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Some Context: Model-Data Ecosystems
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My Two Communities
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Modeling and Simulation Information Management & Analytics
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Opportunities for Innovation at the Intersection
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Modeling and Simulation Information Management & Analytics

Splash

MCDB & SimSQL
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Some Further Thoughts and Examples [PODS 2014 Tutorial]

 Data-intensive simulation
– Simulations within databases
– Databases within simulations
– Data harmonization at scale

 Information integration
– Simulation as an information-integration tool
– Combining real and simulated data

 And more!
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(In addition to large-scale scientific environments)
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Motivation for Splash
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The Setting: Analytics for Decision Support

“Analytics is…a complete [enterprise] problem solving
and decision making process”

Descriptive Analytics: Finding patterns and
relationships in historical and existing data

Predictive analytics: predict future probabilities
and trends to allow what-if analysis

Prescriptive analytics: deterministic and stochastic optimization
to support better decision making

Splash
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Shallow Versus Deep Predictive Analytics

United States House Prices
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Big, Difficult, Important Problems Span Many Disciplines

Communication
$ 3.96 Tn

Transportation
$ 6.95 Tn

Leisure / Recreation / 
Clothing

$ 7.80 Tn

Healthcare
$ 4.27 Tn

Food
$ 4.89 Tn

Infrastructure
$ 12.54 Tn

Govt. & Safety
$ 5.21 Tn

Finance
$ 4.58 Tn

Electricity
$ 2.94 Tn

Education
$ 1.36 Tn

Water
$ 0.13 Tn

Global system-of-systems
$54 Trillion

(100% of WW 2008 GDP)

Same Industry
Business Support
IT Systems
Energy Resources
Machinery
Materials                                               
Trade

Legend for system inputs

IBM analysis based on OECD data.

Need collaborative cross-disciplinary modeling and simulation 

9
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The food system is complex, and 
interventions often have 
unintended and deleterious effects 
on food security, or have major 
consequences that affect GHS 
emissions.  Agricultural, economic, 
and climate modelers must 
compare their models more 
systematically, share results, and 
integrate their work to meet the 
needs of policy-makers.  
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Health is a state of  
complete physical, 
mental, and social 
well-being and not 
merely the absence 

of  disease or 
infirmity.
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Example: Unintended Outcomes in Healthcare Optimization

T. R. Rohleder & D. P. Bischak & L. B. Baskin (2007). Modeling patient service centers with simulation and system dynamics. Health Care Manage. Sci., 10:1–12.

0 6 12 18

Avg. Patient Delay

Time
(months)

Simulation model of
Calgary Lab Services

Re-design
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System-dynamics social model of lab use
T. R. Rohleder & D. P. Bischak & L. B. Baskin (2007). Modeling patient service centers with simulation and system dynamics. Health Care Manage. Sci., 10:1–12.

Simulation model of
Calgary Lab Services

Re-design

Example: Unintended Outcomes in Healthcare Optimization

0 6 12 18

Avg. Patient Delay

Time
(months)



© 2012 IBM Corporation

IBM Research

System-dynamics social model of lab use
T. R. Rohleder & D. P. Bischak & L. B. Baskin (2007). Modeling patient service centers with simulation and system dynamics. Health Care Manage. Sci., 10:1–12.

Simulation model of
Calgary Lab Services

Re-design

Example: Unintended Outcomes in Healthcare Optimization

0 6 12 18

Avg. Patient Delay

Time
(months)

Moral:

Combine models across disciplines 
for more robust decision making
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Combining Models Across Disciplines is HARD

Huang, T. T, Drewnowski, A., Kumanyika, S. K., & Glass, T. A., 2009, 
“A Systems-Oriented Multilevel Framework for Addressing Obesity in the 21st Century,”
Preventing Chronic Disease, 6(3)

 Domain experts have 
different worldviews

 Use different vocabularies

 Sit in different 
organizations

 Develop models on 
different platforms

 Don’t want to rewrite 
existing models!

16
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Prior approaches to Combining Models
Monolithic models

 Create a monolithic model that encompasses all relevant domains

 Create modules that can be compiled into one
 SpatioTemporal Epidemiological Modeler (STEM)
 Community Atmospheric Model (CAM)

Integrated models

Tightly-coupled models

 Create modules that understand standard interfaces
 DOD High Level Architecture (HLA)
 Discrete-Event System Specification (DEVS)
 Open Modeling Interface (OpenMI).



© 2012 IBM Corporation

IBM Research

Splash: An Alternative Approach

Loosely couple models and data via data exchange

Splash = data integration + workflow management + simulationSplash = data integration + workflow management + simulation

Re-use heterogeneous models and heterogeneous data that are 
curated by different domain experts
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Some Benefits of Loose Coupling
Facilitates cross-disciplinary modeling, analytics, and simulation

for robust decision making under uncertainty

Enables re-use of models and datasets

Encourages comprehensive documentation and curation of models via metadata

Allows model flexibility:
– Upgrading to state-of-the-art
– Customizing for different users
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A prototype platform and service for integrating existing data, models, and 
simulations to gain insight needed for complex decision making related to 
policy, planning, and investment.

