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Collaborative Modeling, Simulation, and Analytics @
with Splash

Nicole Barberis, Peter J. Haas, Cheryl Kieliszewski, Yinan Li, Paul Maglio,
Piyaphol Phoungphol, Pat Selinger, Yannis Sismanis, Wang-Chiew Tan,
Ignacio Terrizzano, Haidong Xue, SJSU CAMCOS

IBM Research — Almaden
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Some Context: Model-Data Ecosystems
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Some Further Thoughts and Examples [PODS 2014 Tutorial]

» Data-intensive simulation
— Simulations within databases
— Databases within simulations
— Data harmonization at scale

= Information integration
— Simulation as an information-integration tool
— Combining real and simulated data

= And more! Data

Generates hypotheses for

Models

Guides collection of

generates

Data

1 parameterizes

Models

Ecosystem of Data and Models

Model-Data Ecosystems: Challenges, Tools, and Trends

Peter J. Haas
IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120-6099 U.S.A.
phaas@us.ibm.com

ABSTRACT

In the past few years, research around (big) data management has
begun to intertwine with research around predictive model
simulation in novel and inleresting ways. Driving this trend is an in-
creasing recognition that information contained in real-world data
must be combined with information from domain experls, as em-
bodied in simulation models, in order to enable robust decision
making under uncertainty. Simulation models of large, complex
systems (traffic, biology, population well-being) consume and pro-
duce massive amounis of
traditional information manag
mathematical tools, and future directions in the emes

area of modeldata ecosystems. Topics include (i) methods for
ablin simulation, (il and

tegration, and (iii) simulation metamodeling for guiding the gener-
ation of simulated data and the collection of real-world data.

Categories and Subject Descriptors

H.4.2 [Inf ion Systems Appli Types of Systems-
decision support: 1.6 [Simulation and Modeling]: Simulation Sup-
port Systems

General Terms
Algorithms, Design

Keywords

decision sup-
port

1. INTRODUCTION: DATA IS STILL DEAD

In their VL.DB 2011 paper, “Data is dead. .. without what-if ana-
Iytics”, Haas et al. [27] point out that, outside of scientific or his-
torical g i the essen
tial motivation ytics is the need
o support enterprise decision making under uncertainty. Thus the

or hard <opies of all or part of this work for personal or
out fee provided that copies are not made or disiributed
pics bear this otice and the fulleita
others than the
i with eredit s permitied. To copy otherwise, or
republish, istribute o | v jon
andor a fee. Request permissions from Permissions @ acm.org.
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ised 1o ACM.

515.00.
504538.2504562.

Extrapolation ~

Extrapolation of 1970-2006
median U.S. housing prices

Figure 1: The dangers of extrapolation

ultimate goal is 1o support deep predictive analytics that incorpo-
n expertise in order to robustly predict the future conse-

From this perspectiv by it-
he past state of the world. Descrip-

rate do

and relationships in existing data, leading to insights about the real
world as it currently stands. A “shallow™ predictive approach that
simply exirapolates current patierns into the fulure, however, can
lead 1o very brittle predictions and subsequent bad decisions be-
sse it does not account for the fact that the mechanisms ihat
generated the existi ata can char gure | illustrates this
point. A simple time series model was fit (o median U.S. hous-
ing prices from 1970 to 2006 and then extrapolated to 2011, As
can be seen, the resulting prediction failed spectacularly because it
ignored expert information from economists, financial analysts, be-
havioral scientists, and others that might have helped in model
the housing-price collapse that began in 2006, Thus data must be
supplemented by models that embody expert
constituent parts of systems and the way they behave
For systems characterized by uncertainty, these models ofien take
the form of stochastic simulations.

Eric Bonabeau, the author of Swarm Inrelligence,
lar point in one of his blogs [9]:

nakes a simi-

There is o doubt that the more informration is used
in building a madel, the more accurate the model is
likely 1o be. However, the notion that quantitative, nu-

© 2012 IBM Corporation
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The Setting: Analytics for Decision Support

inf gy online
Analytics Section

“Analytics is...a complete [enterprise] problem solving
and decision making process

Descriptive Analytics: Finding patterns and
relationships in historical and existing data

l /Splash

Predictive analytics: predict future probabilities
and trends to allow what-if analysis

i ! |

Prescriptive analytics: deterministic and stochastic optimization
to support better decision making

© 2012 IBM Corporation
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Shallow Versus Deep Predictive Analytics
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Big, Difficult, Important Problems Span Many Disciplines

Need collaborative cross-disciplinary modeling and simulation

Communication Transportation
$3.96 Tn $6.95Tn

Education
$1.36Tn
Electricity @ @ -
>

Leisure / Recreation /

Clothing
$7.80Tn

; Govt. & Safety

Healthcare
$4.27Tn

Infrastructure

$12.54Tn Legend for system inputs

Same Industry
Business Support
IT Systems
Energy Resources
Machinery
Materials

Trade

IBM analysis based on OECD data.

9 © 2012 IBM Corporation

Finance
$4.58 Tn Food $5.21Tn
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POLICYFORUM I

GLOBAL FOOD SUPPLY

Linking Policy on Climate and Food

H. C.J. Godfray, ' J. Pretty, 2 S. M. Thomas, ** E. J. Warham, * J. R. Beddington®

t the United Nations (UN) climate
negotiations in Cancin, Mexico, in
cember 2010, the parties agreed

to a global target of no more than 2°C warm-
ing above preindustrial levels. In an impor-
tant new step, both developed and develop-
ing countries agreed to take urgent action
to reduce greenhouse gas (GHG) emissions
to meet this long-term goal. They also set
important milestones on reducing deforesta-
tion and providing funds to help developing
countries adapt to climate change.

sions as delegates prepare for the next UN
negotiations in December 2011 in South
Africa. We need to rethink the way we use
land to produce food, and to bring the chal-
lenges of sustainability and reducing emis-
sions to the fore. This has been a central
theme of the UK Government’s Foresight
Programme on the Future of Food and Farm-
ing to which we, along with experts from 35
countries, have been contributors. The study
took a broad approach to the food system,
including its impact on the environment and
especially climate change, as
well as the special needs of the
world’s poorest. [t demonstrates
both the importance ofincorpo-
rating agriculture into climate
change discussions, and the
urgency for action (3).

Agriculture and Climate Change
Agriculture is a major source of
CO, emissions and contributes
a disproportionate amount of
other GHGs with high impact
on warming [about 47% and
SR, af tatal CH and N N

Agriculture and the food system need to move
center stage in preparing for UN climate
negotiations in December 2011.

emissions by 20% by 2020 (&), whereas the
UK has set the legally binding target of reduc-
ing emissions by 34% by 2020 and at least
80% by 2050 (9). Ambitious goals such as
these cannot be achieved without involving
the food system. Policies for mitigating cli-
mate change will have a substantial effect on
production. If applied inappropriately, these
could have a detrimental effect on food avail-
ability, especially for the 925 million (3) who
already experience chronic hunger and for
the additional billion or so who suffer nutri-
ent and vitamin deficiencies.

Land Use

The Cancin meeting made notable prog-
ress in an area with important ramifications
for the food system. Pressure from expand-
ing agriculture has led to much recent tropi-
cal deforestation, especially in South Amer-
ica and Southeast Asia. Land conversion
releases large amounts of GHGs and 1s one
of the most serious, although indirect, ways
that pressure from the food system contrib-
utes to global warming. The UN initiative on
Reducing Emissions from Deforestation and
Farsct Nearadatian IR ENM afferce inancial

IBM Research

© 2012 IBM Corporation
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GLOBAL FOOD SUPPLY

Linking Policy on |

H. C.J. Godfray, ' J. Pretty, 2S. M. Thomas, **E. J.

t the United Nations (UN) climate
negotiations in Cancin, Mexico, in
cember 2010, lhc parties agrccd

to a globa lt arget ¢ e e than "(’ arm-
ing above preindustri ll els. In mpor-
tant n Iphthdc‘]pd dd Ip
ing countries d to take urgent a l

to reduce gree h E s (GHG) emissions
to meet this lon gt n goal. They I, S
important milcsloncs on reducing del"oreslw
tion and providing funds to help developing
ountries adapt to climate change.

| needs of pollcy-makers

The food system is complex, and —
interventions often have
unintended and deleterious effects
on food security, or have major
consequences that affect GHS
emissions. Agricultural, economic,
and climate modelers must
compare their models more
systematically, share results, and
integrate their work to meet the

¢ [about 47% and  Reducing Emissions fom Deforesation and
SR04 .\F 'nlu] MH and N ¢ roct Noara ] nan (RED nffere inancial

© 2012 IBM Corporation



World Health
¥ Organization

Health is a state of
complete physical,

mental, and social
well-being and not
merely the absence

of disease or
infirmity:.

