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DB2 UDB Advanced Analytics for 
Business Intelligence

Our goal is to show how DB2 can be used for some basic 
data-analytic tasks, and illustrate the surprising power of 
SQL for data analysis
We will introduce the needed basic statistical concepts in a 
gentle, user-friendly way



 IBM Corporation 2001 DB2 and Business Intelligence Technical 
Conference

From Data to Knowledge

The challenge: extracting useful business information from 
(massive) data (automatically)

Data analysis via SQL queries
processing occurs close to data
automatically exploits parallelism
can exploit other DB features: incremental maintenance, etc.
Can exploit database sampling (see session B16)

DB2 is surprisingly powerful for analytics!  

Data Warehouse
(100's of Terabytes)

Swipe-stream data

Click-stream data

The essence of BI is the extraction of useful business information from 
one's data, perhaps in an automated manner. 
These days, the amount of data on hand is often huge, with data 
warehouses containing 100's of terabytes, and now even petabytes, of 
data.
In this presentation we survey some useful information-extraction 
techniques that can be performed by means of SQL queries.
There are many advantages to using SQL queries, when possible, for data 
analysis. The user does not need to learn how to use a new statistical 
package. Processing is more efficient, since the data does not need to be 
transferred to an application sitting on top of the database. Also, DB2 will 
automatically choose efficient plans for accessing and manipulating the 
data, automatically parallelizing computations when possible. And of 
course, the user  benefits from the other database functionality that comes 
built into DB2, such as incremental maintenance, data security, 
maintainability, consistency, and recovery.
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Some Different Types of Analyses

Understanding the overall "shape" of the data
summaries
pictures

Detecting outliers

Detecting dependencies
between customers
over time

Statistical modelling
for prediction and decision-making
functional relationships
inference (answering questions)

There are a number of useful analyses that we can do:
"Descriptive statistics" is concerned with techniques for bringing out 
interesting patterns and trends in the data, either with numerical 
summaries or with graphical data visualization methods.
Detecting dependencies in the data is important. These include 
dependencies between customers, between products, between 
marketing activities and customer behavior, or between customer 
behavior at different time points.
By getting a picture of "normal" trends and variation in the data, we 
are in a position to identify potential outlier data values (useful for 
fraud detection, etc.)
Finally, we often need to use our data to build statistical models for 
purposes of prediction (discovering functional relationships), 
inference (answering questions) and decisionmaking, all in the 
presence of uncertainty.
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Pertinent Features of DB2 UWO

Classical aggregation functions 
SUM, COUNT, AVERAGE, ...

Statistical functions
STDDEV, CORR, REGR_*

OLAP functions
 ROWNUMBER, RANK,  window aggregates, ...

Other V5-V7 enhancements
common table expressions
CASE
triggers

Can use SQL to combine tools in new and powerful ways

With its new analytical features, DB2 provides a comprehensive 
and flexible set of tools for accomplishing the foregoing tasks, 
and hence a powerful framework for data analysis.
The DB2 analytical toolbox contains the classical aggregation 
functions such as sum(), count(), and average(), as well as new 
statistical functions for correlation and regression analysis. 
The OLAP functions are powerful in and of themselves, and can 
be combined with the DB2's statistical functions in many 
interesting ways. 
Finally, general enhancements such as common table 
expressions, random number generation, and logical operators 
such as the CASE function, extend the range of SQL queries 
even further.
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CAVEAT

These queries are not bullet-proof!!
not optimized
no careful null handling
no output formatting

They are educational, though
basic functionality
tricks
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Classical Summary Statistics

VIEW transvw1(country, year, amount)

select country, year, 
   count(*) as count, sum(amount) as sum,
   avg(amount) as avg, max(amount) as max,
   stddev(amount) as stddev
from transvw1
group by country, year;

COUNTRY  YEAR   COUNT          SUM      AVG      MAX   STDDEV      
-------- ----- ------ ------------ -------- -------- --------
GERMANY  1998      31      3126.04   100.84   109.75     6.18
GERMANY  1999      24      3549.06   147.87   160.87     7.49
USA      1998      20      4031.20   201.56   249.34    28.91
USA      1999      25      7820.09   312.80   607.98   281.36

We now discuss methods for describing our data in order to reveal 
interesting patterns.
Perhaps the simplest way to describe data is to compute summary 
numbers that describe overall data characteristics. Functions such as 
count(), sum(), avg(), min(), and max() have been supported since the 
earliest versions of DB2. More complex aggregates such as stddev() 
(standard deviation) have been added starting in V5.
stddev() is a measure of the variability of the data. The majority of 
data values are typically within one standard deviation of the mean, 
and almost all data values are typically within two standard deviations.
In the example, USA sales in 1999 are much more variable than 
sales in other years and in other locations. That is, the amounts in the 
individual sales transactions vary more widely from their average 
value of $312.80.
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Outliers: Credit Card Fraud Detection

Create a customer card-usage profile table:

CREATE VIEW profile(cust_id, avg_amt, sd_amt) AS
   select cust_id, avg(charge_amt), stddev(charge_amt)
   FROM trans
   WHERE date BETWEEN '2002-01-01' and '2002-03-31'
   GROUP BY cust_id;

Detect and flag unusually large charges

CREATE TRIGGER big_chrg
AFTER INSERT ON trans
REFERENCING NEW AS newrow FOR EACH ROW MODE DB2SQL
WHEN (newrow.charge_amt > (SELECT avg_amt + 2e0 * sd_amt
                           FROM profile
                           WHERE profile.cust_id =
                             newrow.cust_id))
INSERT INTO big_charges(cust_id,charge_amt)
   VALUES(newrow.cust_id, newrow.charge_amt);

