
 IBM Corporation 2001

Anaheim, CA Sept 9 - 13, 2002

B15

Peter J. Haas

DB2 UDB Advanced Analytics for
Business Intelligence

Our goal is to show how DB2 can be used for some basic
data-analytic tasks, and illustrate the surprising power of
SQL for data analysis
We will introduce the needed basic statistical concepts in a
gentle, user-friendly way

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

From Data to Knowledge

The challenge: extracting useful business information from
(massive) data (automatically)

Data analysis via SQL queries
processing occurs close to data
automatically exploits parallelism
can exploit other DB features: incremental maintenance, etc.
Can exploit database sampling (see session B16)

DB2 is surprisingly powerful for analytics!

Data Warehouse
(100's of Terabytes)

Swipe-stream data

Click-stream data

The essence of BI is the extraction of useful business information from
one's data, perhaps in an automated manner.
These days, the amount of data on hand is often huge, with data
warehouses containing 100's of terabytes, and now even petabytes, of
data.
In this presentation we survey some useful information-extraction
techniques that can be performed by means of SQL queries.
There are many advantages to using SQL queries, when possible, for data
analysis. The user does not need to learn how to use a new statistical
package. Processing is more efficient, since the data does not need to be
transferred to an application sitting on top of the database. Also, DB2 will
automatically choose efficient plans for accessing and manipulating the
data, automatically parallelizing computations when possible. And of
course, the user benefits from the other database functionality that comes
built into DB2, such as incremental maintenance, data security,
maintainability, consistency, and recovery.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Some Different Types of Analyses

Understanding the overall "shape" of the data
summaries
pictures

Detecting outliers

Detecting dependencies
between customers
over time

Statistical modelling
for prediction and decision-making
functional relationships
inference (answering questions)

There are a number of useful analyses that we can do:
"Descriptive statistics" is concerned with techniques for bringing out
interesting patterns and trends in the data, either with numerical
summaries or with graphical data visualization methods.
Detecting dependencies in the data is important. These include
dependencies between customers, between products, between
marketing activities and customer behavior, or between customer
behavior at different time points.
By getting a picture of "normal" trends and variation in the data, we
are in a position to identify potential outlier data values (useful for
fraud detection, etc.)
Finally, we often need to use our data to build statistical models for
purposes of prediction (discovering functional relationships),
inference (answering questions) and decisionmaking, all in the
presence of uncertainty.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Pertinent Features of DB2 UWO

Classical aggregation functions
SUM, COUNT, AVERAGE, ...

Statistical functions
STDDEV, CORR, REGR_*

OLAP functions
 ROWNUMBER, RANK, window aggregates, ...

Other V5-V7 enhancements
common table expressions
CASE
triggers

Can use SQL to combine tools in new and powerful ways

With its new analytical features, DB2 provides a comprehensive
and flexible set of tools for accomplishing the foregoing tasks,
and hence a powerful framework for data analysis.
The DB2 analytical toolbox contains the classical aggregation
functions such as sum(), count(), and average(), as well as new
statistical functions for correlation and regression analysis.
The OLAP functions are powerful in and of themselves, and can
be combined with the DB2's statistical functions in many
interesting ways.
Finally, general enhancements such as common table
expressions, random number generation, and logical operators
such as the CASE function, extend the range of SQL queries
even further.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

CAVEAT

These queries are not bullet-proof!!
not optimized
no careful null handling
no output formatting

They are educational, though
basic functionality
tricks

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Classical Summary Statistics

VIEW transvw1(country, year, amount)

select country, year,
 count(*) as count, sum(amount) as sum,
 avg(amount) as avg, max(amount) as max,
 stddev(amount) as stddev
from transvw1
group by country, year;

COUNTRY YEAR COUNT SUM AVG MAX STDDEV
-------- ----- ------ ------------ -------- -------- --------
GERMANY 1998 31 3126.04 100.84 109.75 6.18
GERMANY 1999 24 3549.06 147.87 160.87 7.49
USA 1998 20 4031.20 201.56 249.34 28.91
USA 1999 25 7820.09 312.80 607.98 281.36

We now discuss methods for describing our data in order to reveal
interesting patterns.
Perhaps the simplest way to describe data is to compute summary
numbers that describe overall data characteristics. Functions such as
count(), sum(), avg(), min(), and max() have been supported since the
earliest versions of DB2. More complex aggregates such as stddev()
(standard deviation) have been added starting in V5.
stddev() is a measure of the variability of the data. The majority of
data values are typically within one standard deviation of the mean,
and almost all data values are typically within two standard deviations.
In the example, USA sales in 1999 are much more variable than
sales in other years and in other locations. That is, the amounts in the
individual sales transactions vary more widely from their average
value of $312.80.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Outliers: Credit Card Fraud Detection

Create a customer card-usage profile table:

CREATE VIEW profile(cust_id, avg_amt, sd_amt) AS
 select cust_id, avg(charge_amt), stddev(charge_amt)
 FROM trans
 WHERE date BETWEEN '2002-01-01' and '2002-03-31'
 GROUP BY cust_id;

Detect and flag unusually large charges

CREATE TRIGGER big_chrg
AFTER INSERT ON trans
REFERENCING NEW AS newrow FOR EACH ROW MODE DB2SQL
WHEN (newrow.charge_amt > (SELECT avg_amt + 2e0 * sd_amt
 FROM profile
 WHERE profile.cust_id =
 newrow.cust_id))
INSERT INTO big_charges(cust_id,charge_amt)
 VALUES(newrow.cust_id, newrow.charge_amt);

One common use for the avg() and stddev() functions is to
detect outliers. We illustrate the basic idea in the context of
credit card fraud detection.
The profile table maintains the average and standard
deviation of each customer's card purchases over a
reference period.
The trigger inserts a customer transaction into the
big_charges table whenever the charge amount is more than
two standard deviations above the average.
The big_charges table presumably has triggers that will set
off an alarm if, e.g., a customer has more than 3 big charges
over a 12 hour period.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

equi-width histogram for transaction amounts (20 buckets):