© 2012 IBM Corporation
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Example: Unintended Outcomes in Healthcare Optimization

Avg. Patient Delay

-
e P

Terminals BUSY:
1 ta
Back Room BUSY:

Re-design
Y J -
S X | | | Time
0 5 12 18 (months)

Simulation model of
Calgary Lab Services

T. R. Rohleder & D. P. Bischak & L. B. Baskin (2007). Modeling patient service centers with simulation and system dynamics. Health Care Manage. Sci., 10:1-12.
© 2012 IBM Corporation
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Example: Unintended Outcomes in Healthcare Optimization
Avg. Patient Delay

-
e P

Terminals BUSY:
1 ta
Back Room BUSY:

1

Re-desian

i gy . J -

2 X | | | Time
(months)

Simulation model of 0 6 12 18

Calgary Lab Services

atient Satisfaction

Capacity

'/H“ Waiting Time A =%

Send Friends and \_ J .
Family Word of + \_/
y Mouth No Time to

PSC Visits Wait
\_ lime PSC User

= = Ponulation Fay
Incoming PSC PSC Switchers

Users /

System-dynamics social model of lab use

T. R. Rohleder & D. P. Bischak & L. B. Baskin (2007). Modeling patient service centers with simulation and system dynamics. Health Care Manage. Sci., 10:1-12.
© 2012 IBM Corporation
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Example: Unintended Outcomes in Healthcare Optimization
Avg. Patient Delay

-
e i /
~ K

Terminals BUSY:
1 L

Moral: ne
iths)

,,
<
N e 5 @

Combine models across disciplines
for more robust decision making

System-dynamics social model of lab use

T. R. Rohleder & D. P. Bischak & L. B. Baskin (2007). Modeling patient service centers with simulation and system dynamics. Health Care Manage. Sci., 10:1-12.
© 2012 IBM Corporation
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Combining Models Across Disciplines is HARD

= Domain experts have
different worldviews

INTERNATIONAL - NATIONAL!  COMMUNITY  woRk/SCHOOL! INDIVIDUAL POPULATION
FACTORS REGIONAL  LOCALITY HOME

u bl Leisure
Efranenar| Activity/

B Facilities
I

» Use different vocabularies

Globalization
of
markets

» Sit in different
organizations

e Infections

Develo pment

Worksite
Food &
4 Activity

Media

WEIGHT
intake :

programs

= Develop models on
different platforms

= Don’t want to rewrite
existing models!

16

& advertising

g Nutrient

Family &
2 Home

density

Education

—1F: School

e s Food &
~» Nutrition sty

National

perspective

Huang, T. T, Drewnowski, A., Kumanyika, S. K., & Glass, T. A., 2009,

“A Systems-Oriented Multilevel Framework for Addressing Obesity in the 21st Century,”
Preventing Chronic Disease, 6(3)

© 2012 IBM Corporation
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Prior approaches to Combining Models
] Monolithic models

= Create a monolithic model that encompasses all relevant domains

- . Integrated models

A

RTTIT

= Create modules that can be compiled into one
= SpatioTemporal Epidemiological Modeler (STEM)
= Community Atmospheric Model (CAM) S

.+. Tightly-coupled models
= Create modules that understand standard interfaces
= DOD High Level Architecture (HLA)
» Discrete-Event System Specification (DEVS) | ; E
= Open Modeling Interface (OpenMl). e

© 2012 IBM Corporation



53]
<
Py
®
o
®
o
o
=0

Splash: An Alternative Approach

Loosely couple models and data via data exchange

. Simulation model
/‘ \l A Statistical model
{ r. Decision/optimization model
g .—)? JJ  Dataset
@ Data transformation

.}—"I

Splash = data integration + workflow management + simulation

Re-use heterogeneous models and heterogeneous data that are
curated by different domain experts

© 2012 IBM Corporation



Some Benefits of Loose Coupling

IBM Research

Facilitates cross-disciplinary modeling, analytics, and simulation
for robust decision making under uncertainty

Enables re-use of models and datasets

Encourages comprehensive documentation and curation of models via metadata

Allows model flexibility:
— Upgrading to state-of-the-art
— Customizing for different users

Weather Model
‘ V3.0

Traffic
Model

NYC

# Emergency-Services

Model

—

Traffic

Model

NYC
Emergency-Services
Model

I

V4.0

Traffic
Model

San Jose

» Emergency-Services

Model

© 2012 IBM Corporation
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Splash

A prototype platform and service for integrating existing data, models, and
simulations to gain insight needed for complex decision making related to
policy, planning, and investment.

Splash Platform

/ Model and Data Curation \

Models Model and Data Discovery Analysis
Visualization

Data Model Composition

SADL

Composite-Model Execution

Experiment Management /

DBMS, Hadoop, Visualization Tools, Information-
Integration Tools, Stats Packages

© 2012 IBM Corporation
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Model and Data Curation

Splash Platform

Model and Data Curation
Model and Data Discovery

Model Composition

Composite-Model Execution

Experiment Management

© 2012 IBM Corporation
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Splash Actor Description Language (SADL)

= SADL provides “schemas and
constraints” for models,
transformations, and data, enabling
interoperability

= SADL file for data (can exploit XSD)
— Attribute names, semantics, units
— Constraints
— How to access
— Security
— Experiment-management info

= SADL file for a model:

— Inputs and outputs (pointers to SADL files
for data sources and sinks)

— How to execute (info needed to synthesize
command line)

— Semantics and assumptions

— Provenance (papers, ratings, ownership,
security, change history, ...)

— RNG info

<Actor name="BMI Model" type = "model" model_type = "simulation”
sim_type = "continuous-deterministic” owner="Jane Modeler">
<Description>

Predict weight change over time based on an individual’ s energy  and food
intake. Implemented in C. Reference:

</Description>
<Environment>

<Variable name="EXEC_DIR" default="/Splash" description="executable
directory path"/>

<Variable name="SADL_DIR" default="/Splash/SADL" description="schema
directory path"/>

</Environment>
<Execution>
<Command>$EXEC_DIR/Models/BMIcalc.out</Command>
<Title>Run BMI model</Title>
</Execution>
‘ <Arguments>
<Input name="demographics" sadl="$SADL_DIR/BMIInput.sadl"
description="demographics data"/>
<Output name="people" sadl="$SADL_DIR/BMIOutput.sadl"
description="people’ s daily calculated BMI"/>
</Arguments>

</Actor>

© 2012 IBM Corporation
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Registration: Use Wizards to Create Model and Data SADL Files

-

Tﬁ
d

Edit

8 New Model SADL Wizard
Execution Command Page
Input
Locatl Name population Label -p
["]Random Seed (V] Space After Label
Nanl)| Missing Data newyork.dat Scaling Factor
Datatype String Dimension
[V] Experiment Factor  Exp. Defaults newyork.dat
Meas. Type observation Meas. Method
) Unit
S
Description Input file to model containing population data
add || ok ][ conce |

Model Wizard offers step by
step guidance to generate the
Model's SADL, and the
command line for invocation

Data Wizard generates SADL for
model input and output files

r 3
# " New Data SADL Wizard B

SADL Data Wizard

Actor Page

Actor PopulationData

Owner 1BM

Version 1.0

Data Type  Parameter -
Note Contains population shopping habits

Reference  http://retaildata.com

Description  population retail spending and habit data

< Back H Next > ] [ FEinish ] [ Cancel

© 2012 IBM Corporation
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Model Composition

Splash Platform

Model and Data Curation

Model and Data Discovery

‘ Model Composition .
Composite-Model Execution

Experiment Management

© 2012 IBM Corporation
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Obesity Example

Data source Dataflow Simulation model

Transportation /\

Dataflow Data Transformation

Buying and eating

Time alignment

Exercise

BMI Model

© 2012 IBM Corporation
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Sample Results

If we open a new “healthy” food store in a “bad” neighborhood...