One common use for the avg() and stddev() functions is to 
detect outliers. We illustrate the basic idea in the context of 
credit card fraud detection.
The profile table maintains the average and standard 
deviation of each customer's card purchases over a 
reference period.
The trigger inserts a customer transaction into the 
big_charges table whenever the charge amount is more than 
two standard deviations above the average.
The big_charges table presumably has triggers that will set 
off an alarm if, e.g., a customer has more than 3 big charges 
over a 12 hour period.
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equi-width histogram for transaction amounts (20 buckets):
 
WITH dt as (SELECT t.transid, sum(amount) as trans_amt,
      case
         when     (sum(amount)-0)/((60000-0)/20) < 0 then 0
         when     (sum(amount)-0)/((60000-0)/20) > 19 then 19
         else int((sum(amount)-0)/((60000-0)/20))
       end as bucket
       FROM trans t, transitem ti WHERE t.transid=ti.transid
      GROUP BY t.transid)
SELECT bucket, count(bucket) as height, (bucket+1) * 
(60000-0)/20 as max_amt FROM dt GROUP BY bucket;
BUCKET      HEIGHT      MAX_AMT    
----------- ----------- -----------
          0         435        3000
          1         645        6000
          2         830        9000
          3         669       12000
          4         533       15000
          5         405       18000
          6         265       21000
          7         192       24000
          8         123       27000
          9          82       30000
         10          55       33000
         11          35       36000
         12          22       39000
         13           7       42000
         14           7       45000
         15           1       48000

(Equi-Width) Histograms 
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This example shows how the CASE statement can be used 
to create a histogram, that is, a graphical representation of 
the distribution of transaction amounts.
The idea is to assign each data value to one of 20 buckets. 
The histogram displays the number of data values in each 
bucket as the height of the associated bar.
The histogram is called "equi-width" because the range of 
data values assigned to a bucket (upper value minus lower 
value) is the same for each bucket.
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Quantiles (Equi-Height Histograms) 

equi-height histogram for transaction amounts (10 buckets):

WITH dt as 
  (SELECT t.transid, sum(amount) as trans_amt,
          rownumber() over (order by sum(amount)) * 10 /
           (select count(distinct transid)+1 
            from stars.transitem) as bucket
   FROM stars.trans t, stars.transitem ti
   WHERE t.transid=ti.transid GROUP BY t.transid
  )
SELECT bucket, count(bucket) as b_count, max(trans_amt) as
  part_value
FROM dt GROUP BY bucket;

BUCKET B_COUNT PART_VALUE
------ ------- ----------
     0     430    2957.54
     1     431    5094.14
     2     431    6873.05
     3     431    8429.81
     4     431    9793.69
     5     431   12019.40
     6     431   14468.20
     7     431   17355.26
     8     431   22215.92
     9     431   57360.41
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An equi-height histogram has bucket boundaries chosen so that each 
bucket contains approximately the same number of data points.
In this example, there are 10 buckets, so that 10% of the data points fall 
in each bucket. The internal bucket boundaries are often referred to as 
the 0.1, 0.2, ... , 0.9 quantiles of the data distribution, or as 10th, 20th, ... 
,90th percentiles. For example, the 10th percentile for the example data 
set  is $2957.54, that is, 10% of transactions have a dollar value that is 
less than this number.
In effect, the query computes the total sales amount for each of N 
transactions as tran_amt, sorts the amounts in increasing order, and 
assigns the number 1 to the smallest transaction, 2 to the next largest 
transaction, etc., using the rownumber() function. Dividing these numbers 
by N---which is computed as count(distinct transid)---and rounding to the 
nearest integer produces the desired bucket number for each transaction.
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Smoothed Time Series
Three-day running-mean smoothed average of IBM stock prices:

SELECT date, symbol, close_price,
  avg(close_price) OVER (order by date rows between 1
  preceding and 1 following) AS smooth_cp FROM stocktab
WHERE symbol = 'IBM' and date between '1999-08-01' and
  '1999-09-01' ;

DATE       SYMBOL CLOSE_PRICE  SMOOTH_CP     
---------- ------ ------------ -------------
08/02/1999 IBM         110.125      109.8125
08/03/1999 IBM         109.500      110.5416
08/04/1999 IBM         112.000      110.7083
08/05/1999 IBM         110.625      111.7916
08/06/1999 IBM         112.750      111.3333
08/09/1999 IBM         110.625      110.5833
08/10/1999 IBM         108.375      109.4166
08/11/1999 IBM         109.250      109.0000
08/12/1999 IBM         109.375      109.0416
08/13/1999 IBM         108.500      109.3750
08/16/1999 IBM         110.250      109.0416
08/17/1999 IBM         108.375      109.0000
08/18/1999 IBM         108.375      108.7083
08/19/1999 IBM         109.375      109.9166
08/20/1999 IBM         112.000      111.5000
08/23/1999 IBM         113.125      113.3333
08/24/1999 IBM         114.875      114.5000
08/25/1999 IBM         115.500      114.5833
08/26/1999 IBM         113.375      114.8333
08/27/1999 IBM         115.625      114.2083
08/30/1999 IBM         113.625      114.0416
08/31/1999 IBM         112.875      114.0416
09/01/1999 IBM         115.625      114.2500

