Detecting Attribute Dependencies from Query Feedback

Peter J. Haas¹, Fabian Hueske², Volker Markl¹

¹IBM Almaden Research Center
²Universität Ulm
The Problem: Detecting (Pairwise) Dependent Attributes

- Example: Color and Year are independent if
 \[
 F(\text{Color} = \text{'red'} \text{ AND Year} = \text{'2005'}) = F(\text{Color} = \text{'red'}) \times F(\text{Year} = \text{'2005'})

 F(\text{Color} = \text{'blue'} \text{ AND Year} = \text{'2007'}) = F(\text{Color} = \text{'blue'}) \times F(\text{Year} = \text{'2007'})

 etc.
 \]

- \(F(P) = \) fraction of rows in table that satisfy predicate \(P \)
- Dependence = “significant” departure from independence

Detection needed for **automatic statistics configuration** in query optimizers
- Which multivariate statistics should we keep?
- Need to rank the dependencies (limited space budget)

Other uses include
- Schema discovery for data integration
- Data mining (dependency diagrams)
- Root-cause analysis and system monitoring

Approaches to detection and ranking: **proactive** and **reactive**
Outline

- Previous approaches
 - Proactive approach: CORDS
 - Reactive approaches: SASH, Correlation analyzer

- Our new reactive approach
 - Dependency detection
 - Handling incomplete feedback, inconsistencies
 - Ranking

- Experimental Results
A Proactive Approach: CORDS [IMH+, SIGMOD ‘04]

- Sample the relation (or view) and compute a contingency table:

<table>
<thead>
<tr>
<th></th>
<th>Blue</th>
<th>Green</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>200</td>
<td>400</td>
<td>300</td>
</tr>
<tr>
<td>2006</td>
<td>150</td>
<td>400</td>
<td>320</td>
</tr>
<tr>
<td>2007</td>
<td>100</td>
<td>600</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>1400</td>
<td>820</td>
</tr>
</tbody>
</table>

- Compute (robust) chi-squared statistic

\[
\chi^2 = \sum_i \frac{(O_i - E_i)^2}{E_i} = \frac{200 - \left(\frac{900}{2670}\right)\left(\frac{450}{2670}\right)2670^2}{\left(\frac{900}{2670}\right)\left(\frac{450}{2670}\right)2670} + \cdots
\]

- Declare dependency if \(\chi^2 > t \)
- Both \(t \) and sample size chosen using chi-squared theory
- Can rank attribute pairs by mean-square contingency distance (MSCD)
 - Normalized chi-squared statistic
Reactive Approaches

- Focus system resources on interesting attributes
- Complement proactive approaches
- Can exploit DB2 feedback warehouse
A Spectrum of Reactive Approaches

- Correlation Analyzer (CA) [AHL+, VLDB ’04]
- Our Approach
- SASH [LWV, VLDB ’03]

Simple and Cheap

Sophisticated and Expensive
Correlation Analyzer

- Uses multiple observations (actuals) for each attribute pair
 - \(O_1 = \{(\text{blue}, 2005): 0.02, \text{blue}: 0.2, (2005): 0.103\}\)
 - \(O_2 = \{(\text{red}, 2006): 0.07, \text{red}: 0.82, (2006): 0.11\}\)
 - etc.

- Computes ratio for each pair and compares to \(1 \pm \Theta \), e.g. \([0.9, 1.1]\)
 - \(O_1: 0.02 / (0.2 \times 0.103) = 0.97 \) independent
 - \(O_2: 0.07 / (0.82 \times 0.11) = 0.77 \) dependent

- Attribute dependency if two or more observations look dependent

- Ranks attributes by weighted sum of violations

- Problems
 - Ad hoc procedures, wasted information
 - Unstable: depends on amount, ordering of feedback
Outline

- Previous approaches
 - Proactive approach: CORDS
 - Reactive approaches: SASH, Correlation analyzer

- Our new reactive approach
 - Dependency detection
 - Handling incomplete feedback, inconsistencies
 - Ranking