Splash

Model and Data Curation

Model and Data Discovery

Model Composition

Composite-Model Execution

Experiment Management

Model and Data Curation

Model and Data Discovery

Model Composition

Composite-Model Execution

Experiment Management

SA
D

L
SA

D
L

Splash Platform

Analysis

Visualization

Models

Data

DBMS, Hadoop, Visualization Tools, Information-
Integration Tools, Stats Packages

DBMS, Hadoop, Visualization Tools, Information-
Integration Tools, Stats Packages
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Model and Data Curation

Model and Data Curation

Model and Data Discovery

Model Composition

Composite-Model Execution

Experiment Management

Model and Data Curation

Model and Data Discovery

Model Composition

Composite-Model Execution

Experiment Management

SA
D

L
SA

D
L

Splash Platform

Analysis

Visualization

Models

Data

DBMS, Hadoop, Visualization Tools, Information-
Integration Tools, Stats Packages

DBMS, Hadoop, Visualization Tools, Information-
Integration Tools, Stats Packages
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Splash Actor Description Language (SADL)

<Actor name="BMI Model" type = "model" model_type = "simulation”
sim_type = "continuous-deterministic” owner="Jane Modeler"> 

<Description>
Predict weight change over time based on an individual’s energy    and food 
intake. Implemented in C. Reference: http://csel/asu.edu/?q=Weight
</Description> 
<Environment>

<Variable name="EXEC_DIR" default="/Splash" description="executable 
directory path"/>

<Variable name="SADL_DIR" default="/Splash/SADL" description="schema 
directory path"/>
</Environment> 
<Execution>

<Command>$EXEC_DIR/Models/BMIcalc.out</Command> 
<Title>Run BMI model</Title>

</Execution> 
‘ <Arguments>

<Input name="demographics" sadl="$SADL_DIR/BMIInput.sadl" 
description="demographics data"/>

<Output name="people" sadl="$SADL_DIR/BMIOutput.sadl" 
description="people’s daily calculated BMI"/>

</Arguments> 
</Actor>

 SADL file for data (can exploit XSD)
– Attribute names, semantics, units
– Constraints
– How to access
– Security
– Experiment-management info

 SADL file for a model:
– Inputs and outputs (pointers to SADL files 

for data sources and sinks)
– How to execute (info needed to synthesize 

command line)
– Semantics and assumptions
– Provenance (papers, ratings, ownership, 

security, change history, …)
– RNG info

 SADL provides “schemas and 
constraints” for models, 
transformations, and data, enabling 
interoperability
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Registration: Use Wizards to Create Model and Data SADL Files

Model Wizard offers step by 
step guidance to generate the 
Model’s SADL, and the 
command line for invocation

Data Wizard generates SADL for  
model input and output files
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Model Composition

Model and Data Curation

Model and Data Discovery

Model Composition

Composite-Model Execution

Experiment Management
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DBMS, Hadoop, Visualization Tools, Information-
Integration Tools, Stats Packages
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DataflowData source Simulation model Data Transformation

Obesity Example
Dataflow

Buying and eating
(Agent-based simulation model)

Transportation
(VISUM simulation model)

Demographic 
data

GIS data

BMI Model
(Differential equation model)

Time alignment
and data merging

Geospatial alignment

Facility data

Exercise
(Stochastic discrete-event simulation)

Results
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Sample Results

If  we open a new “healthy” food store in a “bad” neighborhood…

Without traffic model Including traffic model

* Many assumptions, sample only, your mileage may vary …

BMI by rich/poor BMI by rich/poor

poor
rich

poor
rich
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Implemented Obesity Example

 Data actors: input and output files, databases, web services, etc.

 Model actors: simulation, optimization, statistical models

 Mapping actors: data transformations, time and space alignment

 Visualization actors: graphs, reports, etc.

Model actor

Visualization actor

Data actor

Mapping actor
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Implemented Obesity Example

 Data actors: input and output files, databases, web services, etc.

 Model actors: simulation, optimization, statistical models

 Mapping actors: data transformations, time and space alignment

 Visualization actors: graphs, reports, etc.

Model actor

Visualization actor

Data actor

Mapping actor

Models and data can
reside at different locations
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Implemented Obesity Example

 Data actors: input and output files, databases, web services, etc.

 Model actors: simulation, optimization, statistical models

 Mapping actors: data transformations, time and space alignment

 Visualization actors: graphs, reports, etc.