Three-day running-mean smooth
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Here the moving-window version of the avg() function is 
used to smooth a data time series in order to reveal 
underlying trends. Such smoothing is sometimes called 
"nonparametric regression", because we are fitting a smooth 
function to the data, but this function does not have the form 
y = ax2 or any other such parametric representation.
The OVER clause defines the window (containing the points 
to be averaged) as the current data point plus the point 
preceding and the point following the current data point, 
when the points are ordered by date.
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Smoothed Time Series
Seven-day running-mean smoothed average of IBM stock prices:

SELECT date, symbol, close_price,
  avg(close_price) over (order by date rows between 3
  preceding and 3 following) as smooth_cp
FROM stocktab
WHERE symbol = 'IBM' and date between '1999-08-01' and
  '1999-09-01' ;

DATE       SYMBOL CLOSE_PRICE  SMOOTH_CP     
---------- ------ ------------ -------------
08/02/1999 IBM         110.125      109.8125
08/03/1999 IBM         109.500      110.5416
08/04/1999 IBM         112.000      110.7083
08/05/1999 IBM         110.625      111.7916
08/06/1999 IBM         112.750      111.3333
08/09/1999 IBM         110.625      110.5833
08/10/1999 IBM         108.375      109.4166
08/11/1999 IBM         109.250      109.0000
08/12/1999 IBM         109.375      109.0416
08/13/1999 IBM         108.500      109.3750
08/16/1999 IBM         110.250      109.0416
08/17/1999 IBM         108.375      109.0000
08/18/1999 IBM         108.375      108.7083
08/19/1999 IBM         109.375      109.9166
08/20/1999 IBM         112.000      111.5000
08/23/1999 IBM         113.125      113.3333
08/24/1999 IBM         114.875      114.5000
08/25/1999 IBM         115.500      114.5833
08/26/1999 IBM         113.375      114.8333
08/27/1999 IBM         115.625      114.2083
08/30/1999 IBM         113.625      114.0416
08/31/1999 IBM         112.875      114.0416
09/01/1999 IBM         115.625      114.2500
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This query is the same as the last one, but now we average 
over the current data point along with the three points that 
precede and the three points that follow the current data 
point.
Use of the wider window (7 points vs 3 points) results in a 
greater degree of smoothing in the fitted (solid blue) curve.
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Detecting Dependencies: Correlation
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Correlation coefficient: measures strength of linear relationship 

The correlation functions introduced in V6 of DB2 UWO 
permit detection of linear relationships between two 
variables.
In particular, the correlation coefficient measures the strength 
of such a linear relationship. A value of 1 (resp., -1) indicated 
a perfect positive (resp., negative) linear relationship 
between two attributes, while a value of 0 indicates no 
apparent linear relationship.
In the lower right plot, there is a perfect relationship between 
the two attributes, but the correlation coefficient has a low 
value because the relationship is not linear. 
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Correlation in DB2

Sales regions where income and purchases are not aligned:

VIEW transvw2(country, state, annual_purchases, income)

SELECT country, state, 
  correlation(annual_purchases, income) AS correlation
FROM transvw2 
GROUP BY country, state
having abs(correlation(annual_purchases, income)) > 0.10;

COUNTRY    STATE      CORRELATION
---------- ---------- -----------
USA        AK                0.78
USA        AL                0.68
USA        DE               -0.30 <=
USA        GA                0.14
USA        KS                0.69
USA        LA                0.48

Can also display covariance (= "unnormalized" correlation)

The correlation() function computes the correlation coeficient between 
two attributes. Each argument to the function need not, of course, be 
simply a column name, but can be an arithmetic expression involving one 
or more columns.
This query detects anomalous regions where higher income led to 
apparently lower puchases, as indicated by the negative correlation for 
the state of Delaware (DE) in the USA. Such a region might merit closer 
investigation to see what is going on.
Note the use of the HAVING clause to restrict the output to cases of 
"significant" correlation.
DB2 also provides a covariance() function, which can be viewed as an 
"unnormalized" correlation. That is, the covariance is dependent on the 
unit of measurement and can take on arbitrarily large or small values, 
rather than being constrained to lie between 0 and 1 as is the case with 
correlation. Covariance() is usually used to compute other quantities of 
more direct interest.
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Another Use for Correlation

Customers with similar buying habits:

VIEW transvw3(custid, prodid, amount)

SELECT a.custid as custid1, b.custid as custid2, 
       corr(a.amount, b.amount)as corr
FROM transvw3 a, transvw3 b
WHERE a.prodid = b.prodid and a.custid < b.custid
GROUP BY a.custid, b.custid
HAVING corr(a.amount, b.amount) >= 0.5
  and count(*) > 100  
ORDER BY corr desc;

CUSTID1  CUSTID2  CORR   
-------- -------- ----- 
2300        6823    0.99
1071        2300    0.85
1223        4539    0.83
1010        1071    0.78
1010        2300    0.72
1071        6823    0.65

total amount puchased
over all transactions

12234539

2300

6823 1071

1010

This query identifies customers with apparently similar 
buying habits. Whenever customer 2300 bought a large 
amount of a given product, then customer 6823 also tended 
to buy a large amount.
The HAVING clause restricts the output to cases of high 
positive correlation, and to cases where there are at least 
100 products involved (that is, at least 100 data points are 
used to compute the correlation).
The correlation values can be used informally to cluster 
customers into similar groups. Here we have identified two 
clusters.
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Autocorrelation
Correlate yearly sales with sales from previous years

VIEW transvw4(pgname, year, total_sales)