WITH dt as (SELECT t.transid, sum(amount) as trans_amt,
 case
 when (sum(amount)-0)/((60000-0)/20) < 0 then 0
 when (sum(amount)-0)/((60000-0)/20) > 19 then 19
 else int((sum(amount)-0)/((60000-0)/20))
 end as bucket
 FROM trans t, transitem ti WHERE t.transid=ti.transid
 GROUP BY t.transid)
SELECT bucket, count(bucket) as height, (bucket+1) *
(60000-0)/20 as max_amt FROM dt GROUP BY bucket;
BUCKET HEIGHT MAX_AMT
----------- ----------- -----------
 0 435 3000
 1 645 6000
 2 830 9000
 3 669 12000
 4 533 15000
 5 405 18000
 6 265 21000
 7 192 24000
 8 123 27000
 9 82 30000
 10 55 33000
 11 35 36000
 12 22 39000
 13 7 42000
 14 7 45000
 15 1 48000

(Equi-Width) Histograms

 3
000

 60
00

 90
00

 12
000

 15
000

 18
000

 21
000

 24
000

 27
000

 30
000

 33
000

 36
000

 39
000

 42
000

 45
000

 48
000

 51
000

 57
000

 60
000

Trans_Amt

0

100

200

300

400

500

600

700

800

900

T
ra

n
sa

ct
io

n
s

This example shows how the CASE statement can be used
to create a histogram, that is, a graphical representation of
the distribution of transaction amounts.
The idea is to assign each data value to one of 20 buckets.
The histogram displays the number of data values in each
bucket as the height of the associated bar.
The histogram is called "equi-width" because the range of
data values assigned to a bucket (upper value minus lower
value) is the same for each bucket.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Quantiles (Equi-Height Histograms)

equi-height histogram for transaction amounts (10 buckets):

WITH dt as
 (SELECT t.transid, sum(amount) as trans_amt,
 rownumber() over (order by sum(amount)) * 10 /
 (select count(distinct transid)+1
 from stars.transitem) as bucket
 FROM stars.trans t, stars.transitem ti
 WHERE t.transid=ti.transid GROUP BY t.transid
)
SELECT bucket, count(bucket) as b_count, max(trans_amt) as
 part_value
FROM dt GROUP BY bucket;

BUCKET B_COUNT PART_VALUE
------ ------- ----------
 0 430 2957.54
 1 431 5094.14
 2 431 6873.05
 3 431 8429.81
 4 431 9793.69
 5 431 12019.40
 6 431 14468.20
 7 431 17355.26
 8 431 22215.92
 9 431 57360.41

T
ra

n
sa

ct
io

n
s

0 5 10 15 20 25 30 35 40 45 50 55 60

Thousands
Trans_amt

An equi-height histogram has bucket boundaries chosen so that each
bucket contains approximately the same number of data points.
In this example, there are 10 buckets, so that 10% of the data points fall
in each bucket. The internal bucket boundaries are often referred to as
the 0.1, 0.2, ... , 0.9 quantiles of the data distribution, or as 10th, 20th, ...
,90th percentiles. For example, the 10th percentile for the example data
set is $2957.54, that is, 10% of transactions have a dollar value that is
less than this number.
In effect, the query computes the total sales amount for each of N
transactions as tran_amt, sorts the amounts in increasing order, and
assigns the number 1 to the smallest transaction, 2 to the next largest
transaction, etc., using the rownumber() function. Dividing these numbers
by N---which is computed as count(distinct transid)---and rounding to the
nearest integer produces the desired bucket number for each transaction.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Smoothed Time Series
Three-day running-mean smoothed average of IBM stock prices:

SELECT date, symbol, close_price,
 avg(close_price) OVER (order by date rows between 1
 preceding and 1 following) AS smooth_cp FROM stocktab
WHERE symbol = 'IBM' and date between '1999-08-01' and
 '1999-09-01' ;

DATE SYMBOL CLOSE_PRICE SMOOTH_CP
---------- ------ ------------ -------------
08/02/1999 IBM 110.125 109.8125
08/03/1999 IBM 109.500 110.5416
08/04/1999 IBM 112.000 110.7083
08/05/1999 IBM 110.625 111.7916
08/06/1999 IBM 112.750 111.3333
08/09/1999 IBM 110.625 110.5833
08/10/1999 IBM 108.375 109.4166
08/11/1999 IBM 109.250 109.0000
08/12/1999 IBM 109.375 109.0416
08/13/1999 IBM 108.500 109.3750
08/16/1999 IBM 110.250 109.0416
08/17/1999 IBM 108.375 109.0000
08/18/1999 IBM 108.375 108.7083
08/19/1999 IBM 109.375 109.9166
08/20/1999 IBM 112.000 111.5000
08/23/1999 IBM 113.125 113.3333
08/24/1999 IBM 114.875 114.5000
08/25/1999 IBM 115.500 114.5833
08/26/1999 IBM 113.375 114.8333
08/27/1999 IBM 115.625 114.2083
08/30/1999 IBM 113.625 114.0416
08/31/1999 IBM 112.875 114.0416
09/01/1999 IBM 115.625 114.2500

Three-day running-mean smooth
108

109

110

111

112

113

114

115

116

smooth_cp

close_price

Here the moving-window version of the avg() function is
used to smooth a data time series in order to reveal
underlying trends. Such smoothing is sometimes called
"nonparametric regression", because we are fitting a smooth
function to the data, but this function does not have the form
y = ax2 or any other such parametric representation.
The OVER clause defines the window (containing the points
to be averaged) as the current data point plus the point
preceding and the point following the current data point,
when the points are ordered by date.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Smoothed Time Series
Seven-day running-mean smoothed average of IBM stock prices:

SELECT date, symbol, close_price,
 avg(close_price) over (order by date rows between 3
 preceding and 3 following) as smooth_cp
FROM stocktab
WHERE symbol = 'IBM' and date between '1999-08-01' and
 '1999-09-01' ;

DATE SYMBOL CLOSE_PRICE SMOOTH_CP
---------- ------ ------------ -------------
08/02/1999 IBM 110.125 109.8125
08/03/1999 IBM 109.500 110.5416
08/04/1999 IBM 112.000 110.7083
08/05/1999 IBM 110.625 111.7916
08/06/1999 IBM 112.750 111.3333
08/09/1999 IBM 110.625 110.5833
08/10/1999 IBM 108.375 109.4166
08/11/1999 IBM 109.250 109.0000
08/12/1999 IBM 109.375 109.0416
08/13/1999 IBM 108.500 109.3750
08/16/1999 IBM 110.250 109.0416
08/17/1999 IBM 108.375 109.0000
08/18/1999 IBM 108.375 108.7083
08/19/1999 IBM 109.375 109.9166
08/20/1999 IBM 112.000 111.5000
08/23/1999 IBM 113.125 113.3333
08/24/1999 IBM 114.875 114.5000
08/25/1999 IBM 115.500 114.5833
08/26/1999 IBM 113.375 114.8333
08/27/1999 IBM 115.625 114.2083
08/30/1999 IBM 113.625 114.0416
08/31/1999 IBM 112.875 114.0416
09/01/1999 IBM 115.625 114.2500

Seven-day running-mean smooth
108

109

110

111

112

113

114

115

116

smooth_cp

close_price

This query is the same as the last one, but now we average
over the current data point along with the three points that
precede and the three points that follow the current data
point.
Use of the wider window (7 points vs 3 points) results in a
greater degree of smoothing in the fitted (solid blue) curve.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Detecting Dependencies: Correlation

Correlation = 1

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

Correlation = -1

0

50

100

150

200

250

0 20 40 60 80 100 120 140

Correlation = 0

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

Correlation = -0.02

0
20
40
60
80

100
120
140
160
180
200

0 10 20 30 40 50 60

Correlation coefficient: measures strength of linear relationship

The correlation functions introduced in V6 of DB2 UWO
permit detection of linear relationships between two
variables.
In particular, the correlation coefficient measures the strength
of such a linear relationship. A value of 1 (resp., -1) indicated
a perfect positive (resp., negative) linear relationship
between two attributes, while a value of 0 indicates no
apparent linear relationship.
In the lower right plot, there is a perfect relationship between
the two attributes, but the correlation coefficient has a low
value because the relationship is not linear.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Correlation in DB2

Sales regions where income and purchases are not aligned:

VIEW transvw2(country, state, annual_purchases, income)

SELECT country, state,
 correlation(annual_purchases, income) AS correlation
FROM transvw2
GROUP BY country, state
having abs(correlation(annual_purchases, income)) > 0.10;

COUNTRY STATE CORRELATION
---------- ---------- -----------
USA AK 0.78
USA AL 0.68
USA DE -0.30 <=
USA GA 0.14
USA KS 0.69
USA LA 0.48

Can also display covariance (= "unnormalized" correlation)

The correlation() function computes the correlation coeficient between
two attributes. Each argument to the function need not, of course, be
simply a column name, but can be an arithmetic expression involving one
or more columns.
This query detects anomalous regions where higher income led to
apparently lower puchases, as indicated by the negative correlation for
the state of Delaware (DE) in the USA. Such a region might merit closer
investigation to see what is going on.
Note the use of the HAVING clause to restrict the output to cases of
"significant" correlation.
DB2 also provides a covariance() function, which can be viewed as an
"unnormalized" correlation. That is, the covariance is dependent on the
unit of measurement and can take on arbitrarily large or small values,
rather than being constrained to lie between 0 and 1 as is the case with
correlation. Covariance() is usually used to compute other quantities of
more direct interest.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Another Use for Correlation

Customers with similar buying habits:

VIEW transvw3(custid, prodid, amount)

SELECT a.custid as custid1, b.custid as custid2,
 corr(a.amount, b.amount)as corr
FROM transvw3 a, transvw3 b
WHERE a.prodid = b.prodid and a.custid < b.custid
GROUP BY a.custid, b.custid
HAVING corr(a.amount, b.amount) >= 0.5
 and count(*) > 100
ORDER BY corr desc;

CUSTID1 CUSTID2 CORR
-------- -------- -----
2300 6823 0.99
1071 2300 0.85
1223 4539 0.83
1010 1071 0.78
1010 2300 0.72
1071 6823 0.65

total amount puchased
over all transactions

12234539

2300

6823 1071

1010

This query identifies customers with apparently similar
buying habits. Whenever customer 2300 bought a large
amount of a given product, then customer 6823 also tended
to buy a large amount.
The HAVING clause restricts the output to cases of high
positive correlation, and to cases where there are at least
100 products involved (that is, at least 100 data points are
used to compute the correlation).
The correlation values can be used informally to cluster
customers into similar groups. Here we have identified two
clusters.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Autocorrelation
Correlate yearly sales with sales from previous years

VIEW transvw4(pgname, year, total_sales)

WITH dt (pgname, year, sales_0, sales_1, sales_2) AS
 (SELECT pgname, year, total_sales,
 max(total_sales) over
 (partition by pgname order by year rows between 1 preceding
 and 1 preceding),
 max(total_sales) over
 (partition by pgname order by year rows between 2 preceding
 and 2 preceding)
 FROM transvw4
)
SELECT pgname, correlation(sales_0,sales_1)*100 as "correlation1(%)",
 correlation(sales_0,sales_2)*100 as "correlation2(%)",
FROM dt GROUP BY pgname;