BMI by rich/poor BMI by rich/poor

rich

rich

Without traffic model Including traffic model

* : .
Many assumptions, sample only, your mileage may vary ... © 2012 IBM Corporation
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Implemented Obesity Example

Obesity Workfiow

File Edit View Workflow Tools Window Help

QAR QP ile=mnc e

4 5

Components | Data | Outline | M Workflow |
Search Components Transportation Model =
I [_searcn Travel Delay by Zones
Advance, d Sea... Sources :B Zone-Coordinate Map per
All Ontologies and Folders - — Travel Delay by Coordinates
E Splash-Components M0d6| aCtOF e l
& [ Clio_Transformer, kar —
& [ Splash_File,kar . =
&1 Splash-Models Mapp ing actor —
- [d BMI_Model,kar . 7|
- i Eaters_Model,kar Buying and Eating Model SDF Director ‘5
o g et aoela Data actor Households and Stores
= o
Population/Store Demographic Data = :‘f
= — Join Demographics

Energy Balance

=] —

BMI Model

Facility Data Exercise Model Graphs

|

_Exercise Data
=\

Ll

Visualization actor
|

(]

» Data actors:. input and output files, databases, web services, etc.
= Model actors: simulation, optimization, statistical models

= Mapping actors: data transformations, time and space alignment
» Visualization actors: graphs, reports, etc.

© 2012 IBM Corporation



Implemented Obesity Example
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File Edit View Workflow Tools Window Help

Obesity Workfiow

QAR QP ile=mnc e

Search Components

Components | Data | Outline |

Advance d Sea... Sources

[ |[_searen

All Ontologies and Folders

-

E Splash-Components

& [ Splash_File,kar
B Splash-Models
®- [0 BMI_Model,kar
& {3 Eaters_Model,kar
- [ Exercise_Model,kar

& [ Clio_Transformer, kar

4
M

Workflow |

J

Data actor

Population/Store Demographic Data
E—

—— |

-

Transportation Model

J

) Travel Delay by Zones

Models and data can
reside at different locations

Zone-Coordinate Mapper

Ll

Model actor

Buying and Eating Model

)

é

Travel Delay by Coordinates

=
Mapping actor El

Households and Stores

Join Demographics

Facility Data

|

Exercise Model

Ll

_Exercise Data
=\

Energy Balance
BMI Model

SDF Director

(]

Graphs

Visualization actor

|

» Data actors:. input and output files, databases, web services, etc.
= Model actors: simulation, optimization, statistical models
= Mapping actors: data transformations, time and space alignment
» Visualization actors: graphs, reports, etc.

© 2012 IBM Corporation
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Implemented Obesity Example

Obesity Workfiow

File Edit View Workflow Tools Window Help

QAR QP ile=mnc e

Components | Data | Outline | : Workflow |

[»]

Search Components Transportation Model

I [_searcn Travel Delay by Zones
Advance, d Sea... Sources :B Zone-Coordinate Mapper
All Ontologies and Folders - — Travel Delay by Coordinates
E Splash-Components M0d6| aCtOF =i ’Ell
& [ Clio_Transformer, kar —
& [ Splash_File,kar . =
&1 Splash-Models Mapplng actor —
®- [0 BMI_Model,kar

& {3 Eaters_Model,kar
- [ Exercise_Model,kar

Buying and Eating Model SDF Director
Data actor

Households and Stores

Join Demographics
b M Energy Balance £
‘ I E= BMI Model

é

)

Population/Store Demographic Data
E—

= L .-

Facility Data Exercise Model Graphs

|

_Exercise Data
=\

|

Ll

Visualization actor
|

(]

» Data actors:. input and output files, databases, web services, etc.
= Model actors: simulation, optimization, statistical models

= Mapping actors: data transformations, time and space alignment
» Visualization actors: graphs, reports, etc.
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Data Transformations Between Models
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= Transformation design tools for structural (schema) and time alignments

= SADL metadata used to automatically detect mismatches

= Splash generates code for massive-scale transformation on Hadoop at simulation time

806

Clio 2010: New_job0.mapjob (*)

File Job Edit Options

b weight->weight
4 haight®0.3048°39.3
4 cal_ bumed->calorie:

[EL IastStore (xsiong)

| —

o— =incom

=aendel

[E income sistreg)
o= [e} gender (wisting)
—s

Splash Time Aligner

Magpings T TR T ddedosmi 7 o
& n ARLE Source B Target I Mappins T
ya “"'::s"“’“;_e o | Efiletouschodsisd 4| |5 [8) fle:BMIInputacd S o a

ok eI % [ Households ¢ [EZ BMIModelInput

Nl ¢ o

% ;‘;:’;:;’;’:‘ ¢ [ Househoid [0,"] ¢ [ unefo)

[8) ExerciseoBeiebxer e L ”
- Bl T cchias v B ki 9 [ER tick (mcoubie)

) miccabousons & type (REGUUAR) @ type (reGuAa)
G Coviapontan. E’E dimension [TIME) @ dimension [TIME]

- s " @7 unit [AY] & unit [oAY)

bRt @ value 2] & value 1]

4 agestce0.02179> I8 agentid ¢ | B 0 =agentl

boguseaiiumn [Ek xcor isiong) M~ (8 personid (stiang)

[EL ycor psiiong) O [E age (s:double) =age+1t

3 Time Metadata
@ [ Source
€ 3 households

Time Aligner: Time-series

e

harmonization

[ER nextStore (xsiiorg)
7 ;i Z [Ek householdType aong) [E weight {xs:dousie) =weiah
: ..m :u,l,,,um [Ek income sistrng /_— & dimensian [MASS] [} Type: continuous
> protein®0.001->prt [E} preference p:sirng) @7 unit [POUND] [ observation type: regular
& R [l utility fr:douste) @ value (1) D Unit: days
= (a0°0.02179)) = 5, dlet bwavig) /H 8 b:iar“ e =helahy 0y Ti k‘f' Id: tick
. ¢ [8) file:TypesOfHouseholdsDB.xsd & dimension LENGTH] ick field: tic
4 & ﬂ“q::“ 9 [E TypesOftouseholdsDB @7 unit [CENTIMETER] D Time interval: 2.0
¢ @ value 1) X
: 2 :mx ¢ [ line (0,11 o - [§ calofiesfhunad i) el | = ExermseOutpl_Jt
)& o ¢ b @ dimension NN [ Type: continuous
Iy :::: [Eh householdType (seng) & unit (KKOCORIES] [ Observation type: regular
o &l map 17 B, size gaors) ¥ nlie p) [} unit: days
ke [EL personid siong) o [ carbs (sidoutie) =carbs®| Sl 3
[k age tedousic € dimension [CARBOHIDRATES) Y Tick field: tick
[Ek gender fxs:string) @7 unit [KILOGRAM PER DAY] D Time interval; 1.0
9 [EL weight ps:ouie; @ value [1] F
@& dimension [MAss] o——  [Ek fat (m:double) =fat*0.4 ¢ d SDtoTES . i
@7 unit [POUND) @ dimension [FAT] ype: corj Inuous
@ value [1] @7 unit [KIOGRAM PER DAY] [} observation type: regular
"B ;“f“ s = °7:’"‘* a — [ unit: days
— imension [LENGTH| O . 4 protein {xigouie) =protel : . kL
{71 T Tl & unit [Fo01] // & dimension (PROTEIN] g :Ck field: Uc‘k e
ime interval: 2.
© I Target