Model actor

Visualization actor

Data actor

Mapping actor
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Data Transformations Between Models

 Transformation design tools for structural (schema) and time alignments
 SADL metadata used to automatically detect mismatches
 Splash generates code for massive-scale transformation on Hadoop at simulation time

Clio++: Schema mapping
& unit corrections

Time Aligner: Time-series
harmonization
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Composite-Model Execution

Model and Data Curation

Model and Data Discovery

Model Composition

Composite-Model Execution

Experiment Management

Model and Data Curation

Model and Data Discovery

Model Composition

Composite-Model Execution

Experiment Management

SA
D

L
SA

D
L

Splash Platform

Analysis

Visualization

Models

Data

DBMS, Hadoop, Visualization Tools, Information-
Integration Tools, Stats Packages

DBMS, Hadoop, Visualization Tools, Information-
Integration Tools, Stats Packages
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Executing a Composite Model: The Need for Runtime Efficiency

A huge parameter space to explore
(many model runs)
 Ex: 3 models + 10 params/model + 2 

vals/param = over 1 billion model runs
 Even worse for stochastic models 

(multiple Monte Carlo replications)
 Experimental design can help

Each model run can be extremely time 
consuming
 Large-scale, high resolution models 

produce and consume massive amounts 
of time-series and other data
 CPU-intensive computations
 Composing models (with data 

transformations) intensifies the problem
NCAR Community

Atmosphere Model (CAM)

Agent-based social model

Regional traffic model

T-cell biology model

32
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Time alignment with MapReduce

Interpolation, nearest neighbor, aggregation (since-last, since-start) 

Irregular source time series

Regular target time series to be calculated.

s0

t0
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Sliding window by size (n=4)                   

Regular target time series to be calculated.
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Time alignment with MapReduce

Interpolation, nearest neighbor, aggregation (since-last, since-start) 

Irregular source time series

Regular target time series to be calculated.

s0

t0

Sliding window by size (n=4)                   
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Cubic-Spline Interpolation in MapReduce

 Recall: Source outputs 1 tick per two days; 
target needs one tick per day

 (Natural) cubic spline widely used
– Uniformly approximates f and f ’

– Error of O(h 4) as knot spacing h Ø 0
– Default method in SAS

 Given source and target time series:

 Given window Wi for ti :

0 0 1 1 0 0 1 1( , ),( , ), ,( , )  and  ( , ),( , ), ,( , )m m n nS s d s d s d T t d t d t d     

1 11 1( , , ),( , , ) where [ , ) contains i j j j j j jj j is s tW s d s d    

1j j jh s s 

13 3
1 1

1 1( ) ( ) ( ) ( ) ( )
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j j j j
i i j i i j i j j i
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j jd h d h
d f W s t t s t s s t

h h h h
 






     
                

  









© 2012 IBM Corporation

IBM Research

 Must solve Ax = b (m-1 rows and columns):

 Prior work
– Some solutions require evenly spaced source points
– Some solutions require precomputation (somehow) of A -1

– Other solutions for vector machines, MPI architectures, GPUs
• Require a lot of data shuffling (reduce steps) in Hadoop adaptation
• Example: Parallel Cyclic Reduction (PCR) uses log2m map-reduce jobs

 Our approach:  minimize

43

Question: How to Compute Spline Constants?
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Our Solution: Distributed Stochastic Gradient Descent (DSGD)

 Originally for matrix completion, e.g., Netflix 
ratings problem [GHS KDD11]

 Uses stochastic gradient descent (SGD) to 
minimize L

– Deterministic gradient descent (DGD):

– Stochastic gradient descent:

– Avoids getting stuck at local minima
– Problem: SGD is not a parallel algorithm

 Idea: run SGD on subsets (strata) of rows, 
randomly switch strata; choose “sparse” strata 
that allow parallel execution of SGD

– Converges to overall solution with probability 1
under mild conditions

( 1) ( ) ( )ˆ'( )n n n
nx x L x   

( 1) ( ) ( )'( )n n n
nx x L x   

( ) ' ( )ˆwhere '( ) ( 1) ( )
and  is randomly chosen from [1.. 1]

n n
IL x m L x

I m
 



1( ) ' ( )
1

where '( ) ( )mn n
ii

L x L x
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Choosing Strata
Goal: Permit parallel execution of SGD within each stratum

Key observation:

Stratum choice:
 Can implement as map-only Hadoop job

(almost no data shuffling)
 Exploit discrepancy between logical splits

and physical blocks

Empirical study:
 2x-3x faster than best-of-breed PCR alg.
 10 scans vs logm for PCR
 PCR requires extra sort
 PCR requires massive data shuffling

(network bottleneck)

 '
, 1 , , 1( ) 0 0 0 0i i i i i i iL x u u u   

, , , 1 1 , , 1 1where 2 ( )i j i j i i i i i i i i iu a a x a x a x     

Updating xi only affects
(and is affected by) xi-1 and xi+1
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Speeding up Composite Simulations: Result Caching

Motivating example: Two models in series, 100 reps

 Naïve approach: execute composite model
(i.e., Models 1 & 2) 100 times

 A better approach:

– Execute Model 1 once and cache result
– Read from cache when executing Model 2

Question: Can result-caching idea be generalized?

