

• So suffices to show that $\int_0^\infty h(t)u_1(t) dt < \infty$

Proof-Continued

- ▶ To show: $\int_0^\infty h(t)u_1(t) dt < \infty$ where $h(t) = P \{ C_2(t) \le a \}$
- Renewal argument: $h = U_2 * Q$
 - U_2 = renewal function for $F(\cdot; e_2)$
 - $Q(t) = F(t + a; e_2) F(t; e_2)$
- Heavy-tail key renewal theorem [Erickson70]:
 - ▶ Light-tail KRT: $h(t) \rightarrow m_2(a)/m_2(\infty)$
 - where $m_2(t) = \int_0^t \bar{F}(u; e_2) du = (1+t)^{1-\beta}/(1-\beta)$

$$\bar{F} = 1 - F$$

- Regular variation: $G \in \mathsf{RV}_{\lambda}$ iff $\lim_{t \to \infty} G(tx)/G(t) = x^{\lambda}$
- Erickson: $h(t) = O(1/m_2(t))$
- Thus $h(t) = O(t^{\beta-1})$

Proof-Continued

- ► To show: $\int_0^\infty h(t)u_1(t) dt < \infty$ where $h(t) = O(t^{\beta-1})$
- ▶ Tauberian theorems: $\bar{F}(\cdot; e_1) \in \mathsf{RV}_{-\alpha} \Rightarrow U_1 \in \mathsf{RV}_{\alpha}$
 - U_1 = renewal function for $F(\cdot; e_1)$
- ▶ Landau's theorem: u_1 ultimately monotone $\Rightarrow u_1 \in \mathsf{RV}_{\alpha-1}$
 - Temporarily assume ultimate monotonicity
 - Result in Feller $\Rightarrow u_1(t) = O(t^{\alpha 1 + \epsilon})$
- Combine: $\int_0^\infty h(t)u_1(t) dt = \int_0^\infty O(t^{\alpha+\beta+\epsilon-2}) dt < \infty$ since $\alpha + \beta + \epsilon < 1$

Ultimate-Monotonicity Proof (Sketch)

•
$$\mathcal{L}(f_1)(s) = \alpha s^{\alpha} e^s \Gamma(-\alpha, s)$$
, where

$$\Gamma(a, s) = \int_s^{\infty} e^{-t} t^{a-1} dt$$
• $\mathcal{L}(u_1)(s) = \frac{\mathcal{L}(f_1)(s)}{1 - \mathcal{L}(f_1)(s)}$

$$\mathcal{L}(u_1')(s) = \frac{s\mathcal{L}(u_1)(s)}{1 - \mathcal{L}(u_1)(s)} - u_1(0+) = g(s), \text{ where}$$
$$g(s) = \frac{\alpha s^{\alpha+1} e^s \Gamma(-\alpha, s)}{1 - \alpha s^{\alpha} e^s \Gamma(-\alpha, s)} - \alpha$$

▶ g(s) is analytic except at origin

Ultimate-Monotonicity Proof — Continued

► Inversion formula: $u'_1(t) = \frac{1}{2\pi i} \int_{1-i\infty}^{1+i\infty} e^{st} g(s) \, ds$

Apply Cauchy's integral theorem:

Summary and Conjecture

# HT Clocks	RW Equiv.	Recurrent?	"Positive Recurrent"?
0	—	Yes	Yes
1	2	Yes	Depends
≥ 2	\geq 4	Depends	Depends

A Special Case

- Hazard rate: $h(x; e) = f(x; e)/\overline{F}(x; e)$
- Theorem: $P \{ S_n = s \text{ i.o.} \} = 1 \text{ for each } s \text{ if}$
 - State space S is finite
 - GSMP is irreducible
 - $\exists \bar{x} > 0$ s.t. each $F(\cdot; e)$ has positive density on $(0, \bar{x})$
 - At most one active event with heavy-tailed clock-setting dist'n
 - $\alpha(e) \leq h(x; e) \leq \beta(e)$ for each light-tailed event e

Proof uses regenerative structure [Glynn89] + geometric trials

Questions?

www.almaden.ibm.com/cs/people/peterh