© 1 BMinput
[ Type: continuous
[} Observation type: regular
[} unit: days
[ Tick field: tick
[ Time interval: 1.0

[Time aligner is ready

Clio++: Schema mapping

& unit corrections

-Time Alignment Mapping Table -
Time Ali | Source Data Field Time Method e
O households:householdType =
O households:income
O households:preference
(v households:utility Linear |
O households:diet '
C stores:agentid
0 stores:xcor
O stores:ycor
0 stores:alive
C stores:food
0 stores:cost
(v stores:numcustomer Sum
0 stores:lastTick ‘
- Field Attributes Table
Data Field Attribute | Value
Field name numCustomer
Description [
Measurement type 'numeri:al
Measurement method aggregation-since-last
| Encoding of missing data [
Preferred alignment method .aggregadcn-sim:e-last
Generate Done |
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Composite-Model Execution

Splash Platform

Model and Data Curation
Model and Data Discovery

Model Composition

Composite-Model Executio n

Experiment Management

© 2012 IBM Corporation
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Executing a Composite Model: The Need for Runtime Efficiency

A huge parameter space to explore
(many model runs)

= Ex: 3 models + 10 params/model + 2
vals/param = over 1 billion model runs

= Even worse for stochastic models
(multiple Monte Carlo replications)

= Experimental design can help

Each model run can be extremely time
consuming

= Large-scale, high resolution models
produce and consume massive amounts
of time-series and other data

= CPU-intensive computations

= Composing models (with data
transformations) intensifies the problem

NCAR Community
Atmosphere Model (CAM)

32 N © 2012 IBM Corporation



Time alignment with MapReduce

S . :
0 Irregular source time series

t0
HEEEEEEEEEE Regular target time series to be calculated.

=5 & =5 =

Interpolation, nearest neighbor, aggregation (since-last, since-start)

© 2012 IBM Corporation
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Time alignment with MapReduce

So . .
Irregular source time series

Sliding window by size (n=4)

Regular target time series to be calculated.

= & = =

Interpolation, nearest neighbor, aggregation (since-last, since-start)

© 2012 IBM Corporation
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Time alignment with MapReduce

So . .
Irregular source time series

Sliding window by size (n=4)

Regular target time series to be calculated.

Interpolation, nearest neighbor, aggregation (since-last, since-start)
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Time alignment with MapReduce

So . .
Irregular source time series

Sliding window by size (n=4)

Regular target time series to be calculated.

Interpolation, nearest neighbor, aggregation (since-last, since-start)
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Cubic-Spline Interpolation in MapReduce

= Recall: Source outputs 1 tick per two days;
target needs one tick per day

Cubic-spline interpolation

1
X X Llinear
— Cubic Spline
— True

= (Natural) cubic spline widely used i
— Uniformly approximates fand 7’ &=k
— Error of O(A%) as knot spacing #- 0
— Default method in SAS

0.0 ¥

= Given source and target time series: = 0bE—————+ =T o

~ ~

S = {(Sy,dy), (51, 0,), ., (Spr ) @and T :<(to,do),(tl,dl),...,(tn,dn)>

* Given window W;for £;:w, = <(Sj,dj,Gj),(Sj+l,dj+l,Gj+l)> where [s;,s;,;) contains t,

(©)

c.. d., . h d. o.h
(Sj+1_ti)3+ Jl(ti_sj)s"'(};l_ J6l JJ(ti_Sj)"’(h_J_ JGJJ(SHl—ti)

d, = fW)=—
b i _6h- 6h. j i

J J

hj =S, —S;

© 2012 IBM Corporation
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Question: How to Compute Spline Constants?

= Must solve Ax = b (m-1 rows and columns):

h, +h h,
3 5 Y 0 0 0 d,-d, d, —d,
6 3 6 d,-d, d,-d,
0 0 0 hm—3 hrn—3 + hm_2 hm—2 :
6 3 6 dp -y, dpy—dp,
0 o 0 Mo P Py Mo Moz
6 3

= Prior work
— Some solutions require evenly spaced source points

— Some solutions require precomputation (somehow) of 4-1
— Other solutions for vector machines, MPI architectures, GPUs
e Require a lot of data shuffling (reduce steps) in Hadoop adaptation
e Example: Parallel Cyclic Reduction (PCR) uses log,/m map-reduce jobs

» Our approach: minimize L(x)=|Ax-b[} = (Ax-b) => L(x)

43 © 2012 IBM Corporation



IBM Research

Our Solution: Distributed Stochastic Gradient Descent (DSGD)

= Originally for matrix completion, e.g., Netflix
ratings problem [GHS KDD11] X

» Uses stochastic gradient descent (SGD) to o /

minimize L
- - - . +1 ]
_ Deterministic gradient descent (DGD): X" = x™ —¢ L'(x™)

where L'(x™) = 3" "L, (x™)

— Stochastic gradient descent: X = x™ —¢ ['(x™)

where C'(x™) = (m - 1)L, (x™)
and | is randomly chosen from [1..m —1]

0.8
1

&,
— Avoids getting stuck at local minima 2 /
— Problem: SGD is not a parallel algorithm < \/./ %
o )
= ldea: run SGD on subsets (strata) of rows, /<

randomly switch strata; choose “sparse” strata
that allow parallel execution of SGD

— Converges to overall solution with probability 1 0.5 00 05 1.0
under mild conditions

—0.2 0.0

© 2012 IBM Corporation
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Choosing Strata

Goal: Permit parallel execution of SGD within each stratum

0 .. 0) Updating x. only affects

Key observation: L()=(0 .. 0 u,, u; u _
’ ’ (and is affected by) x, ; and X;,;

i,i+l

where U ;= 2ai,j(a1',i—1xi—1 +8 ;X + ai,i+1xi+1)

Stratum choice: s=1 s=2  s=3

= Can implement as map-only Hadoop job : f 8 ,’f;
(almost no data shuffling) ° ° ® X3
= Exploit discrepancy between logical splits ; : : o
) ode1 -2 5
and physical blocks O 2] ® X
node 2 ® © 8
@ o O Xg
Empirical study: node 3 . . . 2
>4
= 2x-3x faster than best-of-breed PCR alg. B ° e xi
= 10 scans vs logm for PCR o Bl ® X
= PCR requires extra sort ° N B

® @ O X
= PCR requires massive data shuffling . . - .
(network bottleneck) - ° . X::
O o @ X417
@) @) [ ] X18

92012 IBM Corporation



Speeding up Composite Simulations: Result Caching

46

Motivating example: Two models in series, 100 reps

Model 1 H Model 2 ‘

Deterministic Stochastic

= Nalve approach: execute composite model
(i.e., Models 1 & 2) 100 times

= A better approach:

Model 1 = Cache % Model 2 |

—Execute Model 1 once and cache result
—Read from cache when executing Model 2

Question: Can result-caching idea be generalized?

