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Abstract: Discovering and exploiting statistical features in relational datasets is key to query optimization in a relational
database management system (RDBMS), and is also needed for database design, cleaning, and integration. This paper surveys
a variety of methods for automatically discovering important statistical features such as correlations, functional dependencies,
keys, and algebraic constraints. We discuss proactive approaches in which the data is scanned or sampled (periodically, at
optimization time or at query time), or in which exploratory queries are executed. Also discussed are reactive approaches that
monitor the results of the query processing. Finally, we discuss methods for dealing with the practical challenges of maintaining
statistical information in the face of heavy system utilization, and of dealing with inconsistencies that arise from incomplete
cardinality models, use of multiple discovery methods, or changes in the underlying data over time. © 2009 Wiley Periodicals, Inc.
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1. INTRODUCTION

One of the great breakthroughs in information manage-
ment in the last 35 years was the invention and development
of relational databases [1,2], which store data in tables, and
a high-level, declarative language for accessing and manip-
ulating those tables. This language, which was standardized
as structured query language (sQL), permits the user to
describe a desired set of data to be retrieved, without requir-
ing the user to specify the details of how the system is to
access the data. Relational databases have had, and continue
to have, a major technological and economic impact; for
example, the Gartner Group (Press release, June 18, 2007;
see www.gartner.com) has estimated the 2006 worldwide
revenue from relational-database software at $15.2 billion.

In a relational system, the rows of a table correspond to
data items, such as employees, and the columns correspond
to attributes of a data item, such as AGE, SALARY, and so
forth. An sQL query describes a desired output table, which
is computed from the set of base tables that are stored
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on disk.The computations involve execution of relational
operations such as applying a selection predicate (e.g.,
‘DEPT.MGR = "Jane Smith"’) to the rows of a table,
projecting out specified columns of a table (possibly remov-
ing duplicates in the process), and joining multiple tables
together as specified by one or more join predicates such as
‘EMP.DEPTNO = DEPT.DEPTNO’. The latter join oper-
ation might be used, say, to create a table of employees
and their managers. (Throughout, we use standard relational
notation in which R.A denotes attribute A in table R.) Many
queries also involve aggregation, i.e. computing sums, aver-
ages, and so forth over the rows of a derived or base table;
the output of the query is a (possibly one-row) table of
such aggregates. An aggregation query with a GROUP BY
clause first groups rows together according to one or more
attribute values—e.g. grouping sales transactions by state
and year—and computes an aggregate separately for each
group—e.g. sum of sales by state and year.

For a given SQL query, the system automatically deter-
mines a query execution plan (QEP) for actually retrieving
the data. A QEP can be conveniently represented as an
upside-down tree, with the leaves corresponding to the base
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tables and the root corresponding to the final query results.
Because relational operators generally can be applied in
many different orders, and because each operator can be
executed in different ways, the number of possible QEPs
for a given query can easily number in the hundreds or
even thousands, each producing identical results. The query
optimizer [3-7] is the system component that selects the
cheapest QEP, using a sophisticated performance model to
estimate the execution cost of alternative QEPS.

This paper surveys various statistical and data-mining
methods for supporting query optimization in a relational
database management system (RDBMS). We focus on tech-
niques for automatically mining statistical information from
the data, and for using this information either directly in
query optimization, or indirectly, to automatically select
and maintain the statistics used in the query optimizer’s
‘cardinality model.’

1.1. Query Optimization

Figure 1 shows two alternative QEPs for a query in which
tables R, S, and T are joined together via a sequence of
dyadic join operators, with a local selection predicate on 7,
namely, 7.A > 3. The two execution plans differ in several
ways:

e QEP(a) joins tables R and S first then joins the output
with table T, whereas QEP(b) joins R and T first and
then joins the output with S.

e QEP(a) accesses the rows of S by sequentially scan-
ning the entire table, whereas QEP(b) uses an index
structure to efficiently access specific rows of the
table, as required by the subsequent join operation.

e QEP(a) applies the selection condition 7.A > 3 as a
filtering operation following the sequential scan of
T, whereas QepP(b) uses an index on attribute 7.A to
access only qualifying rows.