46

Deterministic Stochastic
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General Method for Two Stochastic Models in Series

Goal: Estimate                  based on n replications 

Result-caching approach: 

1. (the re-use factor)

2. Generate mn outputs from Model 1 and cache them                          

3. To execute Model 2, cycle through Model 1 outputs

4. Estimate    by

  2E[Y ]

nSet m n  for some (0,1]     


n

n 2;ii 1
Y / n


  

Ex: n=10, mn = 4

47
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Optimizing the Re-Use Factor for Maximum Efficiency

Q: How to trade off cost and precision?
 Assume a (large) fixed computational budget c
 Random cost model: correlated pair

–
–
–

 Approx. distribution of       : 

N(c)

2;jj 1
ˆ(c) Y / N(c)


  

i i (random) cost of producing an observation Y 

48

i i( , Y )

2N(c)  # of observations of Y  generated under c

variance g( ) / c 
ˆ(c)

r 1 /    
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Optimal solution

 Assume that

 Optimal value of ߙ:

(truncate at 1/n or 1)

Observations

– If E[Model 1 cost] >> E[Model 2 cost], then high re-use of output

– If Model 2 insensitive to Model 1 (Cov << Var), then high re-use

– If Model 1 is deterministic (Cov = 0), then total re-use

The Optimal Re-Use Factor

 

1/2

* 2 1

2 2 2

E[ ] / E[ ]

Var[Y ] / Cov[Y , Y ] 1

    
  



2 2Cov[Y , Y ] 0
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Experiment Management (and Optimization)

Model and Data Curation

Model and Data Discovery

Model Composition

Composite-Model Execution

Experiment Management
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Model and Data Discovery

Model Composition
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Visualization
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Integration Tools, Stats Packages

DBMS, Hadoop, Visualization Tools, Information-
Integration Tools, Stats Packages
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Experiment Design and Efficiency

Example: 1st-order polynomial metamodel for scaled data (7 factors) 

0 1 1 7 7

1;2 1 2 6;7 6 7 1;2;3 1 2 3

1 7x , , x

Y x x

     x x x x x x x noise

{ 1,1}  (full factorial = 128 runs)  

     

        


 

To estimate If you can ignore Resolution # runs

Main effects All high-order effects III 8

Main effects 3rd-order and higher IV 16

Main effects
+ 2-way interactions

3rd-order and higher V 64

Trades off execution cost versus
level of detail that can be estimated

Coarse resolution is OK for sensitivity 
analysis etc. 

Trades off execution cost versus
level of detail that can be estimated

Coarse resolution is OK for sensitivity 
analysis etc. 

Resolution III
design

Fractional-factorial
experimental

designs
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Running experiments in Splash

Goal
 Provide a facility that gives the illusion of 

executing one coherent simulation model

Main Challenges
 Automate the coordination between experiment 

conditions and inputs to different submodels. 
 Automate the combination of different 

replications of different submodels.
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Example: Healthcare Payer Model

53

Composition of two models
 Emory/Georgia Tech Predictive Health Institute model [Park et al. 2012]

– Simple agent-based model of prevention and wellness program
– For investigation of payment systems (capitated vs outcome-based)

 Simple logarithmic random walk model of interest & inflation rates 
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Experiment Manager (Specifying Experimental Factors)

GUI collects simulation 
parameters from 

all component models
experiment_factor = TRUE 

in SADL file

User selects subset of 
parameters as 

experiment factors

User selects values 
for each experiment factor

<attribute name="paymentModel" 

measurement_type="numerical" 

missing_data="0" 

experiment_default_values=""

experiment_factor="true"

datatype="double"

random_seed="false" />

SADL
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Experiment Design in Splash

Editable design

Execution Engine

<model name= PHI>…

<factor name=“Tage">

<values>“65"</values>
<values>“85"</values>

</factor>…
<rep n=“10”>…
</experiment>

EML

(Factor values and
# of Monte Carlo reps
for each condition)

Design Persistence
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Experiment Manager (Running an Experiment)

Technical challenges include:

 Routing parameter values to models
– Different sources: command line args, 

parameter files, stdin, …
– Synthesizing the parameter files that a 

model expects (templating)

 Managing PRNG seeds
– Avoiding cycle overlaps
– PRNG info in SADL file
– Diagnostics (future work)

Intermediate and final outputs can 
be saved in a file tree for
- Provenance tracking
- Traceability
- Drill down

Experiment Manager invokes 
Splash execution engine to 
run experiments 
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Template-Based Data File Generation Process