PGNAME correlation1(%) correlation2(%)
------------ --------------- ---------------
antibiotics -2.83 -29.07
camcorder -54.78 20.75
coats -25.40 -1.68
vcr 59.39 33.17

It is frequently of interest to study the dependence between
current and previous customer behavior. This query
computes the correlation between sales for a given year
(sales_0) with both sales from the previous year (sales_1)
and sales from two years before (sales_2).
The moving-window version of the max() function is used in
a somewhat tricky way to compute the sales_1 and sales_2
columns in the table dt. Note that the "max" is actually
computed only for a single value, since the window is of
length 1. We could just as well have used the avg(), sum(),
or min() functions instead of max(). (But max and min tend to
have slightly more stable numerical behavior in general than
sum or avg.)

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Least-Squares Fit (Linear Regression)

Fits a line of the form y = ax + b from (x,y) pairs
Ex: effect of advertising budget on 1999 sales

SELECT
 regr_count(sales, ad_budget) AS num_cities,
 regr_slope(sales, ad_budget) AS a,
 regr_icpt(sales, ad_budget) AS b
FROM ad_camp;

num_cities a b
---------- ------ ------
126 1.9533 13.381

y x

0

50

100

150

200

250

0 20 40 60 80 100

sa
le

s

ad_budget

y = 1.9533x + 13.381

The regression suite of functions was introduced into V6 of
DB2 UWO. The functions take a set of (xi,yi) data pairs and
choose numbers (a,b) to fit a line of the form y = ax + b that
minimizes the sum of the squared errors, where the ith error
is ei = yi - (axi + b).
Note that the y value is the first argument and x is the second
argument to each regression function.
regr_count() returns the number of (x,y) pairs used to fit the
regression line. A pair is only used if both x and y are
non-null.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Fitting Other Types of Curves

y = ax2 + b
 SELECT regr_slope(y, x*x) AS a,
 regr_icpt(y, x*x) AS b

y = bxa
log y = a log x + log b

 SELECT regr_slope(log(y), log(x)) AS a,
 exp(regr_icpt(log(y), log(x))) AS b ...

SELECT
 regr_count(hits,days) as num_days
 regr_slope(log(hits),log(days)) AS a,

 exp(regr_icpt(log(hits),log(days))) AS b
FROM traffic_data;

 NUM_DAYS A B
----------- ------ -------
 100 1.9874 21.4302

0

5 104

1 105

1.5 105

2 105

2.5 105

0 20 40 60 80 100

hi
ts

 p
er

 d
ay

days since inception

hit rate = 21.43 * (days ^ 1.9874)

By choosing the arguments to the regression functions to be
arithmetic expressions involving the input columns, a variety
of curves can be fitted (not just straight lines).
The second example plots the daily hit rate at a hypothetical
new web site. Since the hit rate rises rapidly at first, a power
curve is a reasonable model to try and fit to the data.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Quality of Fit

Want diagnostics!
especially in automated environment

From L. Kovar, "Band Structure in Germanium, My #$%$"
Ann. Improbable Research, 7(3), 2001
http://www.improb.com/airchives/paperair/volume7/v7i3/germanium-7-3.html

As can be seen from this example, the fit of a curve can be
quite poor! (The article in which this plot appeared is actually
a piece of science humor: a research report written in the
style of an extremely disgruntled undergraduate physics
major.)
It is important to have some measure of goodness-of-fit,
especially if the fitting is being done in an
automatic-processing environment, so that nobody is actually
looking at a plot of the data and fitted curve.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Quality of Fit - Continued

R-Squared
roughly, the square of the correlation of x and y
proportion of y-variation explained by the model

SELECT
 regr_count(sales, ad_budget) AS num_cities,
 regr_slope(sales, ad_budget) AS a,
 regr_icpt(sales, ad_budget) AS b,
 regr_r2(sales, ad_budget) as r-squared
FROM ad_camp;

num_cities a b r-squared
---------- ------ ------ ---------
128 1.9533 13.381 0.95917

0

50

100

150

200

250

0 20 40 60 80 100

sa
le

s
ad_budget

y = 1.9533x + 13.381

A standard diagnostic statistic is R2, which is essentially the
square of the correlation coefficient between x and y.
R2 also can be interpreted as the proportion of variation in the
y values that is explained by the variation in the x values (as
opposed to variation due to randomness or to other variables
not included in the model).
The function regr_r2() computes this quantity automatically.
The fit in the example is extremely good, with R2 = 0.96

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Quality of Fit for Nonlinear Curves

Incorrect: Compute R-Squared for transformed data

select regr_r2(log(hits),log(days))as r2 from traffic_data;

Correct: Compute R-Squared for original data

with coeffs(a,b) as
(select regr_slope(log(hits),log(days)) as a,
 exp(regr_icpt(log(hits),log(days))) as b
 from traffic_data),
residuals(days,hits,error) as
(select t.days, t.hits, t.hits - c.b * power(t.days,c.a)
 from traffic_data t, coeffs c)
select 1e0 - (sum(error*error)/regr_syy(hits,days)) as r2
from residuals;

r2: 0.9912

r2: 0.9554

0

5 10 4

1 10
5

1.5 10 5

2 10 5

2.5 10 5

0 20 40 60 80 100

hi
ts

 p
er

 d
ay

days since inception

hit rate = 21.43 * (days ^ 1.9874)

When using the regression functions to fit a nonlinear curve,
some care has to be taken when evaluating the quality of the
fit using the R-squared statistic.
R-Squared must be evaluated not for the linear fit of the
transformed data, but for the nonlinear fit of the original data.
The displayed query shows how to do this, by first computing
a table of residuals (differences between exact and predicted
y-values) for the nonlinear fit.
As can be seen, using the built-in R2 function gives an
overoptimistic view of the fit---this is typical.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Influence of Individual Data Points