Identical

© 2012 IBM Corporation



General Method for Two Stochastic Models in Series

Y,

Model 1 Fb Model 2 f—t Y,

Stochastic Stochastic

Goal: Estimate 0 = E[Y, ] based on n replications

Result-caching approach:

1.
2.
3.

a7

Set m, =| an| for some a < (0,1] (the re-use factor)
Generate m, outputs from Model 1 and cache them

To execute Model 2, cycle through Model 1 outputs
Estimate® by 0, = Zlnzl Y,./n

Ex: n=10, m, =4

© 2012 IBM Corporation
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Optimizing the Re-Use Factor for Maximum Efficiency

Q: How to trade off cost and precision?
= Assume a (large) fixed computational budget c

= Random cost model: correlated pair (7, Y,)
— 1, = (random) cost of producing an observation Y,

— N(c) = # of observations of Y, generated under c

= B(c) =11 Y, /N(c)

= Approx. distribution of 6(c): variance = g(a) ]
= g(a

é

o(a) = (aE[7, ]+ E[r,1){Var[Y,1+ (2r, — ar,(r, +1))CovlY,, Y,1} 1, =|1/« ]
(cost per obs.) x (contributed variance per obs.) |

48
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The Optimal Re-Use Factor

Optimal solution
= Assume that Cov[Y,,Y,]1>0

= Optimal value of a:

1/2

. E[z,]1/E[z,]

Q

(truncate at 1/nor 1)
Observations
—If E[Model 1 cost] >> E[Model 2 cost], then high re-use of output
—If Model 2 insensitive to Model 1 (Cov << Var), then high re-use

—If Model 1 is deterministic (Cov = 0), then total re-use

© 2012 IBM Corporation
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Experiment Management (and Optimization)

Splash Platform

Model and Data Curation
Model and Data Discovery

Model Composition

Composite-Model Execution

Experiment Managemen

© 2012 IBM Corporation



Experiment Design and Efficiency

Trades off execution cost versus
level of detail that can be estimated Resolution III

Coarse resolution is OK for sensitivity
analysis etc.

Run

design

def

afg
beg

abd

cdg
ace
bef

abedefg

(I e I |
- s s

Example: 1st-order polynomial metamodel for scaled data (7 factors)

Y

Fractional-factorial
experimental
designs

= Bo i B1X1 B "'B7X7
+ B1;2X1X2 Wy B6;7X6X7 " B1;2;3X1X2X3 e
4%, € {-1,1} (full factorial =

128 runs)

+ noise

All high-order effects

Main effects
Main effects

Main effects
+ 2-way interactions

3rd-order and higher

3rd-order and higher

I1I
IV
V

16
64

© 2012 IBM Corporation



IBM Research

Running experiments in Splash

Goal

= Provide a facility that gives the illusion of
executing one coherent simulation model

Main Challenges
= Automate the coordination between experiment ... =™
conditions and inputs to different submodels. e

= Automate the combination of different
replications of different submodels.

¢¢¢¢¢¢¢

© 2012 IBM Corporation
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Example: Healthcare Payer Model

Composition of two models
= Emory/Georgia Tech Predictive Health Institute model [Park et al. 2012]

—Simple agent-based model of prevention and wellness program
—For investigation of payment systems (capitated vs outcome-based)
= Simple logarithmic random walk model of interest & inflation rates

Financial_Rate_ModelCLPF

dataset

transformer lm

dataflow =—p

SplashDataTransformer Populationinput

PHI_ModelCLPF

53 © 2012 IBM Corporation



Experiment Manager (Specifying Experimental Factors)

IBM Research

measurement_type

missing_data="0"

experiment_default_values="

experiment_factor="true"
datatype="double"

random_seed="false" />

Experiment Factors

Select experiment factors

ermentivanaae GUI collects simulation
parameters from
all component models
experiment_factor = TRUE

User selects subset of
parameters as

experiment factors

PHI_Model | Financial_Rate_Model in SADL file
7 PHI_Model.CommandLine(1) 7
sADL (@]
[] population Value | v | | /default_
<7 PHI_Model.parameters(12)
SADL ()] -
paymentModel Value [0.5 1.0 1.5 User selects values
[[] capitationPerParticipant Value | ~ | | 500 \fOI‘ each eXperiment factor
[] costModel Value [ v | |1
[] terminalAge Value - | |65
[ diabetesRiskThreshhold Value | - | 0.2
[ diabetesRiskReduction Value | v | |0.55
[ < Back H Next > Finish

© 2012 IBM Corporation
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Experiment Design in Splash

=] Splash Experiment Manager X

Design of Experiments

Design Persistence

Select an experimental design and the number of replications

-Experiment Design Generation

Design Type Replication per Condition
[ruTo_PLANOR FrD) | vd_ 100
FULL_FACTORIAL r" R package to generate designs with <factor na
| PLANOR_FFD 7 N - Splash Experiment Manager x
AUTO_PLANOR_FFD | User Defined Design Adjustments <ValueS>“65"<
FRF2_FFD Modify the experiment design <values>“85"</values
.
. . — : , </factor>...
DesignType=User-Defined; Number of combinations= 17; Number of executions= “a A"
<repn="10">...
# Repl person temperatu pressure | pl p2 S </experiment>
1 (L jJonn 3u 10U 10U 100
2 1 John 30 200 200 200
3 1 John 40 100 300 300
4 1 John 40 200 400 400
6 1 John 50 400 200 300
7 1 John 60 300 300 200
8 1 John 60 400 400 100
9 1 Alen 30 300 400 300
10 i1 Allen 30 400 300 400
1 i1 Allen 40 300 200 100
12 1 Allen 40 400 100 200
13 1 Allen 50 100 400 200
E d t bI d 14 i1 | Alen 50 200 300 100
I a. e eS I g n 15 1 Allen 60 100 200 400
16 |1 Allen 60 200 100 300
17 1000 Haid X 130 100 100 100 "
(Factor values and —— ~
Remove New | . .
# of Monte Carlo reps Execution Engine
for each condition) | <Back | Next>

© 2012 IBM Corporation
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Experiment Manager (Running an Experiment)

Technical challenges include:

» Routing parameter values to models

— Different sources: command line args,
parameter files, stdin, ...

— Synthesizing the parameter files that a
model expects (templating)

» Managing PRNG seeds
— Avoiding cycle overlaps
— PRNG info in SADL file
— Diagnostics (future work)

Experiment Manager invokes
Prol Splash execution engine to

| Execute Experiments Lrun experiments

running experiment 3, replicaton 9

writing stdout to Users/pmac/Desktop/exec-dir/experiments/Financial Rate Model-0¢
writing stdout to /Users/pmac/Desktop/exec-dir/experiments/Financial Rate Model-0¢
writing stdout to Users/pmac/Desktop/exec-dir/experiments/Financial Rate Model-0¢
writing stdout to Users/pmac/Desktop/exec-dir/experiments/Financial Rate Model-0¢
writing stdout to Users/pmac/Desktop/exec-dir/experiments/Financial Rate Model-0¢
writing stdout to /Users/pmac/Desktop/exec-dir/experiments/Financial Rate Model-0¢
writing stdout to Users/pmac/Desktop/exec-dir/experiments/Financial Rate Model-0¢
writing stdout to /Users/pmac/Desktop/exec-dir/experiments/Financial Rate Model-0t

Cancel OK

/Intermediate and final outputs can )
be saved in a file tree for

- Provenance tracking

- Traceability

\_ Drill down .

© 2012 IBM Corporation




Template-Based Data File Generation Process

IBM Research

<attributes>

<attribute name=temperature
Datatype=numeric.../>
<attribute name=pressure
Datatype=numeric.../>

Input data for city of Detroit
Temperature=$$temperature$$&&%0.1&&

Pressure=$$pressure$$&&%0.1&&

Input data for city of Chicago
Temperature=$$temperature$$&&%0.1&&

Pressure=$$pressure$$&&%0.1&&

s e
[ |

Data File Generator

Input data for city of Detroit
Temperature=50.2
Pressure=25.1

Input data for city of Chicago
Temperature=48.7
Pressure=32.1

§
e

50.2, 25.1
48.7, 32.1

e

Needed by Experiment
Manager for file synthesis

© 2012 IBM Corporation
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Template-Based Data Extraction Process

Input data for city of Detroit - -
. Input data for city of Detroit
Temperature=$$temperature$$&8&%0.1&& Temperature=50.2
Pressure=25.1

Pressure=$$pressure$$&&%0.1&&
Input data for city of Chicago

Input data for city of Chicago
Temperature=$$temperature$$&&%0.1&& _

- Temperature=48.7
Pressure=$$pressure$$&&%0.1&& Pressure=32.1

e

Needed to extract
performance measures of interest

Data Extractor for optimization, visualization, etc.