Data SADL File Template File Input Values

Data File Generator

Input Data File

…
<attributes>
<attribute name=temperature
Datatype=numeric…/>
<attribute name=pressure
Datatype=numeric…/>

…

Input data for city of Detroit
Temperature=50.2
Pressure=25.1
Input data for city of Chicago
Temperature=48.7
Pressure=32.1

Input data for city of Detroit
Temperature=$$temperature$$&&%0.1&&
Pressure=$$pressure$$&&%0.1&&
Input data for city of Chicago
Temperature=$$temperature$$&&%0.1&&
Pressure=$$pressure$$&&%0.1&&

50.2, 25.1
48.7, 32.1
…

Needed by Experiment
Manager for file synthesis
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Template-Based Data Extraction Process

Template File
Unstructured

Data File

Data Extractor

Extracted Values

Input data for city of Detroit
Temperature=50.2
Pressure=25.1
Input data for city of Chicago
Temperature=48.7
Pressure=32.1

Input data for city of Detroit
Temperature=$$temperature$$&&%0.1&&
Pressure=$$pressure$$&&%0.1&&
Input data for city of Chicago
Temperature=$$temperature$$&&%0.1&&
Pressure=$$pressure$$&&%0.1&&

50.2, 25.1
48.7, 32.1
…

Needed to extract
performance measures of interest
for optimization, visualization, etc.
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Efficient Sensitivity Analysis

 Main-effects plots:
– High/low values
– Orthogonal fractional

factorial experiment 
design (160 vs 2560 runs)

PHI healthcare payer model +
interest-rate model

(Park et al., Service Science, 2012)

Identify the most important
profit drivers

(CapAmt & Tage)

Check statistical significance
of graphical results
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0

0 0

0 ,1 ,

2
0 , 0 ,1 1

2

0 2

For  = 1 to 
    Execute  stage-1 replications of model  to obtain , ,

    Set (1/ )  and (1/( 1)) ( )

    Set max , , where ( , ) is

 
   

  
       

 
i i n

n n
i i j i i j ij j

i
i

i k
n i Y Y

X n Y V n Y X

h VN n h h C

00 , 1 ,

,1

 a tabulated constant

    Execute  additional replications of model  to obtain , ,

    Compute (1/ )

Select system with largest value of  as the best system
Compute MCB i







 


i

i

i i n i N

N
i i i jj

i

N n i Y Y

Y N Y

Y
ntervals for 1, 2, , :

    min(0,max ) and b max(0,max ) 



       



i j i j i i j i j i

i k
a Y Y Y Y
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Optimization Functionality: Ranking and Selection

 Rinott procedure for finding best among small number of designs

 Executes min. # of runs needed to distinguish systems




Selects design within  of optimum
with probability C

Equal number of stage-1 
replications per design

System 
determines 
number of stage-
2 replications

Results are 
combined 
and ranked

Simultaneous 
100C% MCB 
conf. intervals.
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Results for PHI Profitability: Estimated Best System

“Conditions” = payment schemes for wellness program
(0 = full capitation, 1 = pay-for-outcome)

Look at weighted schemes: 0.1, 0.2, … , 0.9

“Conditions” = payment schemes for wellness program
(0 = full capitation, 1 = pay-for-outcome)

Look at weighted schemes: 0.1, 0.2, … , 0.9

With prob = 95%, C5 = 0.5 is the “best system” 
(within indifference zone = $250K)

PHI healthcare payer model +
interest-rate model

(Park et al., Service Science, 2012)



© 2012 IBM Corporation

IBM Research

Results Continued: Multiple Comparisons with the Best

Simultaneous 95% 
confidence intervals on  
difference between each 
system and best of others

Identifies set of best solutions
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Simulation Metamodeling (Joint Work with SJSU CAMCOS)
“Simulation on demand”
1. Run simulations in advance to get 

values at multiple “design points”
2. Fit a (stochastic) response surface
3. Decision maker can explore surface in 

real time
4. Can apply stochastic optimization 

techniques to find peaks and valleys
5. Can use for factor screening

Technique: Stochastic Kriging
(Ankenman et al., Oper. Res., 2010)
 Robust, global fit
 Gives approximate model response

+ uncertainty estimates (MSE)
 Efficient allocation to of runs to minimize 

integrated mean-square error (IMSE)
 Metamodel added to Splash repository

Image: SJSU CAMCOS

Models uncertainty due to both
interpolation and simulation variability
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Assessment of PHI metamodel 

Metamodel gives good 
approximation to real 
results (1.6% error in 
this example)

Faster by over two 
orders of magnitude
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Factor screening (Joint with SJSU CAMCOS)
Goal: identify most important subset of drivers
 Drivers captured in metamodel parameters