WITH dt (pgname, year, sales_0, sales_1, sales_2) AS
  (SELECT pgname, year, total_sales,
    max(total_sales) over
     (partition by pgname order by year rows between 1 preceding
      and 1 preceding),
    max(total_sales) over
     (partition by pgname order by year rows between 2 preceding
      and 2 preceding)
   FROM transvw4
  )
SELECT pgname, correlation(sales_0,sales_1)*100 as "correlation1(%)",
  correlation(sales_0,sales_2)*100 as "correlation2(%)",
FROM dt GROUP BY pgname;

PGNAME       correlation1(%) correlation2(%)
------------ --------------- ---------------
antibiotics            -2.83          -29.07
camcorder             -54.78           20.75
coats                 -25.40           -1.68
vcr                    59.39           33.17

It is frequently of interest to study the dependence between 
current and previous customer behavior. This query 
computes the correlation between sales for a given year 
(sales_0)  with both sales from the previous year (sales_1) 
and  sales from two years before (sales_2).
The moving-window version of the max() function is used in 
a somewhat tricky way to compute the sales_1 and sales_2 
columns in the table dt. Note that the "max" is actually 
computed only for a single value, since the window is of 
length 1. We could just as well have used the avg(), sum(), 
or min() functions instead of max(). (But max and min tend to 
have slightly more stable numerical behavior in general than 
sum or avg.)
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Least-Squares Fit (Linear Regression)

Fits a line of the form y = ax + b     from (x,y) pairs
Ex: effect of advertising budget on 1999 sales

SELECT 
  regr_count(sales, ad_budget) AS num_cities,
  regr_slope(sales, ad_budget) AS a, 
  regr_icpt(sales, ad_budget) AS b
FROM ad_camp;

num_cities       a      b
----------  ------ ------
126         1.9533 13.381
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The regression suite of functions was introduced into V6 of 
DB2 UWO. The functions take a set of (xi,yi) data pairs and 
choose numbers (a,b) to fit a line of the form y = ax + b that 
minimizes the sum of the squared errors, where the ith error 
is ei =  yi - (axi + b).
Note that the y value is the first argument and x is the second 
argument to each regression function.
regr_count() returns the number of (x,y) pairs used to fit the 
regression line. A pair is only used if both x and y are 
non-null.
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Fitting Other Types of Curves

y = ax2 + b
   SELECT regr_slope(y, x*x) AS a,
          regr_icpt(y, x*x) AS b

y = bxa 
log y = a log x + log b

  SELECT regr_slope(log(y), log(x)) AS a,
            exp(regr_icpt(log(y), log(x))) AS b  ...

SELECT 
 regr_count(hits,days) as num_days
 regr_slope(log(hits),log(days)) AS a,

    exp(regr_icpt(log(hits),log(days))) AS b
FROM traffic_data;

   NUM_DAYS      A       B           
----------- ------ -------
        100 1.9874 21.4302
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hit rate = 21.43 * (days ^ 1.9874)

By choosing the arguments to the regression functions to be 
arithmetic expressions involving the input columns, a variety 
of curves can be fitted (not just straight lines).
The second example plots the daily hit rate at a hypothetical 
new web site. Since the hit rate rises rapidly at first, a power 
curve is a reasonable model to try and fit to the data.
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Quality of Fit

Want diagnostics!
especially in automated environment

From L. Kovar, "Band Structure in Germanium, My #$%$"
Ann. Improbable Research, 7(3), 2001
http://www.improb.com/airchives/paperair/volume7/v7i3/germanium-7-3.html

As can be seen from this example, the fit of a curve can be 
quite poor! (The article in which this plot appeared is actually 
a piece of science humor: a research report written in the 
style of an extremely disgruntled undergraduate physics 
major.)
It is important to have some measure of goodness-of-fit, 
especially if the fitting is being done in an 
automatic-processing environment, so that nobody is actually 
looking at a plot of the data and fitted curve.
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Quality of Fit - Continued

R-Squared
roughly, the square of the correlation of x and y
proportion of y-variation explained by the model

SELECT 
  regr_count(sales, ad_budget) AS num_cities,
  regr_slope(sales, ad_budget) AS a, 
  regr_icpt(sales, ad_budget) AS b,
  regr_r2(sales, ad_budget) as r-squared
FROM ad_camp;

num_cities       a      b  r-squared
----------  ------ ------  ---------
128         1.9533 13.381    0.95917
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A standard diagnostic statistic is R2, which is essentially the 
square of the correlation coefficient between x and y.
R2 also can be interpreted as the proportion of variation in the 
y values that is explained by the variation in the x values (as 
opposed to variation due to randomness or to other variables 
not included in the model).
The function regr_r2() computes this quantity automatically.
The fit in the example is extremely good, with R2 = 0.96
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Quality of Fit for Nonlinear Curves

Incorrect: Compute R-Squared for transformed data

select regr_r2(log(hits),log(days))as r2 from traffic_data;

Correct: Compute R-Squared for original data

with coeffs(a,b) as
(select regr_slope(log(hits),log(days)) as a,    
           exp(regr_icpt(log(hits),log(days))) as b
  from traffic_data),
residuals(days,hits,error) as
(select t.days, t.hits, t.hits - c.b * power(t.days,c.a)
  from traffic_data t, coeffs c)
select 1e0 - (sum(error*error)/regr_syy(hits,days)) as r2
from residuals;

r2: 0.9912

r2: 0.9554
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When using the regression functions to fit a nonlinear curve, 
some care has to be taken when evaluating the quality of the 
fit using the R-squared statistic.
R-Squared must be evaluated not for the linear fit of the 
transformed data, but for the nonlinear fit of the original data. 
The displayed query shows how to do this, by first computing 
a table of residuals (differences between exact and predicted 
y-values) for the nonlinear fit.
As can be seen, using the built-in R2 function gives an 
overoptimistic view of the fit---this is typical.
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Influence of Individual Data Points