Some data are more important than others

Measure of influence: HAT diagonal
h i = (mx2 - 2mxxi + xi

2) / sXX

mx = avg(x1, ... ,xn)
mx2 = avg(x1

2, ... ,xn
2)

sXX = (x1 - mx)
2 + ... + (xn - mx)

2

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Y

X

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Y

X

As can be seen in this example, certain data points can have
a strong influence on the fitted line because the x value is
located far from the center of the x values. Changing the y
value of the rightmost point in our example completely
changes the slope of the regression line.
Some standard diagnostic statistics used to detect such
points are the "HAT matrix" diagonal entries, whose formula
is given in the slide.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

HAT Diagonal Computation

WITH stats(mx, mx2, sxx) AS
(SELECT regr_avgx(sales,ad_budget),
 regr_avgx(sales,ad_budget*ad_budget), regr_sxx(sales,ad_budget)
 FROM cal_ad_camp
)
SELECT d.label as city, (s.mx2 - 2 * s.mx * d.x + d.x * d.x) / s.sxx AS
hat
FROM xy_data d, stats s
ORDER BY hat DESC;

 city hat
----------- ------
Los Angeles 0.9644
Boonville 0.1222
Grass Valley 0.1195
Yreka 0.1154
Gilroy 0.1099
Lemoore 0.1011
Hilmar 0.1011
Mendocino 0.0923
Turlock 0.0922
Morgan Hill 0.0910
Truckee 0.0910

Los Angeles

0

2

4

6

8

10

12

0 2 4 6 8 10 12

sa
le

s

ad_budget

This query computes the HAT diagonals. Note that we write, for
example, regr_avgx(y,x*x) rather than avg(x*x). We do this for two
reasons. First, the function avg(x*x) may include x values for which
the corresponding y value is NULL, so that the point (x,y) was not
used in the regression. Secondly, the regression functions are
designed to work together, efficiently computing all the necessary
statistics in a single pass through the data.
Also note that the function regr_sxx() is available to conveniently
compute the quantity sxx. Analogous functions regr_syy() and
regr_sxy() are available. These functions are provided because they
occur frequently in the formulas for the various diagnostic statistics
used in regression.
As expected, the HAT statistic for the rightmost point is almost 10
times larger than the HAT statistics for the other points.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Regression through the origin

Fit a line of the form y = ax
a = (x1y1 + ... + xnyn) / (x1

2 + ... + xn
2)

recall regr_sxx, regr_sxy
 regr_sxx: (x1-mx)2 + ... + (xn - mx)2

 here mx = avg(x1, ... , xn) as before
a trick:

(x1
2 + ... + xn

2) = regr_sxx + n mx
2

(x1y1 + ... + xnyn) = regr_sxy + n mx my

SELECT
 regr_count(kwh, hours_run) as num_machines,
 (regr_sxy(kwh, hours_run) + regr_count(kwh, hours_run) *
 regr_avgx(kwh, hours_run) * regr_avgy(kwh, hours_run))
 / (regr_sxx(kwh, hours_run) + regr_count(kwh, hours_run) *
 regr_avgx(kwh, hours_run) * regr_avgx(kwh, hours_run))
 as a;
FROM power_data;

num_machines a
------------ ------
50 10.082

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

K
W

H

Hours_run (thousands)

y = 10.082 x

Sometimes we know in advance that the fitted line MUST go
through the origin. In our example, we know that no electricity
is used when all of the machines are shut off.
In this case, we need to use a different formula for the slope
a, which involves both sums of xi

2 terms and sums of xiyi
products. The trick shown in the slide can be used to
express these sums in terms of quantities that can be
computed using functions regr_sxx() and regr_sxy().

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Outliers II: Effective Ad Campaigns

Identify unusually effective campaigns, controlling for ad budget
Use sigma, the standard deviation about the regression line

WITH dt(a, b, sigma) AS
 (SELECT
 regr_slope(sales,ad_budget),
 regr_icpt(sales,ad_budget),
 sqrt((regr_syy(sales,ad_budget)
 - (regr_sxy(sales,ad_budget)
 *regr_sxy(sales,ad_budget)
 /regr_sxx(sales,ad_budget)))
 / (regr_count(sales,ad_budget) - 2))
 FROM ad_camp)
SELECT city, ad_budget, sales
FROM ad_campx ac, dt
WHERE sales > a*ad_budget + b + 2e0*sigma
ORDER BY ad_budget;

CITY BUDGET SALES
------ ------ ------
Fresno 15.26 82.00
San Diego 84.99 223.81

0

50

100

150

200

250

0 20 40 60 80 100

sa
le

s

ad_budget

y = 1.963x + 13.609

outlier

outlier

Here is a second example of outlier detection. We want to
identify cities in which the ad campaign is particularly
effective. We need to control for the amount of money spend
on the ad campaign.
To identify outliers,we first define the "normal" relation
between advertising budget and resulting sales by fitting a
regression line.
We then identify as outliers those points that lie more than
two standard deviations above or below the regression line,
where "standard deviation" is defined in a manner
appropriate for regression.
The displayed query computes the "regression standard
deviation" sigma in terms of the built-in regression functions.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Multiple Linear Regression

Fit a line of the form y = b0 + b1x1 + ... + bnxn

ex: y = a1z+ a2 z2 + b
To fit: write in matrix form and solve "normal equations"

y = Xb + e
y1

y2

...

yn

1 x11 x12 ... x1k

1 x21 x22 ... x2k

...
1 xn1 xn2 ... xnk

b0

b1

...
bk

e1

e2

...
en

+=

given choose minimize

Find b's that
 minimize Σei

2

The linear regression methodology can be extended to the
case in which there are 2 or more predictor (x) variables.
As before, the x values can be functions of the original
observations, as in the example.
To compute the coefficients b0, ... ,bn, we now have to solve a
system of linear equations called the "normal" equations.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Multiple Linear Regression, Continued

Compute b by solving "normal equations": [XTX]b = [XTy]

Multiple regression in DB2 --- a simple approach
compute entries of [XTX] and [XTy] using SQL queries
SELECT x1*x1, x1*x2, x2*x2, x1*y, x2*y ...
matrices are incrementally maintainable

solve for b by feeding entries into a UDF that solves equations
(e.g., by Gaussian elimination)

Research prototype (two x variables) developed at Almaden
Good for fixed problems with changing data

Issues for an industrial-strength solution
general equation-solving UDF
robustness to "difficult data"
diagnostic statistics (R2, etc.)