Ex: Linear models
 Main effects used for screening

 For Gaussian noise, positive effects: sequential bifurcation

Ex: Gaussian process models
 Special case of stochastic kriging

 = simulation noise
 M (x) = interpolation uncertainty, modeled as Gaussian field

– For any x1, x2, … , xr vector V = (M(x1), … , M(xr))
is multivariate normal

–
 Small k   small effect of k th factor

 Bayesian “posterior quantiles” method for screening

2 2
, ,1

Cov[ ( ), ( )] exp( ( ) )
n

i j i j kk k kM M x x


   x x

0 1 1 7 7( )Y x x       x 

0( ) ( ) ( )j jY M   x x x

( )j x



© 2012 IBM Corporation

IBM Research

Some Potential Splash Applications
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Lever1 Lever2 Lever3

Policy “Flight 
Simulator”

Disease Progression Models

Personalized Medicine
(Targeted interventions)

Healthcare Ecosystem
(Society)

System Structure
(Organizations)

Delivery Operations
(Processes)

Clinical Practices
(People)

Careflow Models
(Flow of  Patients, 

Money, Information)

Business Models

Socio-Economic Models

1

2

3

4

5

6

Multi-level, End-to-End Modeling

Rouse, W. B. & Cortese, D. A. (2010). Introduction, in W. B. Rouse & D. A. Cortese (Eds.), 
Engineering the System of  Healthcare Delivery. IOS Press.
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Cross-domain, Syndemic Modeling

Richard Rothenberg et al., Georgia State University, 2011
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Composite model for traffic safety

Emergency Data

Weather Data

Collision Data

Demographic 
Data

GIS Data

IBM Megaffic traffic 
simulation model

Collision Heatmaps
Impact of… x …on collisions

Geographic Model
(ESRI)

Emergency Response 
Model (Client)IBM Deep Thunder 

weather model

Legend

Component Model

Data Source

Transformations

Data Flow

Game Day

CombinedPay Day

Heavy Snow

Intervention Scenarios

A: Roadway design changes

B: Placement variable speed limits

C: Enforcement

Volume Data
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Open Research Questions
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How to Determine User Requirements?
Common to Analysts and Scientists 
 Examine schemas (data) and variables (models) prior to 

selection
 Compare output of simulation results to examine trade-

offs and simulation selection
 Dashboard with summary of models and data sources 

used to run a simulation

Specific to Analysts
 Guidance and recommendations
 Pre-defined templates for simulation set-up and 

analyzing simulation output
 Recommendations for what template to use and the 

steps to run a simulation
 Recommended output visualization – suggest one chart 

style would be better than another style to explain 
relationships in data 

Specific to Scientists
 Feature to assess the veracity and provenance of model 

and data sources
 Ability to upload their own sources to supplement the 

existing sources
 High levels of interaction with the models & data when 

previewing search results prior to running the 
simulation 
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Database Research++

 Data search Æ model-and-data search
– Find compatible models, data, and mappings (using metadata)
– Involves semantic search technologies, repository management, privacy and security

 Data integration Æ model integration
– Simulation-oriented data mapping
– Geospatial alignment [e.g., Howe & Maier 2005]
– Hierarchical models with different resolutions
– Complex data transformations (e.g., raw simulation output to histogram)

 Query optimization Æ simulation-experiment optimization
– Optimally configure workflow among distributed data and models
– Factoring common operations across different mappings in the workflow
– Avoiding redundant computations across experiments (e.g., result caching)
– Statistical issues: managing pseudorandom numbers and Monte Carlo replications



© 2012 IBM Corporation

IBM Research

Some Deep Problems

 Causality approximation
– Fixed-point + perturbation approaches
– System support
– Theoretical support

 Deep collaborative analytics
– Visualizing and mining the results
– Understanding and explaining results:

• Provenance [e.g., J. Friere et al.]
• Root-cause analysis

– Trusting results
• Model validation
• ManyEyes++, Swivel++

 
 





 

 




1 1

2 1
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Conclusion

 Splash:
– composition of heterogeneous models and data

to support cross-disciplinary decision making in complex systems
– Loose coupling of models through data exchange
– Combines data-integration, simulation, and workflow technologies

 Key features
– SADL metadata language for curation and functionality
– Automated detection of data mismatches
– Semi-automated design of scalable data transformations (schema and time alignment)
– Runtime accelerators

• MapReduce framework for scalable data transformations
• Map-only Hadoop method for cubic-spline interpolation
• Result-caching to minimize # of model executions

– Experiment-manager allows sensitivity analysis, factor screening and optimization
– Simulation metamodeling for real-time model exploration

 Many open research questions!
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Questions?