Some data are more important than others

Measure of influence: HAT diagonal
h i = (mx2 - 2mxxi + xi

2) / sXX

mx = avg(x1, ... ,xn)
mx2 = avg(x1

2, ... ,xn
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As can be seen in this example, certain data points can have 
a strong influence on the fitted line because the x value is 
located far from the center of the x values. Changing the y 
value of the rightmost point in our example completely 
changes the slope of the regression line.
Some standard diagnostic statistics used to detect such 
points are the "HAT matrix" diagonal entries, whose formula 
is given in the slide.
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HAT Diagonal Computation

WITH stats(mx, mx2, sxx) AS
(SELECT regr_avgx(sales,ad_budget),
        regr_avgx(sales,ad_budget*ad_budget), regr_sxx(sales,ad_budget)
 FROM cal_ad_camp
)
SELECT d.label as city, (s.mx2 - 2 * s.mx * d.x + d.x * d.x) / s.sxx AS 
hat
FROM xy_data d, stats s
ORDER BY hat DESC;

       city     hat
-----------  ------
Los Angeles  0.9644
Boonville    0.1222
Grass Valley 0.1195
Yreka        0.1154
Gilroy       0.1099
Lemoore      0.1011
Hilmar       0.1011
Mendocino    0.0923
Turlock      0.0922
Morgan Hill  0.0910
Truckee      0.0910
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This query computes the HAT diagonals. Note that we write, for 
example, regr_avgx(y,x*x) rather than avg(x*x). We do this for two 
reasons. First, the function avg(x*x) may include x values for  which 
the corresponding y value is NULL, so that the point (x,y) was not 
used in the regression. Secondly, the regression functions are 
designed to work together, efficiently computing all the necessary 
statistics in a single pass through the data.
Also note that the function regr_sxx() is available to conveniently 
compute the  quantity sxx. Analogous functions regr_syy() and 
regr_sxy() are available. These functions are provided because they 
occur frequently in the formulas for the various diagnostic statistics 
used in regression.
As expected, the HAT statistic for the rightmost point is almost 10 
times larger than the HAT statistics for the other points.



 IBM Corporation 2001 DB2 and Business Intelligence Technical 
Conference

Regression through the origin

Fit a line of the form y = ax
a = (x1y1 + ... + xnyn) / (x1

2 + ... + xn
2)

recall regr_sxx, regr_sxy
 regr_sxx: (x1-mx)2 + ... + (xn - mx)2 

 here mx = avg(x1, ... , xn) as before
a trick:

(x1
2 + ... + xn

2) = regr_sxx + n mx
2

(x1y1 + ... + xnyn) = regr_sxy + n mx my

SELECT 
  regr_count(kwh, hours_run) as num_machines,
  (regr_sxy(kwh, hours_run) + regr_count(kwh, hours_run) *
   regr_avgx(kwh, hours_run) * regr_avgy(kwh, hours_run))
  / (regr_sxx(kwh, hours_run) + regr_count(kwh, hours_run) *
     regr_avgx(kwh, hours_run) * regr_avgx(kwh, hours_run))
   as a;
FROM power_data;

num_machines       a
------------  ------
50            10.082
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Sometimes we know in advance that the fitted line MUST go 
through the origin. In our example, we know that no electricity 
is used when all of the machines are shut off.
In this case, we need to use a different formula for the slope 
a, which involves both sums of xi

2 terms and sums of xiyi 
products. The trick shown in the slide can be used to 
express these sums in terms of quantities that can be 
computed using functions regr_sxx() and regr_sxy().
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Outliers II: Effective Ad Campaigns

Identify unusually effective campaigns, controlling for ad budget
Use sigma, the standard deviation about the regression line

WITH dt(a, b, sigma) AS
 (SELECT 
   regr_slope(sales,ad_budget),
   regr_icpt(sales,ad_budget),
   sqrt((regr_syy(sales,ad_budget)
    - (regr_sxy(sales,ad_budget)
    *regr_sxy(sales,ad_budget)                          
    /regr_sxx(sales,ad_budget)))
    / (regr_count(sales,ad_budget) - 2))
  FROM ad_camp)
SELECT city, ad_budget, sales
FROM ad_campx ac, dt
WHERE sales > a*ad_budget + b + 2e0*sigma
ORDER BY ad_budget;

CITY      BUDGET   SALES
------    ------  ------
Fresno     15.26   82.00
San Diego  84.99  223.81
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y = 1.963x + 13.609

outlier

outlier

Here is a second example of outlier detection. We want to 
identify cities in which the ad campaign is particularly 
effective. We need to control for the amount of money spend 
on the ad campaign.
To identify outliers,we first define the "normal" relation 
between advertising budget and resulting sales by fitting a 
regression line.
We then identify as outliers those points that lie more than 
two standard deviations above or below the regression line, 
where "standard deviation" is defined in a manner 
appropriate for regression.
The displayed query computes the "regression standard 
deviation" sigma in terms of the built-in regression functions.
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Multiple Linear Regression

Fit a line of the form y = b0 + b1x1 + ... + bnxn

ex: y = a1z+ a2 z2 + b
To fit: write in matrix form and solve "normal equations"

y = Xb + e
y1

y2

...