50.2, 25.1
48.7, 32.1

© 2012 IBM Corporation
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Efficient Sensitivity Analysis

Main-Effects Plot (PHI Profit x 1075)

- Main_effects p|ots: 3 CapAmt PayMod Tage. HRred DRred EIRdrftx.01 | HIRdrftx.01
— High/low values Identify the most important
— Orthogonal fractional " profit drivers
factorial experiment . . . (CapAmt & Tage)
design (160 vs 2560 runs) / /. / / /'

L\__\
-~
\\\-_
e

Financial Rate_ModelCLPF [ ]

=

Financial Rate Model financial [ ]
Normal Effects Plot for PHI Profit
Financial Params 1 Jage
[ |
) | p— | — | — | — | — | —
SplashDataTransformer T — Populationinput L = - — - — — - - ! : -CapAmt
Parameterinput g ©
HealthCareCosts % g B
£
2
2
PHI healthcare payer model + e
interest-rate model
Check statistical significance o 200

of graphical results effects
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Optimization Functionality: Ranking and Selection

= Rinott procedure for finding best among small number of designs
= Executes min. # of runs needed to distinguish systems
Equal number of stage-1

Fori =1tok replications per design

N
Executen, stﬁl replications of model i toobtain Y, ,,...,Y, .
Set X, = (U/n,) Y " Y, and V, = (W(n, — )Y " (¥ - X,)?

h?V, :
System v SetN. = max(no,{S—Z'D, where h = h(C, d) isatabulated constant
determines
number of stage- Execute N, —n, additional replications of model i toobtan'; , .,,...,Y

N

Compute Y, = (1/N))> Y,
Select system with largest value of Y asthe best system

Results are Compute MCB intervalsfori =1,2,...,k:

combined _ _
and ranked a =min(0,max ; Y, =Y, —38) and b, = max(0,max,; Y; - Y, +0)

2 replications

Simultaneous . Cp - ]
Selects design within & of optimum
SO0 VOB with probability > C

conf. intervals.
<~ 2012 IBM Corporation
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Results for PHI Profitability: Estimated Best System

IBM Research

“Conditions” = payment schemes for wellness program
(O = full capitation, 1 = pay-for-outcome)

Look at weighted schemes: 0.1, 0.2, ..., 0.9

Est Best System (in green)

70

Financial_Rate_ModelCLPF

60
I

50

40

Est Mean x 1075

20

10

o 4 ==

PHI healthcare payer model +
interest-rate model

cCt C2 C3 C4 C5 C6 Cr C8 (9

Conditions Tested

With prob = 95%, C5 = 0.5 is the “best system”
(within indifference zone = $250K)

uuuuu

orr—orporation
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Results Continued: Multiple Comparisons with the Best

95% ClI for Gamma x 10*5

-10

-20

-50 40

-60

Comparisons with the Best
Est. Best = Green, Contenders=Magenta, Non-Contenders=Black

4

o

C2

0

C3

T = E

o

0

C4 C5 C6

Identifies set of best solutions J

T

o

C7

4]

C8

Conditions Tested

Simultaneous 95%
confidence intervals on
difference between each
system and best of others

© 2012 IBM Corporation



Simulation Metamodeling (Joint Work with SJISU CAMCOS)

“Simulation on demand”

1. Run simulations in advance to get
values at multiple “design points”

2. Fit a (stochastic) response surface

3. Decision maker can explore surface in
real time

4. Can apply stochastic optimization
techniques to find peaks and valleys

5. Can use for factor screening

Technique: Stochastic Kriging
(Ankenman et al., Oper. Res., 2010)

= Robust, global fit

= Gives approximate model response
+ uncertainty estimates (MSE) Models uncertainty due to both

= Efficient allocation to of runs to minimize interpolation and simulation variability
integrated mean-square error (IMSE)

= Metamodel added to Splash repository

Image: SJISU CAMCOS

© 2012 IBM Corporation



Assessment of PHI metamodel

IBM Research

= Metamodel Wizard x

Wizard Page title

Wizard Page description

Inputs

diabetesRiskThreshhold |0,25

diabetesRiskReduction [0.55

heartRiskThreshhold [0.25

heartRiskReduction [0.45

Execution

Run Metamodel

profit=5740125.49
Estimated Error=8662626804.26
ExecutionTime=0.00800s

|Run Real Model

profit=5466342.55
ExecutionTime=2.61500s

< Back Cancel

Metamodel gives good
approximation to real
results (1.6% error in
this example)

Faster by over two
orders of magnitude

© 2012 IBM Corporation
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Factor screening (Joint with SJISU CAMCOS)

Goal: identify most important subset of drivers
= Drivers captured in metamodel parameters ', |

Ex: Linear models Y (x) =4, + fX, ++ X, +¢ ;
= Main effects used for screening

= For Gaussian noise, positive effects: sequential bifurcation

; X1 Xp Xz X7 Xg Xg
Ex: Gaussian process models Y, (x) = g, + M(x)+¢.(x)
. . . . J J Xg4 X5 Xg Xqg X191 Xq2
= Special case of stochastic kriging

= ¢,(x) = simulation noise X, Xy X xNA Xo
= M(x) = interpolation uncertainty, modeled as Gaussian field Xs Xs Xe x# xX X,
—For any x;, x,, ..., x. vector V= (Mx), ..., Mx))
is multivariate normal /\'
—Cov[M(x;),M(x)]=7"] ], exp(=0,(x; = X)) N X/\
= Small 6, = small effect of th factor . le RN Xf
X1 X2 Xg

= Bayesian “posterior quantiles” method for screening

© 2012 IBM Corporation
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Some Potential Splash Applications
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Multi-level, End-to-End Modeling

Il

Socio-Economic Models

EEEEN g
. ) -““‘ O. /k L
Business Models oot '~.,.
o

@ oGO

L4
. %
. ®.  Leverl Lever2 Lever3
- L
L]
O : Policy “Flight
. - Simulator”
- L]
Careflow Models . :
(Flow of Patients, & g
. .
Money, Information) O .
* 6
*

*
L 4
L 4 . o« o
R Personalized Medicine
(Targeted interventions)

.
.
P

‘ A
"*sagppmann®®

Disease Progression Models

Rouse, W. B. & Cortese, D. A. (2010). Introduction, in W. B. Rouse & D. A. Cortese (Eds.),
Engineering the System of Healthcare Delivery. 10S Press. © 2012 IBM Corporation



Cross-domain, Syndemic Modeling

Data 8ouce =
Transiormason
Qe Flow —e

© 2012 IBM Corporation

Richard Rothenberg et al., Georgia State University, 2011
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Composite model for traffic safety

Emergency Data Collision Heatmaps \
Impact of... x ...on collisions

¢ (EESURE
Emergency Response

IBM Deep Thunder Model (Client)
weather model

A1

Game Day

IBM Megaffic traffic

simulation model

Weather Data

Collision Data Volume Data

Geographic Model
(ESRI)

/ Intervention Scenarios

Legend
. Component Mode! (I A: Roadway design changes
Demographic Data Source -
Data : ! m
Transformations B: Placement variable speed limits
Data Flow _, C: Enforcement

/

© 2012 IBM Corporation



Open Research Questions
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1 Bar graphs
Fabricated routes Bar graph arapi

. -
( ! : ;‘ normalized  Pprojected
W r I r e u I re pollution ticket price US map showing routes
" 3 Washington-St. Louis (E)(E)

Checkboxes for
“removing” routes | [CJSt. Louis-Denver ee ® ® oo
) se e eee

J

Common to Analysts and Scientists ShgoemerLos angles

(=] (=[5
= Examine schemas (data) and variables (models) prior to M @
Selection List-box of all possible routes Total pollution impact
1

= Compare output of simulation results to examine trade- -

offs and simulation selection

= Dashboard with summary of models and data sources
used to run a simulation

r

Specific to Analysts
= Guidance and recommendations

w
(€3] [C] @ D]