Figure 2 illustrates a typical index structure, called a B™
-tree, which supports efficient retrieval of rows based on
the indexed attribute(s)—Name, in the illustrated example.
Rows having a specified attribute value are located by
traversing the tree from root to leaf and then to the file
containing the actual data, where the pointer to follow
at each internal node is determined by comparing the
target attribute value to the values stored at the node. (The
leaf nodes have additional ‘horizontal’ pointers to support
efficient retrieval of rows that correspond to ranges of
consecutive attribute values). Sometimes, as in the example,
the index nodes store other information beneficial to a query
optimizer, such as the number of rows having a given key
value (e.g. ‘Costa’). Typically, the leaf nodes are stored on
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disk pages and the internal nodes are cached in memory
(in the buffer pool). So one or two additional I/Os may
be required to retrieve a particular record using an index,
but index-based retrieval avoids the need to access all of
the pages in the table via a sequential scan. The relative
efficiency of the above two QEPs depends mostly upon
the number of rows in the table that satisfy the selection
predicates on that table. Generally, I/O costs dominate CPU
costs in database query processing. Accessing the rows in
a table using an index, if available, is the most I/O-efficient
option if less than about 10% of the rows must be retrieved;
otherwise, use of a simple table scan yields lower I/O costs.
Each dyadic join operation can potentially be executed in
a variety of ways, for example, sorting the rows in each
table by the join attribute and then merging, or hashing
on the join attribute in each table, or simply executing a
nested loop where each row in the ‘outer’ table initiates
a sequential scan of the rows in the ‘inner’ table to find
matches. Again, the cost of the algorithms depends strongly
on the number of rows processed by each operation. For
example, if we use a nested-loop algorithm for the topmost
join in QEP(a) and assume that each of the two (nonbase)
input tables have previously been written to disk, then the
cost of the join is roughly c(|O| + |O]|I]), where |O| and
|| are the size of the outer and inner tables (in units of disk
pages), and c is the cost of reading a disk page. Clearly,
the smaller of the two tables should be chosen as the outer,
but the size of the tables depends on how many rows in
T satisfy the predicate and how many rows are produced
by the join of R and S, which in turn depends on the
distribution of join-attribute values in each table.

A query optimizer selects the cheapest QEP based on a
sophisticated performance model that estimates the exe-
cution cost of alternative QEPs. Most commercial query
optimizers generate many legal QEPs, model the expected
execution cost of each, and choose the cheapest. QEP gener-
ation, costing, and comparison are typically performed in an



P.J. Haas et al.: Statistical Properties for Query Optimization in RDBMS 225

interior .
node | Qiao |
/, Myers | leaf | Reiss |
¢ node ¢ |\
Allen ||Costa (2)|+|| Myers —»,| Qiao || Reiss Singh
Name Salary
> Allen 120
—»| Costa 100
Costa 160
3| Myers 200
Qiao 110 -«
Reiss 140 <«
Singh 140 «—

Fig. 2 A BT-index on the Name attribute.

incremental manner, from leaves to root, often in the con-
text of a dynamic programming or greedy search algorithm.
Important inputs to the performance model are statistics
about each database table (e.g. number of rows), column
(e.g. maximum, minimum, and number of distinct values),
and index (e.g. number of levels and number of leaf pages),
which are typically collected periodically by a batch utility
during periods of low system utilization. As noted in the
example above, the cost of each QEP largely depends upon
the number of rows to be processed; whether the Qep will
access three rows or 3 000 000 rows matters more to the
optimizer’s decision than the precise cost per row. The per-
formance model can therefore be divided into a cardinality
model that estimates the number of rows to be produced
by each operator in a QEP, and a cost model that estimates
the execution cost of an operator, given the estimated num-
ber of rows. (The latter model takes as input factors such as
data layout on disk, disk-access speeds, and so forth). Mod-
ern cost models have been validated to be quite accurate
when the cardinalities are known, but as we shall see in the
next section, cardinality models are laced with simplifying
assumptions that can introduce order-of-magnitude errors.
Hence much of the literature on query optimizers has con-
centrated on improving cardinality models, and this paper
will do likewise. However, it should be noted that accurate
cardinality estimates are necessary, but not sufficient, for
the query optimizer to choose the best QEP.