- Experimental Results
A New Approach to Dependency Discovery

- Like CORDS, but uses *incomplete* contingency table with *exact* entries

<table>
<thead>
<tr>
<th></th>
<th>Blue</th>
<th>Green</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>200</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>2006</td>
<td>?</td>
<td>?</td>
<td>320</td>
</tr>
<tr>
<td>450</td>
<td>?</td>
<td>820</td>
<td>2670</td>
</tr>
</tbody>
</table>

- Declare dependency if $H_M > u$ (where H_M is our new test statistic)
- Critical value u from extension of classical chi-squared theory
- Normalize H_M to get ranking metric
The H_M Statistic

- Set $H_M = M x^t Q x$
 - $M =$ number of rows in table
 - $x_i = (O_i - E_i) / E_i$
 - Q is “pseudo-inverse” of Σ
 - Note: $1 \leq i,j \leq \#$ observations

- $r =$ rank of Q

- Properties: similar to χ^2
 - $H_M \geq 0$
 - $H_M = 0$ iff observations consistent with independence
 - Larger $H_M \Rightarrow$ less consistent with independence

\[f_{\alpha_\beta_i} = \text{fraction of rows with } t.A = \alpha_i \text{ and } t.B = \beta_i \]

\[\Sigma_{ij} = \begin{cases}
(1 - f_{\alpha_i})(1 - f_{\beta_j}) & \text{if } i = j \\
\frac{1 - f_{\alpha_i}}{f_{\alpha_i}} & \text{if } i \neq j, \alpha_i = \alpha_j, \text{ and } \beta_i \neq \beta_j \\
\frac{1 - f_{\beta_i}}{f_{\beta_i}} & \text{if } i \neq j, \alpha_i \neq \alpha_j, \text{ and } \beta_i = \beta_j \\
1 & \text{if } i \neq j, \alpha_i \neq \alpha_j, \text{ and } \beta_i \neq \beta_j
\end{cases} \]
Choosing the Threshold u

- Superpopulation approach
 - Assume A and B generated by truly independent mechanism

Theorem: Under this model, for large # of rows, H_M has approximately a χ^2 distribution

- Choose u as $(1 - p)$ quantile of χ^2_r for small p. Then

$$\text{Prob}\{H_M > u\} \approx \text{Prob}\{\chi^2_r > u\} = p$$
Missing Feedback

- Most important case: $O_i = \{ \text{blue,2005): 0.02, (blue): 0.2, (2005): ? } \}$

- Assume optimizer estimate of (2005) frequency available

- Assume (rough) upper bound on abs(relative error of estimate)
 - Can obtain from feedback-warehouse records

- Fill in missing frequency for (2005)
 - Derive rough bounds on true value: $l \leq F(2005) \leq u$
 - Make frequency “as independent as possible” (conservative)
 - E.g., $F(2005) = 0.1$ and $E_i = r_i - 1 = 0$
 - Consider ALL observations with missing (2005) frequency
 - Minimize $\sum_i (E_i)^2$ (closed-form solution available)
Handling Inconsistency

- Problem: No full multivariate frequency distribution consistent with feedback
 - Records collected at different time points
 - Inserts/deletes/updates in between feedback observations

- Solution method 1: use **timestamps** to resolve conflicts

- Solution method 2: **linear programming**
 - Obtain minimal adjustment of frequencies needed for consistency

\[
\begin{align*}
\min & \sum_i w_i (s_i^+ + s_i^-) \\
\text{s.t.} & \\
F(\text{blue}, 2005) + s_3^+ - s_3^- &= 0.2 \\
F(2005) + s_{17}^+ - s_{17}^- &= 0.3 \\
\vdots & \\
\sum_{\text{color}} F(2005, \text{color}) &= F(2005) \\
\vdots & \\
s_i^+, s_i^- &\geq 0 \text{ for all } i
\end{align*}
\]

\[
F'(\text{blue}, 2005) = F(\text{blue}, 2005) - s_3^+ + s_3^-
\]
Ranking Attribute Pairs