» Pre-defined templates for simulation set-up and (CE|G —

A 1+—>b|&| 1
g |

analyzing simulation output

= Recommendations for what template to use and the . —— I e w—

steps to run a simulation il
= Recommended output visualization — suggest one chart .

style would be better than another style to explain

relationships in data

Specific to Scientists

» Feature to assess the veracity and provenance of model O — — \ owcmmn s
] Work Entry Point Choose Arival Distribution Shape TmportData A\ E]@-] D)
and data sources s oo oo e oo i
= Ability to upload their own sources to supplement the DOroaes & =_0-— D _, E=
. B ] Work Genter cl {butior import Data ¥ different
existing sources O vscarmx G = ==
= High levels of interaction with the models & data when 0 cou o
previewing search results prior to running the

simulation

© 2012 IBM Corporation
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Database Research++

= Data search -» model-and-data search e HarmOﬂy

— Find compatible models, data, and mappings (using metadata)
— Involves semantic search technologies, repository management, privacy and security

= Data integration -» model integration
— Simulation-oriented data mapping
— Geospatial alignment [e.g., Howe & Maier 2005]
— Hierarchical models with different resolutions
— Complex data transformations (e.g., raw simulation output to histogram)

= Query optimization -» simulation-experiment optimization
— Optimally configure workflow among distributed data and models
— Factoring common operations across different mappings in the workflow
— Avoiding redundant computations across experiments (e.g., result caching)
— Statistical issues: managing pseudorandom numbers and Monte Carlo replications

© 2012 IBM Corporation



Some Deep Problems

IBM Research

= Causality approximation
— Fixed-point + perturbation approaches
— System support
— Theoretical support

= Deep collaborative analytics

— Visualizing and mining the results

— Understanding and explaining results:
e Provenance [e.q., J. Friere et al.]
e Root-cause analysis

— Trusting results
e Model validation
e ManyEyes++, Swivel++

N\

Transportation

Buying & Eating
Model

Model

NN

F(8) = A (£, (£),9,,())
gn(t) = Az (f;lfl(t)rgn(t))

F(8)= A, (F(£) g(nat) } for ¢t e[ nAt,(n+1)At)
g(t) = A, (F(nAt), g(¢))

Popular Tags

: Number of Mcdonalds per Capita in Each

© 2012 IBM Corporation
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Conclusion

= Splash:
— composition of heterogeneous models and data
to support cross-disciplinary decision making in complex systems B—

— Loose coupling of models through data exchange
— Combines data-integration, simulation, and workflow technologies I fe —

» Key features
— SADL metadata language for curation and functionality
— Automated detection of data mismatches
— Semi-automated design of scalable data transformations (schema and time alignment)
— Runtime accelerators
e MapReduce framework for scalable data transformations
e Map-only Hadoop method for cubic-spline interpolation
e Result-caching to minimize # of model executions
— Experiment-manager allows sensitivity analysis, factor screening and optimization
— Simulation metamodeling for real-time model exploration

= Many open research questions!

© 2012 IBM Corporation
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Questions?

Splash prOJeCt page: - “‘_

http://researcher.watson.ibm.com/researcher/view_project.php?id=3931
© 2012 IBM Corporation
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Backup Slides
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S R - Bl o type = ‘modol” model_typo = "smulaton”

sim_type = continuous-deterministc™ owner="Jane Modekor™>
<Description>

intako. Implemented in C. Reforenco.
</Description>
<Emironment>

Scaling Factor

[—

L T —— i dircclory pathP>

[TING SEp——" Mens Method

droclory path'r>
Dkl | o e b ol omiaiving popultion s : </Emvironment>
<Exocuton>
Add [ Cancel <Command>$EXEC_DiR/Models/BMicalc out</Command>
s <Title>Run BMI modat</Title>
<Exocuton>
s>
<Input name="demographics sadi="$SADL_DIR/BMIinput sadi®
descripben="demographics data’/>
<Output name="people” sadi="$SADL_DIR/BMIOutput sadl”
oseription="poopk’ s dady cakulatod BMI>
</Arguments>
Jaclor>

i Predict weight change over fime based on an indiidual's energy and food

<Variablo name="EXEC_DIR" dofault="/Splash" doscripton="cxecutablo

Deiete. <Variable namo="SADL_DIR" dofault="/Splash'SADL" description="schoma

Splash Technology for Loose Coupling via Data Exchange ™"

Obesity Workfiow

8%
| Fie Edn Vew Werkiow Toos Wndew e S
QaFapiliereeO-0d

- i § wersttow

Transportation Model

Travel Delay by Zones
Zone-Coordinate Mapper
Travel Delay by Coordinates

Buying and Eating Model SOF Director
Households and Stores

Join Demographics.

GIS Data

—

Population/Store Demographic Data

SADL metadata language

Miain-Effects Piot (PHI Profitx 10°5)

L

ise Model
Facility Data ﬁ" . * Exercise Datal

Energy Balance

IMI Model
Graphs

Kepler adapted for model composition

S~

Design-time

components

Tla-OnebegSten kimesDeamn-boinContramAbdedasmt

= ®] | P
Experiment Factors | [
Select experiment factors S A S -
Design of Experiments / | / /
—— / I | /
[PHI_Model | Financial_Rate_Model select an experimental design and the numb: 4 ! ]
= PHI_Model.CommandLine(1) Experimental Design: ‘11
sADL (& Full Factorial v | Default numb |
PopUFan ke Total: 11 conditions, 2500 executions. -1
= PHI_Model parameters(12) = ConditionNo.  Nbr. of Replication
sapL (&) #1 4 ERT——
T paymenthode: 0.1
 paymentModel value | v |[0.5 1.0 15 Ty 200 > Financial_Rate_Model
[ capitationPerParticipant  Value #a 200 = fin_parameters
®s 200 np: 20
{1 costModel Value = ) b
terminalage Value a7 200
#8 200
(] diabetesRiskThreshhold  Value 29 200
1 diabetesRiskReduction Value - #10 200
#11 200
<Back Mext>

<Back N

Run-time components:

- Kepler adapted for model execution
- Experiment Manager

(sensitivity analysis, metamodeling, optimization)

i

e T
Cincorme

“weian:
“heian-0.3048°)
cat burmed
caniaon
-taranol
Field Altributes Table
-srotein0001

[ime atcrer i rescy

Data transformation tools:
- Clio++
- Time Aligner (MapReduce algorithms)
- Templating mechanism

Generate Done
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Distributed SGD, Continued

= Divide the m+1 rows into three strata: U1, U?, U3

Decompose loss function:
L(X) = 1L°(X) + 1 2(x) + 1 °(%) o

1z
where °(x) =3) . L(X) e
1.k,
= Define (random) stratum sequence y,,Y,,... =-
o] ‘\’7
= Execute SGD w.r.t. L'« at k™ step in parallel B
= Theorem: Suppose that x¥* = A1p exists and - 2 | | |
- g, =0(n™) for some a € (0.5,1) 0 o0 05 L0
- (¢, —¢,,1)7¢, =0C(e,)
- {r, - n 2 0} is regenerative «—— - Stratum sequence occasionally restarts probabilistically
with E[1;"*] < 0 and E[X,(s)] =0 - Time © between restarts has finite 1/a. moment

- Sequence spends =1/3 of its time on each stratum
Then x™ — x” with probability 1

Proof: [GHS11] + Liapunov-function argument

© 2012 IBM Corporation



Hadoop Implementation

IBM Research

= Physical blocks and logical splits
— InputFormat operator creates splits
(one split per mapper)
— A split is mostly on one block
— Splits are usually disjoint

— Map job: each mapper first obtains
all split data (small amount of data
movement)

— Reduce job: massive shuffling of
data over network

= We allow splits to overlap by two rows

= DSGD is implemented as a map-only
job (no data shuffling!)

lag 22 by x

2 a1 A3z by x5

3 a3, az4 by x3

4 a43 45 by xy —split 1
S a54 85 by Xg

6 ags a7 bg Xg

7 a76 a8 by x;