Although the normal equations cannot be solve directly using an SQL
query, DB2 can nonetheless be used to solve the fitting problem. A
prototype solution has been developed at Almaden Research Center
by Kevin Beyer.
The idea is to use an SQL query to compute the linear coefficients in
the normal equation (the entries of the matrix [XtX]) as well as the
constants on the right-hand side (the entries of the vector [Xty]).
These coefficients are fed into a UDF that does the actual equation
solving (currently by Gaussian elimination).
The foregoing approach can be used to solve a wide variety of
curve-fitting problems, and is particularly appropriate for a fixed
problem in which the data is constantly changing. A full-scale solution
requires full generalization of the UDF and being able to deal robustly
with ill-conditioned data, e.g., data for which the slope of the line is
extremely steep.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

From Description to Modeling

Scenario 1: business decisions
need to make predictions/inferences
view data as sample from real world
need to distinguish real effects from luck-of-the-draw

Scenario 2: quick analysis of massive data
data is small sample from large database
need to assess validity of sample-based computations

The discussion so far has focused on the problem of finding interesting patterns in the
data.
Typically, though, the reason that we are analyzing the data is because we need to
make a business decision. To support this decision we need to predict, e.g., customer
behavior, or make an inference (answer a question) about our customers.
In this case, we need to develop a statistical model of some mechanism out in the world
(e.g., customer response to advertising), so that we can do a "what-if?" analysis for
alternative scenarios.
This means that we no longer view our data as our complete "universe" of information.
Rather, we now view our data as being a sample of information generated by the
real-world mechanism that we are studying.
Since we now view our data as a sample, we need to distinguish meaningful effects
from random, luck-of-the-draw fluctuations.
In a related scenario, our database might be our entire information universe, but it might
be so big that we need to work with a sample of the data. We now need to decide
whether conclusions drawn from the sample are likely to be the same as the
conclusions that we would have drawn if we were able to look at all of the data.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Significance of Regression Fit

View data as a sample
yi = axi + b + error i

Real effect of x on y, or luck-of-the draw?

Look at F statistic (with 1 and n-2 "degrees of freedom")
measures (y variability caused by x) / (unexplained y variability)
if a = 0, then F should take on "small" values

A statistical test:
let f be observed value of F
compute Prob(F >= f) assuming that a = 0
suppose that f is so big that Prob(F >= f) is very small

 unlikely to see this if a = 0
therefore, effect of x on y is statistically significant

Here we apply the modeling-based view to linear regression, and assume that
the data was generated from the model given in the slide. I.e., the y's depend
linearly on the x's, but our observations of the y's are clouded by random noise
(the error terms, which are assumed random).
Given a fitted curve, it may be possible that the y values don't depend on the x's
at all, but by sheer bad luck the random fluctuations in our data have led us to
incorrectly fit a line with a nonzero slope, so that we incorrectly assume a
functional dependence of y on x. Thus we need to determine if y really depends
on x, or just seems to depend on x because of luck-of-the-draw.
The classical approach is to compute a statistic that should be small if, in fact
a=0, and whose distribution is known when a=0. Suppose that the observed
value of the statistic is so large so that the probabiliy of seeing this value is very
small if, in fact, a=0. Then we reject the "null hypothesis" that a=0 and assume
that the effect of x on y is real. Otherwise, we do not reject the null hypothesis;
i.e., our model is not "statistically meaningful".
For the regression problem at hand, the "F statistic" is usually used for this
purpose.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Significance of Fit, Continued

WITH dt(num_cities, a, b, sxx, sigma2) AS
(SELECT
 regr_count(sales,ad_budget),
 regr_slope(sales,ad_budget),
 regr_icpt(sales,ad_budget),
 regr_sxx(sales,ad_budget),
 (regr_syy(sales,ad_budget)
 -(regr_sxy(sales,ad_budget)*regr_sxy(sales,ad_budget)
 /regr_sxx(sales,ad_budget)))
 / (regr_count(sales,ad_budget) - 2)
 FROM ad_camp
)
SELECT num_cities, a, b,
 ((a*a*sxx)/sigma2) AS F
FROM dt;

num_cities a b F
---------- ------ ------ ---------
128 1.9533 13.381 2959.83

Prob(F1,126 > 2959.83) << 0.01

Caveat: errors need to be iid normal

0

50

100

150

200

250

0 20 40 60 80 100

sa
le

s
ad_budget

y = 1.9533x + 13.381

This query shows how to compute the F statistic in terms of
the DB2 regression functions.
This analysis assumes that the errors in our observations are
independent and identically distributed (iid) according to a
normal distribution with mean 0.This assumption is often
either directly satisfied, or indirectly satisfied after an
appropriate transformation of the data.
The intermediate constant sigma2 in the query is actually an
estimate of the common variance of the errors (i.e., the
variance of the foregoing normal distribution).
In our example, F = 2960. If, in fact, a=0, the probability of
seeing such an F value is much less than 1%, so we can
assume that our model is statistically significant, and that we
are not just fitting a line to random noise.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Inference: Effectiveness of Ad Campaign

An experiment
Campaign run in City B in January (8 stores)
No campaign in "control" City A (9 stores)
Monthly sales computed in stores in both cities for February
VIEW feb_sales(city,store_id,sales)

Did campaign result in increased sales?