Splash project page: 
http://researcher.watson.ibm.com/researcher/view_project.php?id=3931
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Backup Slides
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Splash Technology for Loose Coupling via Data Exchange 

SADL metadata language Kepler adapted for model composition

Data transformation tools:
- Clio++
- Time Aligner (MapReduce algorithms)
- Templating mechanism

Run-time components:

- Kepler adapted for model execution
- Experiment Manager
(sensitivity analysis, metamodeling, optimization)

Design-time
components
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Distributed SGD, Continued

 Divide the m-1 rows into three strata: U 1, U 2, U 3

 Decompose loss function:

 Define (random) stratum sequence

 Execute SGD w.r.t. at k th step in parallel

 Theorem: Suppose that x* = A-1b exists and

 Proof: [GHS11] + Liapunov-function argument 

1 2, ,  

kL

1 2 31 1 1
3 3 3( ) ( ) ( ) ( )

where ( ) 3 ( )s
s

ii U

L x L x L x L x

L x L x


  

 

1

1/
1 1

- ( ) for some (0.5,1)
- ( ) / ( )
- { : 0} is regenerative
  with E[ ]  and [ ( )] 0

n

n n n n

n

O n
O

n
E X s







   

     

 

   

( ) *Then  with probability 1nx x

- Stratum sequence occasionally restarts probabilistically
- Time  between restarts has finite 1/ moment
- Sequence spends ≈1/3 of its time on each stratum

- Stratum sequence occasionally restarts probabilistically
- Time  between restarts has finite 1/ moment
- Sequence spends ≈1/3 of its time on each stratum
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Hadoop Implementation

 Physical blocks and logical splits
– InputFormat operator creates splits

(one split per mapper)
– A split is mostly on one block
– Splits are usually disjoint
– Map job: each mapper first obtains 

all split data (small amount of data 
movement)

– Reduce job: massive shuffling of 
data over network

 We allow splits to overlap by two rows

 DSGD is implemented as a map-only
job (no data shuffling!)

stratum  = 1s

split 1

split 2

a1,1
a2,1
a3,2
a4,3
a5,4
a6,5
a7,6
a8,7
a9,8
a10,9
a11,10
a12,11
a13,12

a1,2
a2,3
a3,4
a4,5
a5,6
a6,7
a7,8
a8,9
a9,10
a10,11
a11,12
a12,13
a13,14

b1
b2
b3
b4
b5
b6
b7
b8
b9
b10
b11
b12
b13

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13

1
2
3
4
5
6

7
8

9
10
11
12
13

(mapper 2 modifies x7)
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Hadoop Implementation

 Physical blocks and logical splits
– InputFormat operator creates splits

(one split per mapper)
– A split is mostly on one block
– Splits are usually disjoint
– Map job: each mapper first obtains 

all split data (small amount of data 
movement)

– Reduce job: massive shuffling of 
data over network

 We allow splits to overlap by two rows

 DSGD is implemented as a map-only
job (no data shuffling!)

stratum  = 2s

split 1

split 2

a1,1
a2,1
a3,2
a4,3
a5,4
a6,5
a7,6
a8,7
a9,8
a10,9
a11,10
a12,11
a13,12

a1,2
a2,3
a3,4
a4,5
a5,6
a6,7
a7,8
a8,9
a9,10
a10,11
a11,12
a12,13
a13,14

b1
b2
b3
b4
b5
b6
b7
b8
b9
b10
b11
b12
b13

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13

1
2
3
4
5
6

7
8

9
10
11
12
13

(mapper 2 modifies x7)
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Hadoop Implementation

 Physical blocks and logical splits
– InputFormat operator creates splits

(one split per mapper)
– A split is mostly on one block
– Splits are usually disjoint
– Map job: each mapper first obtains 

all split data (small amount of data 
movement)

– Reduce job: massive shuffling of 
data over network

 We allow splits to overlap by two rows

 DSGD is implemented as a map-only
job (no data shuffling!)

stratum  = 3s

split 1

split 2

a1,1
a2,1
a3,2
a4,3
a5,4
a6,5
a7,6
a8,7
a9,8
a10,9
a11,10
a12,11
a13,12

a1,2
a2,3
a3,4
a4,5
a5,6
a6,7
a7,8
a8,9
a9,10
a10,11
a11,12
a12,13
a13,14

b1
b2
b3
b4
b5
b6
b7
b8
b9
b10
b11
b12
b13

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13

1
2
3
4
5
6

7
8

9
10
11
12
13

(x7 affects mapper 1)
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Other Implementation Details

 Initial guess
– Ignore off-diagonal elements
– Works well due to “diagonal dominance”

 Stratum sequence as in [GHS11]
– Meander in a stratum for a while, then jump to next stratum
– Tension between thorough exploration of stratum and randomness
– Visit all k rows in stratum: at each “sub-epoch” select one of k ! orders at random
– Similar strategy for jumping between strata
– Convergence Theorem still applies

 Step-size sequence
– Constant during sub-epoch
– “Bold driver” heuristic
– Experiment with initial step size

(in parallel on small subsequences) 
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Optimizing the Re-Use Factor for Maximum Efficiency