8 ag7 agg bg xg

° s 910 Dy Xg — split 2
10 a199 Q10,11 byg X9

11 23110 11,12 byg Xgg

12 ajp11 21213 by Xgp

13 21312 31314 D13 Xg3

stratums=1

(mapper 2 modifies X-)

© 2012 IBM Corporation



Hadoop Implementation

IBM Research

= Physical blocks and logical splits
— InputFormat operator creates splits
(one split per mapper)
— A split is mostly on one block
— Splits are usually disjoint

— Map job: each mapper first obtains
all split data (small amount of data
movement)

— Reduce job: massive shuffling of
data over network

= We allow splits to overlap by two rows

= DSGD is implemented as a map-only
job (no data shuffling!)

la,; a5 by x

2 a1 A3z by x5

3 azp agg by x3

4 a43 45 by xy —split 1
S a54 a5 by xg

6 ags a7 bg Xg

7 azg 78 by Xxg

8 ag7 agg bg xg

0 fap  fat0 Dy X — split 2
10 a399 Q1011 byg X9

11 ay110 11,12 by Xqg

12 ajp11 21213 by Xgp

13 a1312 31314 b1z Xg3

stratums =2

(mapper 2 modifies X-)

© 2012 IBM Corporation



Hadoop Implementation

IBM Research

= Physical blocks and logical splits
— InputFormat operator creates splits
(one split per mapper)
— A split is mostly on one block
— Splits are usually disjoint

— Map job: each mapper first obtains
all split data (small amount of data
movement)

— Reduce job: massive shuffling of
data over network

= We allow splits to overlap by two rows

= DSGD is implemented as a map-only
job (no data shuffling!)

la, a5 by x4

2 3, a3 by x

3 a3, a34 by x5

4 a3 35 by xy ——split 1
S 854 a5 by xg

6 ags ag7y bg xg

7 azg a7 by Xy

8 ag7 agg by xg

O %8 fa10 by X — split 2
10 a199 Q1011 byg X

11 a3310 @112 by Xqg

12 21519 1013 byy Xq5

13 31312 31314 P13 Xg3

stratums =3

(x, affects mapper 1)

© 2012 IBM Corporation



Other Implementation Details

IBM Research

= Initial guess
— Ignore off-diagonal elements
— Works well due to “diagonal dominance”

= Stratum sequence as in [GHS11]

— Meander in a stratum for a while, then jump to next stratum
— Tension between thorough exploration of stratum and randomness
— Visit all A rows in stratum: at each “sub-epoch” select one of k! orders at random

— Similar strategy for jumping between strata
— Convergence Theorem still applies

= Step-size sequence
— Constant during sub-epoch
—“Bold driver” heuristic

— Experiment with initial step size
(in parallel on small subsequences)

4

\%
=

C

=

© 2012 IBM Corporation
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Optimizing the Re-Use Factor for Maximum Efficiency

To define (asymptotic) efficiency, consider budget-constrained setting
[Fox & Glynn 1990; Glynn & Whitt 1992]

= Cost of producing n outputs from Model 2:

C = ™o LS t,; = (random) cost of producing
ILTADIILY j™ observation of Y

= Under (large) fixed computational budget c

—Number of Model 2 outputs produced:

N(c) =max{n>0:C_ <c}

— Estimator:
U(C) — eN(C) = N(C)_lZJNz(lc) Y2;j

83 © 2012 IBM Corporation
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Optimizing the Re-Use Factor II

The key limit theorem as budget increases to infinity

2 — ‘

where r, =[1/a | and

‘gioci=iocE[rl]+E[ri]iiVar[Yi]+|2r —ar ir +1i|Cov[Yi,7i]i|

Cov[Yz,\?z] = covariance of two Model 2 outputs that share a Model 1 input

= Thus, minimize g(a) [or maximize asymptotic efficiency =1/ g(a) ]

© 2012 IBM Corporation
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Proof Outline

Wn
" SetW , = ZI”ZI Y, I[input for ith run of Model 2 is Y, ;] QA } .
mn _ m, . m, Wn
st :£ jm” 121:1Wn;i ~o-m, 1Zj:1Wn;j Gﬁ } 2
Fw

n

n,3

= By Theorem 1 in [Glynn & Whitt 1992], it suffices to show that

} Wn,4

W ;and W, .. are
independent for j = j'

- C. /n3ac, +c, (straightforward to show)
-W .,W _,...,W__ obeys a “Lindeberg-Feller” FCLT

= Can establish standard “Lindeberg condition” which suffices for FCLT (Billingsley 1999)

= Some additional fussy details due to the cycling through Model 1 outputs

85 © 2012 IBM Corporation
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Point and Interval Estimates

W
Typical scenarios: QZ%} B
= Compute 100(1 - 8)% confidence interval for 6 under fixed budget ¢ Oﬁg} W,,
= Estimate 6 to within £100&% with probability 100(1 — 6)% \8} W
} WHA

Issue: n is unknown a priori (so can’t compute m,)
= Solution: estimate n from n, pilot (or prior) runs W< is "centered" version of W, .

= Can show: Jn(6, —0) — N(0,1) where h (o) = n‘lzl“l(wrffj) )2/
Vyh,(a)
so that CI from n runs is [en ~z,(h (o) /n)"*,0, +2, (h,(a) / n)m]

where z; is (1+6) /2 normal quantile

= Can set
- n=c/(ac, +¢,) for fixed budget

2
- n~h, (oc)(z6 / 86%) for fixed precision

86 © 2012 IBM Corporation
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Interface to R system for experimental design

Method Provider Notes
Full Factorial Experiment Manager =Simple, fast design generation
Design =Exhaustive factor combinations -> slow execution

Planor Fractional
Factorial Design

R — planor package

http://cran.r-
project.org/web/packages/planor/vignett
es/PlanorInRmanual.pdf

=Supports arbitrary factor levels

=l everages R design generation

»Checks statistical feasibility of user’s proposed design
=Slow design generation, fast experiment execution

Auto Planor
Fractional Factorial
Design

R — planor package

http://cran.r-
project.org/web/packages/planor/vignett
es/planorVignette.pdf

=Supports arbitrary factor levels

=l everages R design generation

=Automatically finds smallest feasible experiment
=Slower design generation, fast experiment execution

FRF2 Fractional
Factorial Design

R — FrF2 package

http://cran.r-
project.org/web/packages/FrF2/FrF2.pdf

=Only supports 2-level factors
»Fast generation
»Fast execution

Custom

User Specified

=Any design above may be used as basis

| Splash Experiment Manager

As new designs are introduced in R, the

Interface is in place to take advantage of these.

Design of Experiments

Select an experimental design and the number of replications

Experiment Design Generation

Design Type Replication per Condition

\UTO_PLANOR_FFD [~ \
FULL_FACTORIAL }
PLANOR_FFD
I AUTO_PLANOR_FFD

FRF2_FFD

.r" R package to generate designs with




Standard Kriging

Y@ =fx)"'B + M

Y A
M(x), extrinsic
uncertainty

Images: SJSU © 2012 IBM Corporation
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Stochastic Kriging
Yix) ="' +MX) + (%)

Y
g;(x), Intrinsic

uncertainty

X1 X2 X0 X3 X4

MLE estimate: §(Xo) = Bo + Im(Xo,)"[Zm + 2s]_l(y_* — Bolk)

© 2012 IBM Corporation
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Optimization Process Flow

Optimizer Experiment Optimizer Experiment
(select ng) Manager (select N,,... . N)) Manager
EML for Stage 1 EML for
Stage 1 Simulation results Stage 2
. Experiment .
Optimizer
_!. Manager GUI (select best system,
compute conf. intervals)
— o ¢
Optimization Results Stage 2
( Graphs, plots, ...) Simulation results

- Optimizer is R code, _ _
[- Orchestration via Python scripts J @ = template-based data extraction
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