Classical test: 2-sample t test
restrictive normality assumption
restrictive equal-variance assumption

Wilcoxon Rank Test
a more modern "nonparametric" procedure
avoids restrictive assumptions

Here is an example of statistical inference. Suppose that we
want to decide whether a certain advertising campaign for a
product is "effective", that is, increases sales. We conduct an
advertising campaign in January in City B, which has 8 stores. In
City A, which has the same demographics as City B, we do not
run a campaign. We then look at the total February sales for the
product in each store.
A classical procedure for deciding whether sales in City B are
actually higher is to use a "two-sample t test". This procedure,
which is given in most elementary textbooks, requires that total
February sales are normally distributed for each city, and that
the store-to-store variability of February sales is the same for
both cities.
A more modern "nonparametric" procedure called the Wilcoxon
Rank Test avoids these restrictive assumptions.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Wilcoxon Rank Test

Test statistic: sum of ranks of City B in combined ranking

WITH ranked_sales(city, ranks) AS
(SELECT city, rank() over (order by sales)
 FROM feb_sales
)
SELECT sum(ranks) as W
FROM ranked_sales WHERE city = 'B'

Test if W is significantly > than expected value (assuming no diff.)
 expected value: [(nAnB) + nB(nB+1)] / 2
(nX = number of stores in City X)

example: nA = 9, nB = 8, and W = 94
expected value = 72
 Prob(W > 93) =2% (from tables) if no real difference in sales

The Wilcoxon statistic W is computed as follows. Combine the 17
stores together and rank them in order of increasing sales. Then sum the
ranks of those stores that are in City B. (Our query assumes that there
are no duplicate sales totals---the dense_rank() function can be used to
deal with ties.)
We can compute the expected value of this sum assuming that there is
no real difference in sales between the cities. If the observed value of W
is much higher than this expected value, then it is reasonable to assume
that the advertising campaign was indeed effective.
The Wilcoxon statistic can be computed using the RANK function.
For our example, the expected value is 72, and the observed value of W
is 94. Using readily-available tables (see, e.g., the book of Lindgren), we
find that the probability of seeing a value 22 units above the mean---when
there is no real difference in sales between the cities---is only 1%. So we
conclude that the advertising campaign is in fact effective, and the
differences are not due to luck-of-the-draw.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Inference: Test for Independence

Is there a relationship between operating system and DB product?
Contingency-table analysis (number of users)

A lesser-known "maximum likelihood" chi2 test for independence
test statistic (r rows and c columns):
X = 2n log(n)
 + [2n11 log(n11) + ... + 2nrc log(nrc)]
 - [2n1+ log(n1+) + ... + 2nr+ log(nr+)]
 - [2n+1 + log(n+1) + ... + 2n+c log(n+c)]

195 187 382

Sybase Oracle
Linux 120 80
Unix 45 95
Windows 30 12

200
140
42

nij: # in cell (i,j)
ni+: row i sum

n+j: column j sum
n: total # users

Another common type of analysis is testing for independence between
two "categorical" (non-numeric) attributes. For example, we may wish to
know whether there is a relationship between a user's operating system
and database product.
Suppose that we take a survey of 382 users. The results of this
(hypothetical) survey are laid out in a "contingency table".
As usual, we want a test statistic that is small if the two attributes are truly
independent and large otherwise. Most statistics textbooks discuss
"Pearson's Chi-square statistic". A lesser-known, but equally useful
chi-square statistic is the "maximum likelihood" statistic whose formula is
given on the slide. Note that the sign of each term in the sum depends on
the level of aggregation, e.g., totals for individual cells and the grand total
are positive while row-sum and column-sum terms are negative.
Use of the chi-square statistic is only valid if each cell frequency nij is
large enough. Typically, each nij should be at least 5.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Test for Independence, Continued

WITH c_table(os, db, n, g1, g2) AS
(SELECT os, db, count(*), 2e0*(0.5e0-grouping(os)), 2e0*(0.5e0-grouping(db))
 FROM survey
 GROUP BY CUBE(os,db))
SELECT sum(g1*g2*2e0*n*log(n)) as X
FROM c_table

 X os db n g1 g2
------ ------ ------ ------ ------ ------
34.114 Linux SYB 120 1.0 1.0
 Linux - 200 1.0 -1.0
 - SYB 195 -1.0 1.0
 - - 382 -1.0 -1.0
 ...

If data is truly independent:
X should be close to 0
X has chi2 distribution with (r-1)(c-1) degrees of freedom

Computer example: r = 3, c = 2
if independent, Prob(X > 34.114) < 0.001%

c_table

In DB2, all of the entries in a contingency table can be simultaneously computed
using the CUBE operator. Some sample entries in the resulting c_table are
given at right.
To compute the chi-square statistic, we use DB2's grouping() function in a tricky
way. For a given row in a CUBE table, grouping(column)=1 if the column has
been "aggregated away", and grouping(column)=0 otherwise. For example, the
second row in c_table represents the number of Linux users, which is obtained
by summing over the db attribute. For this row grouping(db)=1 since we have
summed over the db attribute, and grouping(os)=0. In our query we have
rescaled the value of the grouping function to be either -1 or +1, thereby
obtaining the derived attributes g1 and g2. By multiplying each term in the
overall sum by g1*g2, the signs of the terms come out exactly as we need
them.
For our example, the value of the chi-square statistic turns out to be 34.114. If
os and db are truly independent, the probability of seeing such a large value is
less than 0.001%. (We do a lookup in standard tables or do a standard
numerical computation.) We can therefore assume that there is dependence
between os and db.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Combining Regression and Windowing