yn

1 x11 x12 ... x1k

1 x21 x22 ... x2k

... ... ... ...
1 xn1 xn2 ... xnk

b0

b1

...
bk

e1

e2

...
en

+=

given choose minimize

Find b's that
 minimize Σei

2

The linear regression methodology can be extended to the 
case in which there are 2 or more predictor (x) variables. 
As before, the x values can be functions of the original 
observations, as in the example.
To compute the coefficients b0, ... ,bn, we now have to solve a 
system of linear equations called the "normal" equations.
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Multiple Linear Regression, Continued

Compute b by solving "normal equations":  [XTX]b = [XTy]

Multiple regression in DB2 --- a simple approach
compute entries of [XTX] and [XTy] using SQL queries
SELECT x1*x1, x1*x2, x2*x2, x1*y, x2*y ...
matrices are incrementally maintainable

solve for b by feeding entries into a UDF that solves equations 
(e.g., by Gaussian elimination)

Research prototype (two x variables) developed at Almaden
Good for fixed problems with changing data

Issues for an industrial-strength solution
general equation-solving UDF
robustness to "difficult data"
diagnostic statistics (R2, etc.)

Although the normal equations cannot be solve directly using an SQL 
query, DB2 can nonetheless be used to solve the fitting problem. A 
prototype solution has been developed at Almaden Research Center 
by Kevin Beyer. 
The idea is to use an SQL query to compute the linear coefficients in 
the normal equation (the entries of the matrix [XtX]) as well as the 
constants on the  right-hand side (the entries of the vector [Xty]). 
These coefficients are fed into a UDF that does the actual equation 
solving (currently by Gaussian elimination).
The foregoing approach can be used to solve a wide variety of 
curve-fitting problems, and is particularly appropriate for a fixed 
problem in which the data is constantly changing. A full-scale solution 
requires full generalization of the UDF and being able to deal robustly 
with ill-conditioned data, e.g., data for which the slope of the line is 
extremely steep.
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From Description to Modeling

Scenario 1: business decisions
need to make predictions/inferences
view data as sample from real world
need to distinguish real effects from luck-of-the-draw

Scenario 2: quick analysis of massive data
data is small sample from large database
need to assess validity of sample-based computations

The discussion so far has focused on the problem of finding interesting patterns in the 
data.
Typically, though, the reason that we are analyzing the data is because we need to 
make a business decision. To support this decision we need to predict, e.g., customer 
behavior, or make an inference (answer a question) about our customers.
In this case, we need to develop a statistical model of some mechanism out in the world 
(e.g., customer response to advertising), so that we can do a "what-if?" analysis for 
alternative scenarios.
This means that we no longer view our data as our complete "universe" of information. 
Rather, we now view our data as being a sample of information generated by the 
real-world mechanism that we are studying.
Since we now view our data as a sample, we need to distinguish meaningful effects 
from random, luck-of-the-draw fluctuations.
In a related scenario, our database might be our entire information universe, but it might 
be so big that we need to work with a sample of the data. We now need to decide 
whether conclusions drawn from the sample are likely to be the same as the 
conclusions that we would have drawn if we were able to look at all of the data.
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Significance of Regression Fit

View data as a sample
yi = axi + b + error i

Real effect of x on y, or luck-of-the draw?

Look at F statistic (with 1 and n-2 "degrees of freedom")
measures (y variability caused by x) / (unexplained y variability )
if a = 0, then F should take on "small" values

A statistical test:
let f be observed value of F
compute Prob(F >= f) assuming that a = 0
suppose that f is so big that Prob(F >= f) is very small

 unlikely to see this if a = 0
therefore, effect of x on y is statistically significant

Here we apply the modeling-based view to linear regression, and assume that 
the data was generated from the model given in the slide. I.e., the y's depend 
linearly on the x's, but our observations of the y's are clouded by random noise 
(the error terms, which are assumed random).
Given a fitted curve, it may be possible that the y values don't depend on the x's 
at all, but by sheer bad luck the random fluctuations in our data have led us to 
incorrectly fit a line with a nonzero slope, so that we incorrectly assume a 
functional dependence of y on x. Thus we need to determine if y really depends 
on x, or just seems to depend on x because of luck-of-the-draw.
The classical approach is to compute a statistic that should be small if, in fact 
a=0, and whose distribution is known when a=0. Suppose that the observed 
value of the statistic is so large so that the probabiliy of seeing this value is very 
small if, in fact, a=0. Then we reject the "null hypothesis" that a=0 and assume 
that the effect of x on y is real. Otherwise, we do not reject the null hypothesis; 
i.e., our model is not "statistically meaningful".
For the regression problem at hand, the "F statistic" is usually used for this 
purpose.
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Significance of Fit, Continued

WITH dt(num_cities, a, b, sxx, sigma2) AS
(SELECT 
  regr_count(sales,ad_budget), 
  regr_slope(sales,ad_budget),
  regr_icpt(sales,ad_budget),
  regr_sxx(sales,ad_budget),
  (regr_syy(sales,ad_budget) 
   -(regr_sxy(sales,ad_budget)*regr_sxy(sales,ad_budget)
      /regr_sxx(sales,ad_budget)))
  / (regr_count(sales,ad_budget) - 2) 
 FROM ad_camp
)
SELECT num_cities, a, b,
 ((a*a*sxx)/sigma2) AS F
FROM dt;

num_cities       a      b          F
----------  ------ ------  ---------
128         1.9533 13.381    2959.83