The effectiveness of a query optimizer is usually mea-
sured using a benchmark, in which a dataset is loaded into
relational tables and a workload of queries is issued to the
query engine. There is little consensus within the database
community on benchmarks, due to both the wide range of
applications in which RDBMSs are used and the difficulty

of finding a collection of realistic-enough complex queries
over a given dataset. (Indeed, in some industries, query
workloads are considered trade secrets). The only truly stan-
dard benchmarks for query optimizers at this time are the
TPC-H and TPC-DS benchmarks for business intelligence
and decision-support queries administered by the Transac-
tion Processing Performance Council (www.tpc.org). The
datasets for these benchmarks are synthetically generated.
Even for these relatively simple benchmarks, determining
the truly optimal plan for each query has proved impossi-
ble, so that competing optimizers can be compared against
each other, but not against ground truth.

1.2. Cardinality Models

As indicated above, an optimizer’s cost model relies
heavily upon the underlying cardinality model. The cardi-
nality model is used to estimate the amount of data that will
‘survive’ each predicate in a QEP, e.g. the fraction of rows
in a table that will satisfy a given selection predicate on
attributes in the table. This fraction is called the selectivity
of the predicate, and can also be interpreted as the probabil-
ity that a randomly selected row will satisfy the predicate.
The selectivity is multiplied by the table cardinality (i.e. the
number of rows in the table) to estimate the total number of
rows that will be subject to further processing after the pred-
icate is applied. Similarly, the selectivity of a join predicate
between two tables is defined as the fraction of row-pairs
in the Cartesian product that participate in the join. For
example, the Cartesian product of the two tables in Fig. 3
comprises 5 x 2 = 10 row-pairs, whereas only 5 row-pairs
satisfy the join predicate Employee.Deptno = Man-
ager .DeptNo, so that this predicate has a selectivity of
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Fig. 3 Join-selectivity example.

50%. (Here Manager .DeptNo is a key, in that there are
no duplicate values, and Employee.DeptNo is a for-
eign key, in that each Employee.DeptNo value appears
in the Manager.DeptNo key column). The cardinality
model can be viewed as approximating the joint frequency
distribution of all of the attributes in the database. Such an
approximate model is needed because databases can have
hundreds of tables, each having hundreds or even thousands
of columns, and so it is impractical to store the entire joint
distribution.

Early rRDBMSs used a very crude cardinality model that
could handle any query, but not terribly well [7]. These
systems maintained a minimal ‘thin veneer’ of statistics in
the system catalog. For example, for each table, the sys-
tem recorded the table cardinality and, for each column,
the ‘column cardinality,” that is, the number of distinct
values. The cardinality model then assumed that the data
distribution was uniform within each column—i.e. that the
distinct values were equi-frequent—and that columns were
mutually independent. Thus, if a table had 400 000 rows
and the columns MAKE and MODEL had respective column
cardinalities of 10 and 400, the selectivity of the predi-
cate ‘MAKE = Honda AND MODEL = Accord’ would
be estimated as (1/10)(1/400) = 1/4000, so that approx-
imately (400000)(1/4000) = 100 rows would be expected
to satisfy this predicate. Note that such an estimate is likely
to be very poor, because MAKE and MODEL are related by
essentially a functional dependency (FD), in that MODEL
determines MAKE (outside of a few exceptional cases).
Thus, even if the distinct MODEL values were truly equi-
frequent (which is unlikely), the true selectivity would prob-
ably be closer to 1/400, so that the naive estimate would
underestimate the true selectivity by an order of magni-
tude and the processing cost would be much higher than
expected.