Running-line estimator (Hastie & Tibshirani, 1990)
fits a line y = aix + b i to local neighborhood of each (xi,y i) point
smoothed y value is given by y i

smooth = aixi + bi

better behavior at endpoints, better statistical properties

Seven-day running-line smooth
108

109

110

111

112

113

114

115

116

smooth_cp

close_price

Seven-day running-mean smooth
108

109

110

111

112

113

114

115

116

smooth_cp

close_price

The regression functions can be combined with windowing to
compute a "running-line" estimator. Rather than just obtaining a
smoothed y value by averaging the true y value with some of its
neighbors, as we did before with the running mean estimator, we
now fit a regression line to y and its neighbors, and use the
y-value of the fitted line as the smoothed y value.
The running-line estimator is known to behave more nicely than
the running-mean estimator.
Note how the running-line estimator captures the trend in the
rightmost data values more accurately than does the running
mean estimator.
The running-line and running-mean estimators can be viewed as
"nonparametric regression estimators": we fit a curve to the data,
but we don't assume a specific form for the curve (linear,
quadratic, exponential) a priori.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Regression and Windowing: Cont'd

Would like to execute the following query:

WITH dt(day,date,symbol,close_price) AS
 (SELECT cast(row_number() over (order by date) as float),
 date, symbol, close_price
 FROM stocks WHERE symbol = 'XYZ' and
 date between
 '1999-08-01' and '1999-09-01'
)
SELECT date, symbol, close_price,
 day * (regr_slope(close_price,day)
 over (order by day rows between
 3 preceding and 3 following))
 + regr_icpt(close_price,day) over (order by day
 rows between 3 preceding and 3 following)
 AS smooth_cp
FROM dt;

Doesn't quite work yet
Work-around by expanding: regr_slope(y,x) = covar(y,x) / var(x) etc.

Ideally, we would use the displayed query to compute the
running-line estimator.
Note that we use the rownumber() function to create the x
values for our regression, and that we cast the rownumber to
a float to ensure good numerical behavior.
Unfortunately, this query doesn't quite work, because the
regression functions are not completely compatible with
windowing yet. (They will be in the future).
We can still run the query by expressing the regression
functions interms of the variance(), covariance(), and avg()
functions, which ARE compatible with windowing.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

A Regression and Windowing Query

Final query (assumes no NULLs):

with
dt(day,date,symbol,close_price) as
 (select cast(row_number() over (order by date) as real),
 date, symbol, close_price from stocks
),
ddt(day,date,symbol,close_price,slope,avgx,avgy) as
 (select day, date, symbol, close_price,
 covar(close_price,day)
 over (order by day rows between 3 preceding and 3 following) /
 var(day)
 over (order by day rows between 3 preceding and 3 following),
 avg(day)
 over (order by day rows between 3 preceding and 3 following),
 avg(close_price)
 over (order by day rows between 3 preceding and 3 following)
 from dt
)
select date, symbol, close_price,
 day * slope + (avgy-slope*avgx) as smooth_cp
from ddt;

Here is the resulting query, which is somewhat more
cumbersome than the original, but still does the job.
This version of the query does not check for NULL x or y
values. The query will work as written if, e.g., it is applied to
a table expression obtained from the original table by
removing all rows having a NULL x or y value.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Taming Massive Data: Sampling

Sampling for
 auditing or "fuzzy exploration"
quick approximate answers to aggregation queries
making analytics and datamining scalable

Technology challenges
generating a representative sample efficiently
estimating an aggregate
assessing precision of estimate

Sampling in DB2 --- Present and Future
Go to session B16

Sampling is a tool that can often be used to "tame" massive data.
One common application is to produce a representative subset of the
rows in a table for purposes auditing or "fuzzy exploration". The latter
concept refers to the fact that by simply getting one's hands on the raw
data, one can often discover interesting features without having to
compose an explicit query.
Another common application of sampling is to obtain quick approximate
answers to aggregation queries (SUM queries, COUNT queries, etc.).
Finally, sampling is essential in scaling analytical and data mining
algorithms to handle vast amounts of data.
The key challenges, then, are how to obtain a representative sample,
how to use the sample to estimate a value of an aggregate, and how to
assess the precision of this estimate.
See my talk in session B16 for an in depth discussion of current and
future sampling capabilities of DB2.

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Selected References

Introductory Statistics

Larry Gonick, et al : The Cartoon Guide to Statistics, HarperCollins, 1994
Jeffrey Clark and Douglas A. Downing: Forgotten Statistics : A
Self-Teaching Refresher Course, Barrons, 1996
Lloyd R. Jaisingh: Statistics for the Utterly Confused, McGraw-Hill, 2000

Advanced Statistics
T. J. Hastie and R. J. Tibshirani: Generalized Additive Models,
Chapman & Hall/CRC, 1999
B. W. Lindgren: Statistical Theory, 3rd Ed., MacMillan, 1976
R. G. Miller: Beyond ANOVA, Basics of Applied Statistics, Wiley, 1986
R. H. Myers: Classical and Modern Regression with Applications, 2nd Ed.,
Duxbury, 1990
C.-E. Sarndal, B. Swenson, and J. Wretman: Model Assisted Survey
Sampling, Springer-Verlag, 1992

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

Many Thanks To...

Kevin Beyer
Guy Lohman
Eric Louie
Bob Lyle
Hamid Pirahesh
Ashutosh Singh
Markos Zaharioudakis
...

 IBM Corporation 2001 DB2 and Business Intelligence Technical
Conference

For More Information

Go to: www.almaden.ibm.com/cs/people/peterh
Latest version of this talk
CLI files for executing the queries in this talk

Forthcoming Redbook on BI in DB2