- Problem: normalize $H_M (= M x^t Q x)$ to lie in [0,1]
- Guaranteed (conservative) normalization η
 - Based on Courant-Fischer Minimax Theorem
 \[H_M \leq \eta = M d^* \|x\|^2, \text{ where } d^* = \text{largest eigenvalue of } Q \]
 - Can be numerically unstable (huge values of η)
- Heuristic normalizations H_M / z
 - Table Cardinality
 - Minimal number of distinct values
 - Degrees of freedom of chi-squared distribution
 - 0.99 Quantile of χ^2_r (“effective” upper bound)
Outline

- Previous approaches
 - Proactive approach: CORDS
 - Reactive approaches: SASH, Correlation analyzer

- Our new reactive approach
 - Dependency detection
 - Handling incomplete feedback, inconsistencies
 - Ranking

- Experimental Results
Normalization Constants

- Rankings relatively consistent for different z (choice is not too critical)
- Best results: degrees of freedom, quantiles ("high probability" upper bound)
Ranking vs Amount of Feedback

New method:

Correlation analyzer:
Dependency Measure vs Amount of Feedback

New method:

Correlation analyzer:
Execution Time

- $O(n^3)$ theoretical complexity
- Subsecond execution time for up to 250 feedback records
- Times based on preliminary Java implementation
Obtaining Practical Execution Times

- **Sampling**
 - Stable results with small # of obs.
 - Sub-second response times

- **Incremental maintenance** of $H_M = M \times^t Q \times$
 - New observation =
 - add new row + new column to Σ
 - Want to update Q directly
 - $Q = \text{pseudo-inverse of } \Sigma$
 - Apply SVD updating methods
 - As in latent semantic indexing
 - E.g., “folding-in” method $O(k^2)$
Conclusions

- Dependence is everywhere!
- Query feedback is an effective way to detect dependence
- Chi-squared extension to implement detection
 - Attributes can be in multiple tables
- Effective ranking methods
- Practical solutions for handling inconsistent or missing feedback
- Acceptable performance using sampling and incremental maintenance
Future Work

- Higher-level dependencies

- Full integration of proactive and reactive methods
 - Cf. Aboulnaga et al. [VLDB 2004]
The End

My web page:

www.almaden.ibm.com/cs/people/peterh

LEO (LEarning Optimizer) project:

The End

Backup Slides
The H_M Statistic (Based on n Observations)

- Set $x_i = \frac{f_{\alpha_i \beta_i} - f_{\alpha_i \cdot} f_{\cdot \beta_i}}{f_{\alpha_i \cdot} f_{\cdot \beta_i}}$ for $i = 1, 2, \ldots, n$

- Set $\Sigma = \sum_{ij}$, where

$$\Sigma_{ij} = \begin{cases}
\frac{(1-f_{\alpha_i \cdot})(1-f_{\cdot \beta_i})}{f_{\alpha_i \cdot} f_{\cdot \beta_i}} & \text{if } i = j \\
1-f_{\alpha_i \cdot} & \text{if } i \neq j, \alpha_i = \alpha_j, \text{ and } \beta_i \neq \beta_j \\
1-f_{\cdot \beta_i} & \text{if } i \neq j, \alpha_i \neq \alpha_j, \text{ and } \beta_i = \beta_j \\
1 & \text{if } i \neq j, \alpha_i \neq \alpha_j, \text{ and } \beta_i \neq \beta_j
\end{cases}$$

$f_{\alpha_i \beta_i}$ = fraction of rows with $t.A = \alpha_i$ and $t.B = \beta_i$
The H_M Statistic, Continued

- Symmetric Shur decomposition: $\Sigma = G^t DG$
 where $D = \text{diag}(d_1, d_2, \ldots, d_n)$
- Set $\tilde{D} = \text{diag}(\tilde{d}_1, \tilde{d}_2, \ldots, \tilde{d}_n)$, where
 $$\tilde{d}_i = \begin{cases}
 1/d_i & \text{if } d_i > 0 \\
 0 & \text{if } d_i = 0
 \end{cases}$$
- Set $Q = G^t \tilde{D} G$
- Q is pseudo-inverse of Σ: $Q \Sigma = \Sigma Q = I_r$
- Set $M = \# \text{ rows in table}$
- Then $H_M = Mx^t Qx$
- Set $r = r(Q) = \# \text{ positive diagonal entries in } D$