To handle an ‘equijoin’ between two tables R and S, that
is, a join based on an equality predicate of the form ‘R|.A =
R>.B,’ the crude cardinality model assumed that there was
an inclusion dependency between the join columns, i.e.
that every distinct value in the smaller join column was
assumed to appear in the larger join column. Here ‘smaller’
and ‘larger’ refer to column cardinalities. Thus, if d; < d>,
where d; is the column cardinality of table R;, then each
distinct value in Ry occurs |R;|/d; times in Ry and |R,|/d>
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times in R, for a total contribution of |R; X R;|/(d1d>)
rows to the join. (We have used the uniform-distribution
assumption here). Allowing for the fact that there are d
such values, and considering the general case in which d;
may be smaller than d;, we obtain the general selectivity
estimate 0 = min(dy, d»)/(d1d>); this estimate generalizes
directly to joins involving three or more tables.

As indicated by the foregoing automobile example, the
classical uniformity and independence assumptions can
yield atrociously bad selectivity estimates in the pres-
ence of ‘skewed’ data—i.e. where the distinct values
have widely varying frequencies—or correlations between
columns. (Here ‘correlations’ refers to general statistical
dependencies, not necessarily linear relationships as mea-
sured, for example, by the Pearson correlation. We will use
this somewhat imprecise, but common, database terminol-
ogy throughout). Such bad estimates, in turn, can cause
the optimizer to choose a highly suboptimal QEP; in real
applications, queries that should take seconds or minutes to
complete can take hours or days. Consequently, as database
systems have matured, RDBMS designers have made better
efforts to approximate the true joint frequency distribution
of the attributes.

To avoid the uniformity assumption, designers have
added more detailed distribution statistics for each column.
For numerical data, the distributional information is typi-
cally represented by explicit histograms, either in the form
of buckets and counts or in the form of quantiles. For
discrete numerical data and categorical data, the system
records the frequencies of the k¥ most frequent data values,
where k& would typically be a number on the order of 10.
Frequent values are used for better estimating the selectiv-
ity of equality predicates such as ‘MAKE = Honda’, and
the histogram gives estimates of range predicates such as
‘AGE BETWEEN 25 AND 50’.

Correlations between columns have traditionally received
much less attention, due to the inherent difficulty of cap-
turing joint distributions in the face of restrictive CPU and
memory constraints. This situation has been changing, as
RDBMS designers have realized that, in practice, the most
serious cardinality estimation errors are often caused by
erroneously assuming independence. As indicated by some
of the experimental results that are cited in the sequel,
processing times for expensive queries can be reduced by
orders of magnitude by even roughly capturing correlation
information. One early solution to dealing with correla-
tion was to partition columns into correlated groups and
maintain a set of ‘column-group’ (CG) statistics for each
group. For a given column group, the CG statistics coincide
with the usual single-column statistics, but are computed on
the concatenation of the columns in the group. Whenever
detailed information was lacking, the uniformity and inde-
pendence assumptions would be imposed to fill in the gaps.
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More recently, commercial systems have tried to exploit
distributional information not only on base tables, but also
on specified derived tables corresponding to partial query
results that appear frequently in the workload; the result-
ing set of statistics are sometimes called statistical views,
(In database terminology, a view over the base tables is a
derived table that is specified by an sQL query. Material-
ized views are instantiated and stored on disk, usually with
the goal of speeding up query processing. Statistical views
have statistics, but not actual data, associated with them)
and partially capture joint-distribution information.

1.3. Automated Statistics Configuration

Traditionally, it was left to the user—or to a highly
skilled database administrator (DBA)—to determine which
optimizer statistics to maintain. This type of labor-intensive
activity has been a major component of the total cost of
ownership for an rRDBMS. Database designers have there-
fore expended major efforts over the past decade to develop
methods for automated statistics configuration, that is,
methods for the system to automatically decide which statis-
tics to maintain, and when to collect and refresh these
statistics. The decisions that need to be made include: the
attribute sets on which to maintain joint statistics; the num-
bers of frequent values, histogram-bucket frequencies, or
quantiles to collect; the choice of bucket boundaries for
histograms; and the set of statistical views to materialize.
There have also been efforts to make the statistics-collection
process more dynamic, gathering information during query
execution so that the QEP can be modified on the fly.