To define (asymptotic) efficiency, consider budget-constrained setting
[Fox & Glynn 1990; Glynn & Whitt 1992]

 Cost of producing n outputs from Model 2:

 Under (large) fixed computational budget c

– Number of Model 2 outputs produced: 

– Estimator: 

nN(c) max{n 0 : C c}  

nm n

n 1;j 2;jj 1 j 1
C

 
    

N(c)1
N(c) 2;jj 1

U(c) N(c) Y


   

i;j
th

i

(random) cost of producing
        j  observation of Y
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Optimizing the Re-Use Factor II

The key limit theorem as budget increases to infinity

where                  and

 Thus, minimize        [or maximize asymptotic efficiency =            ]

       2
1 2 2Suppose that E[ Y ] . Then U(c) is asymptotically N( ,g( ) / c).

1 / g( )g( )

    r 1 /

  1 2 2 2 2g( ) ( E[ ] E[ ]) Var[Y ] 2r r (r 1) Cov[Y , Y ]            
(cost per obs.) (contributed variance per obs.)x

2 2Cov[Y , Y ]  covariance of two Model 2 outputs that share a Model 1 input
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Proof Outline

 Set

 Thus 

 By Theorem 1 in [Glynn & Whitt 1992], it suffices to show that

– (straightforward to show)

– obeys a “Lindeberg-Feller” FCLT

 Can establish standard “Lindeberg condition” which suffices for FCLT (Billingsley 1999)

 Some additional fussy details due to the cycling through Model 1 outputs

85

n

n,j 2;i 1;ji 1
W Y I[input for ith run of Model 2 is Y ]


 

n nm m1 1n
n n n;j n n;jj 1 j 1

m
m W m W

n
 

 

 
     

 
 

a.s.

n 1 2C / n c c 

nn,1 n,2 n,mW ,W , ,W
n,j n,j 'W  and W  are

independent for j j '

n,1W

n,2W

n,3W

n,4W
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Point and Interval Estimates

Typical scenarios:
 Compute                   confidence interval for   under fixed budget c
 Estimate   to within             with probability

Issue: n is unknown a priori (so can’t compute mn)
 Solution: estimate n from n0 pilot (or prior) runs

 Can show:                                where 

so that CI from n runs is 

where     is                normal quantile

 Can set
– for fixed budget 

– for fixed precision 
86

n

n

n( )
N(0,1)

h ( )

  



 n

2m1 (c)
n n,jj 1

h ( ) n W


  

 
0 0

2

n nn h ( ) z /  

100(1 )% 100 % 
100(1 )%  


1 2n c / ( c c )  

   1/2 1/2

n n n nz h ( ) / n , z h ( ) / n 
      
 

z (1 ) / 2 

(c)
n,j n,jW  is "centered" version of W
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Interface to R system for experimental design
Method Provider Notes

Full Factorial 
Design

Experiment Manager Simple, fast design generation
Exhaustive factor combinations -> slow execution

Planor Fractional 
Factorial Design

R – planor package
http://cran.r-
project.org/web/packages/planor/vignett
es/PlanorInRmanual.pdf

Supports arbitrary factor levels
Leverages R design generation 
Checks statistical feasibility of user’s proposed design
Slow design generation, fast experiment execution

Auto Planor 
Fractional Factorial 
Design

R – planor package
http://cran.r-
project.org/web/packages/planor/vignett
es/planorVignette.pdf

Supports arbitrary factor levels
Leverages R design generation 
Automatically finds smallest feasible experiment
Slower design generation, fast experiment execution

FRF2 Fractional 
Factorial Design

R – FrF2 package
http://cran.r-
project.org/web/packages/FrF2/FrF2.pdf

Only supports 2-level factors
Fast generation
Fast execution

Custom User Specified Any design above may be used as basis

As new designs are introduced in R, the

interface is in place to take advantage of these.
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Standard Kriging

ࣳ ܠ ൌ ࢼሻܠሺ M ܠ

॒

Y

ଵݔ ଶݔ ଷݔ ࢞ସݔ

M ܠ , extrinsic 
uncertainty

Images: SJSU
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Stochastic Kriging

ଵݔ ଶݔ ଷݔ ସݔ ॒

Y  ሻ, intrinsicܠሺࢿ
uncertainty

MLE estimate:

࢞

ࣳ ܠ ൌ ࢼሻܠሺ M ܠ  ሻܠሺࢿ

Y ܠ ൌ ߚ  Σ ∙,ܠ  Σ  Σக ିଵሺउ െ ୩ሻYߚ ܠ ൌ ߚ  Σ ∙,ܠ  Σ  Σக ିଵሺउത െ ୩ሻߚ
Images: SJSU
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Optimization Process Flow

- Optimizer is R code, 
- Orchestration via Python scripts = template-based data extraction