Prob(F1,126 > 2959.83) << 0.01

Caveat: errors need to be iid normal

0

50

100

150

200

250

0 20 40 60 80 100

sa
le

s
ad_budget

y = 1.9533x + 13.381

This query shows how to compute the F statistic in terms of 
the DB2 regression functions.
This analysis assumes that the errors in our observations are 
independent and identically distributed (iid) according to a 
normal distribution with mean 0.This assumption is often 
either directly satisfied, or indirectly satisfied after an 
appropriate transformation of the data.
The intermediate constant sigma2 in the query is actually an 
estimate of the common variance of the errors (i.e., the 
variance of the foregoing normal distribution).
In our example, F = 2960. If, in fact, a=0, the probability of 
seeing such an F value is much less than 1%, so we can 
assume that our model is statistically significant, and that we 
are not just fitting a line to random noise.
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Inference: Effectiveness of Ad Campaign

An experiment
Campaign run in City B in January (8 stores)
No campaign in "control" City A (9 stores)
Monthly sales computed in stores in both cities for February
VIEW feb_sales(city,store_id,sales)

Did campaign result in increased sales?

Classical test: 2-sample t test
restrictive normality assumption
restrictive equal-variance assumption

Wilcoxon Rank Test
a more modern "nonparametric" procedure
avoids restrictive assumptions

Here is an example of statistical inference. Suppose that we 
want to decide whether a certain advertising campaign for a 
product is "effective", that is, increases sales. We conduct an 
advertising campaign in January in City B, which has 8 stores. In 
City A, which has the same demographics as City B, we do not 
run a campaign. We then look at the total February sales for the 
product in each store.
A classical procedure for deciding whether sales in City B are 
actually higher is to use a "two-sample t test". This procedure, 
which is given in most elementary textbooks, requires that total 
February sales are normally distributed for each city, and that 
the store-to-store variability of February sales is the same for 
both cities.
A more modern "nonparametric" procedure called the Wilcoxon 
Rank Test avoids these restrictive assumptions. 
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Wilcoxon Rank Test

Test statistic: sum of ranks of City B in combined ranking

WITH ranked_sales(city, ranks) AS
(SELECT city, rank() over (order by sales)
 FROM feb_sales
)
SELECT sum(ranks) as W 
FROM ranked_sales WHERE city = 'B'

Test if W is significantly > than expected value (assuming no diff.)
 expected value:    [(nAnB) + nB(nB+1)] / 2
(nX = number of stores in City X)

example: nA = 9, nB = 8, and W = 94
expected value = 72
 Prob(W > 93) =2% (from tables) if no real difference in sales

The Wilcoxon statistic W  is computed as follows. Combine the 17 
stores together and rank them in order of increasing sales. Then sum the 
ranks of those stores that are in City B. (Our query assumes that there 
are no duplicate sales totals---the dense_rank() function can be used to 
deal with ties.)
We can compute the expected value of this sum assuming that there is 
no real difference in sales between the cities. If the observed value of W 
is much higher than this expected value, then it is reasonable to assume 
that the advertising campaign was indeed effective.
The Wilcoxon statistic can be computed using the RANK function.
For our example, the expected value is 72, and the observed value of W 
is 94. Using readily-available tables (see, e.g., the book of Lindgren), we 
find that the probability of seeing a value 22 units above the mean---when 
there is no real difference in sales between the cities---is only 1%. So we 
conclude that the advertising campaign is in fact effective, and the 
differences are not due to luck-of-the-draw.
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Inference: Test for Independence

Is there a relationship between operating system and DB product?
Contingency-table analysis (number of users)

A lesser-known "maximum likelihood" chi2 test for independence
test statistic (r rows and c columns):  
X = 2n log(n)
       + [2n11 log(n11) + ... + 2nrc log(nrc)]
        - [2n1+ log(n1+) + ... + 2nr+ log(nr+)]
        - [2n+1 + log(n+1) + ... + 2n+c log(n+c)]

195 187 382

Sybase Oracle
Linux 120 80
Unix 45 95
Windows 30 12

200
140
42

nij: # in cell (i,j)
ni+: row i sum

n+j: column j sum
n: total # users

Another common type of analysis is testing for independence between 
two "categorical" (non-numeric) attributes. For example, we may wish to 
know whether there is a relationship between a user's operating system  
and database product.
Suppose that we take a survey of 382 users. The results of this 
(hypothetical) survey are laid out in a "contingency table".
As usual, we want a test statistic that is small if the two attributes are truly 
independent and large otherwise. Most statistics textbooks discuss 
"Pearson's Chi-square statistic". A lesser-known, but equally useful 
chi-square statistic is the "maximum likelihood" statistic whose formula is 
given on the slide. Note that the sign of each term in the sum depends on 
the level of aggregation, e.g., totals for individual cells and the grand total 
are positive while row-sum and column-sum terms are negative.
Use of the chi-square statistic is only valid if each cell frequency nij is 
large enough. Typically, each nij should be at least 5. 
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Test for Independence, Continued

WITH c_table(os, db, n, g1, g2) AS
(SELECT os, db, count(*), 2e0*( 0.5e0-grouping(os)), 2e0*(0.5e0-grouping(db))
 FROM survey
 GROUP BY CUBE(os,db))
SELECT sum(g1*g2*2e0*n*log(n)) as X 
FROM c_table

     X                os      db       n      g1      g2
------            ------  ------  ------  ------  ------
34.114             Linux     SYB     120     1.0     1.0
                   Linux       -     200     1.0    -1.0
                       -     SYB     195    -1.0     1.0
                       -       -     382    -1.0    -1.0
                   ...