The key step in determining how to configure optimizer
statistics is to understand the statistical structure of the data.
The primary high-level features of this structure, discussed
in the sequel, include identification of ‘important’ corre-
lations between attributes, significant departures from the
uniform distribution, and the presence of (possibly ‘soft’)
keys, functional dependencies, inclusion dependencies, and
algebraic constraints. Here ‘importance’ and ‘significance’
can be with respect to a given user workload, or with
respect to all possible future workloads. Besides improving
selectivity estimates, structural features can also be used to
provide new access paths to the optimizer by permitting
queries to be rewritten to new queries that have the same
answer, but can potentially be computed more efficiently.
In the following sections, we therefore describe techniques
not only for selecting and gathering optimizer statistics, but
also for automatically discovering useful high-level statis-
tical features, both for direct use in the optimizer and for
automated statistics configuration.

1.4. Proactive and Reactive Approaches

Traditionally, users have been responsible for initiating
the collection of statistics proactively by invoking a utility
that scans the tables and indexes in the database. But even
this simple approach has variants. Should the statistics to
be collected favor those needed for a given query workload,
either because the same workload is routinely repeated,
or because an historical workload is often indicative of
workloads anticipated in the future? Need we obtain exact
statistics by scanning every table and index in its entirety,
or would sampling of the data acquire statistics that are
‘good enough’ for the purposes of query optimization?

A more recent, complementary approach is to oppor-
tunistically collect statistics during query execution. This
reactive approach has the benefit that better information is
obtained at lower cost on portions of the database that are
accessed frequently, but leaves the optimizer less informed
for portions of the database touched by queries that were
not anticipated by previous queries.

Proactive and reactive approaches can be applied not just
to collecting basic statistics, but also to discovering higher-
level statistical features such as correlations and functional
dependencies. We discuss these two major approaches
below. Section 2 presents some proactive approaches to
statistics collection and feature discovery, both workload-
aware and workload-blind. We then detail several reactive
methods in Section 3.

1.5. Exploitation and Maintenance

In the third major section of the paper (Section 4), we
discuss some practical challenges that arise when trying to
exploit and maintain the discovered statistical information.

A key problem is that multiple forms of discovery may be
used simultaneously, e.g. data scanning together with query
feedback, leading to a variety of partial distribution infor-
mation. Use of this information raises the possibility that
multiple, nonequivalent selectivity estimates may be avail-
able for a given predicate. Traditional optimizers have used
cumbersome ad hoc methods to ensure that selectivities are
estimated in a consistent manner. Besides being expensive
and inefficient, these methods ignore valuable information
and tend to bias the optimizer toward QEPs for which the
least information is available, often yielding poor results.
A related problem is that the available pieces of partial
distribution information may not even be consistent with
each other. We describe some recently proposed methods
that use maximum entropy ideas and linear programming
techniques to address these issues.

Finally, an important challenge is how to maintain statis-
tical information over time, taking into account the load on
the system, user response requirements, the degradation of
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information over time, and the relative importance of the
various statistics. We describe one initial attempt to deal
with these issues in a commercial RDBMS, namely, IBM’s
DB2 database system for Linux, Unix, and Windows (called
‘DB2 for LUW’ in the sequel). The paper concludes with
some ongoing challenges and directions for future research.

1.6. The Scope of Our Discussion

Although we try to at least touch on most of the tech-
niques that have been studied by the database community,
we focus most strongly on techniques that have been imple-
mented, or at least seriously prototyped, in commercial
systems, where data volumes are approaching petabytes
and response-time requirements are becoming increasingly
stringent. This setting imposes some tight constraints on the
discovery methods that can be used. Most modern systems
run continuously, with no down time, so that discovery
algorithms often must be run in background mode, and
must therefore not consume too many system resources;
based on our experience with DB2, a query-processing-time
overhead of at most 5% seems to be acceptable in prac-
tice. Moreover, to minimize the cost of code development
and maintenance, the algorithms must not be overly com-
plex. A major challenge for commercial systems is thus to
find—along the continuum between simplistic assumptions
of independence and uniformity and elaborate algorithms
for maintaining a precise approximation to the complete
joint attribute—value distribution—the ideal ‘sweet spot’
that optimally balances simplicity, accuracy, and speed. We
discuss reactive techniques in somewhat more depth than
proactive techniques, because (i) there are fewer such tech-
niques to cover, (ii) such techniques are relatively more
recent, and (iii) we feel that they are more representative
of where current database technology is heading.