If data is truly independent:
X should be close to 0
X has chi2 distribution with (r-1)(c-1) degrees of freedom

Computer example: r = 3, c = 2
if independent, Prob(X > 34.114) < 0.001%

c_table

In DB2, all of the entries in a contingency table can be simultaneously computed 
using the CUBE operator. Some sample entries in the resulting c_table are 
given at right.
To compute the chi-square statistic, we use DB2's grouping() function in a tricky 
way. For a given row in a CUBE table, grouping(column)=1 if the column has 
been "aggregated away", and grouping(column)=0 otherwise. For example, the 
second row in c_table represents the number of Linux users, which is obtained 
by summing over the db attribute. For this row grouping(db)=1 since we have 
summed over the db attribute, and grouping(os)=0. In our query we have 
rescaled the value of the grouping function to be either -1 or +1, thereby 
obtaining the derived attributes g1 and g2. By multiplying each term in the 
overall sum by g1*g2, the signs of the terms come out exactly as we need 
them.
For our example, the value of the chi-square statistic turns out to be 34.114. If 
os and db are truly independent, the probability of seeing such a large value is 
less than 0.001%. (We do a lookup in standard tables or do a standard 
numerical computation.) We can therefore assume that there is dependence 
between os and db.
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Combining Regression and Windowing

Running-line estimator (Hastie & Tibshirani, 1990)
fits a line y = aix + b i to local neighborhood of each (xi,y i) point
smoothed y value is given by y i

smooth = aixi + bi

better behavior at endpoints, better statistical properties

Seven-day running-line smooth
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Seven-day running-mean smooth
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The regression functions can be combined with windowing to 
compute a "running-line" estimator. Rather than just obtaining a 
smoothed y value by averaging the true y value with some of its 
neighbors, as we did before with the running mean estimator, we 
now fit a regression line to y and its neighbors, and use the 
y-value of the fitted line as the smoothed y value.
The running-line estimator is known to behave more nicely than 
the running-mean estimator.
Note how the running-line estimator captures the trend in the 
rightmost data values more accurately than does the running 
mean estimator.
The running-line and running-mean estimators can be viewed as 
"nonparametric regression estimators": we fit a curve to the data, 
but we don't assume a specific form for the curve (linear, 
quadratic, exponential) a priori.
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Regression and Windowing: Cont'd

Would like to execute the following query:

WITH dt(day,date,symbol,close_price) AS
 (SELECT cast(row_number() over (order by date) as float), 
   date, symbol, close_price
  FROM stocks WHERE symbol = 'XYZ' and
   date between
   '1999-08-01' and '1999-09-01'
 )
SELECT date, symbol, close_price,
  day * (regr_slope(close_price,day)
   over (order by day rows between
          3 preceding and 3 following))
  + regr_icpt(close_price,day) over (order by day
      rows between 3 preceding and 3 following)
  AS smooth_cp
FROM dt;

Doesn't quite work yet
Work-around by expanding:   regr_slope(y,x) = covar(y,x) / var(x)   etc.

Ideally, we would use the displayed query to compute the 
running-line estimator.
Note that we use the rownumber() function to create the x 
values for our regression, and that we cast the rownumber to 
a float to ensure good numerical behavior.
Unfortunately, this query doesn't quite work, because the 
regression functions are not completely compatible with 
windowing yet. (They will be in the future).
We can still run the query by expressing the regression 
functions interms of the variance(), covariance(), and avg() 
functions, which ARE compatible with windowing.
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A Regression and Windowing Query

Final query (assumes no NULLs):

with 
dt(day,date,symbol,close_price) as
  (select cast(row_number() over (order by date) as real), 
   date, symbol, close_price from stocks
  ),
ddt(day,date,symbol,close_price,slope,avgx,avgy) as
  (select day, date, symbol, close_price, 
    covar(close_price,day) 
     over (order by day rows between 3 preceding and 3 following) /
    var(day)
     over (order by day rows between 3 preceding and 3 following), 
    avg(day) 
     over (order by day rows between 3 preceding and 3 following),
    avg(close_price) 
     over (order by day rows between 3 preceding and 3 following)
   from dt
  )
select date, symbol, close_price,
 day * slope + (avgy-slope*avgx) as smooth_cp
from ddt;

Here is the resulting query, which is somewhat more 
cumbersome than the original, but still does the job.
This version of the query does not check for NULL x or y 
values. The query will work as written if, e.g.,  it is applied to 
a table expression obtained from the original table by 
removing all rows having a NULL x or y value.
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Taming Massive Data: Sampling

Sampling for
 auditing or "fuzzy exploration"
quick approximate answers to aggregation queries
making analytics and datamining scalable

Technology challenges
generating a representative sample efficiently
estimating an aggregate
assessing precision of estimate

Sampling in DB2 --- Present and Future
Go to session B16

Sampling is a tool that can often be used to "tame" massive data.
One common application is to produce a representative subset of the 
rows in a table for purposes auditing or "fuzzy exploration". The latter 
concept refers to the fact that by simply getting one's hands on the raw 
data, one can often discover interesting features without having to 
compose an explicit query.
Another common application of sampling is to obtain quick approximate 
answers to aggregation queries (SUM queries,  COUNT queries, etc.).
Finally, sampling is essential in scaling analytical and data mining 
algorithms to handle vast amounts of data.
The key challenges, then, are how to obtain a representative sample, 
how to use the sample to estimate a value of an aggregate, and how to 
assess the precision of this estimate.
See my talk in session B16 for an in depth  discussion of current and 
future sampling capabilities of DB2.
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For More Information

Go to: www.almaden.ibm.com/cs/people/peterh
Latest version of this talk
CLI files for executing the queries in this talk

Forthcoming Redbook on BI in DB2