Our practical orientation also leads to a focus on the sorts
of histogram-type statistics used in current and impending
systems. Researchers have pursued many other sophisti-
cated types of database synopses, including wavelets [8],
sketches [9,10], neural nets [11,12], and probabilistic rela-
tional models [13], but evaluating the advantages and
disadvantages of all of these is beyond the scope of this
paper. We do, however, try to make our survey appealing
to readers oriented toward statistics and data mining, and
so tend to devote space to the various techniques in pro-
portion to their expected statistical interest rather than to
the impact that they have had so far on the commercial
database industry. In particular, we highlight maximum-
entropy techniques, because these methods seem to strike a
nice balance between statistical sophistication and practical
feasibility in industrial-strength systems.

Commercial database systems are large, complicated, and
used in a wide variety of applications. We therefore need
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to cover a wide variety of somewhat specialized topics.
Figure 4 may help the reader keep track of how the many
techniques that we discuss fit together in the context of an
RDBMS. The items in gray correspond to the topics that are
central to this survey, because they are either crucial to
the optimizer, the focus of current research, or of potential
interest to the statistics and data mining communities. We
emphasize that no existing RDBMS incorporates all of these
techniques, but most of them have at least been prototyped
in real systems.

The problems and solutions of this paper are couched
in the terminology of relational databases, because most of
the original work was performed in this context. However,
many of the techniques are applicable to systems in which
data items are stored as complex ‘objects’ in the form
of hierarchies. Examples include object-oriented, object-
relational, and XML DBMSs. A key observation is that object
hierarchies can be viewed as joined, or de-normalized,
tables. For instance, using our earlier car example, an
object-based system might store a CARS object made up of
several MAKE objects, each containing numerous MODEL
objects. Such hierarchies make clearer the correlations
between models and makes, but the problem of estimating
the number of objects that will satisfy a query against
the CARS object is roughly equivalent to the problem of
estimating selectivities of predicates on the table formed by
joining the original MAKE and MODEL relational tables. See
Balmin et al. [14] for a discussion of query-optimization
issues in the XML setting.

We note that, although the primary focus of this paper
is the discovery and exploitation of statistical features by
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the sQL query optimizer, the discovered correlations, keys,
and other statistical relationships may also facilitate other
database functions, such as cleansing the database, mining it
for trends or anomalous conditions, designing optimal data
layouts on disk, designing optimal physical structures for
accessing the data, or integrating multiple, heterogeneous
databases into a coherent whole. Another important appli-
cation is query optimization in parallel databases, where
knowledge of the frequency distribution of a column can
be used to evenly distribute the rows of a table among
processors when using hash partitioning; similarly, identi-
fication of keys can be useful for data partitioning. Finally,
we acknowledge an inevitable bias towards work performed
by the authors or their immediate colleagues, since we know
this material best.

2. PROACTIVE APPROACHES

Proactive approaches obtain statistical information by
actively scanning or sampling the data, or by issuing
exploratory queries. Traditionally, this data exploration is
performed at periodic intervals—see Section 4.2—
although more recent approaches, described in Section 2.2
below, may collect data whenever a query is optimized.
When determining the data to examine or the statistics to
collect, proactive methods can either try to exploit informa-
tion about the query workload, or can ignore the workload.
Workload-aware methods differ from reactive methods in
that they exploit knowledge of the queries that are to
be executed, but not knowledge of the actual answers to
the queries. As with proactive versus reactive approaches,
however, workload-aware methods provide more accurate
information than workload-blind methods when the true
workload matches the workload assumed by the discovery
process. Workload-blind methods, while often less accurate,
are more robust to time-varying changes in, or unexpected
deviations from, the assumed workload. We give examples
of these various approaches below.

2.1. Workload-blind Methods

Workload-blind proactive methods can be further catego-
rized by the methods used to access the data. The simplest,
though most expensive, approach is to completely scan all
of the data. As database sizes have increased, sampling-
based methods, when applicable, have become increasingly
popular because of their desirable scalability properties.
An alternative approach is to proactively execute training
queries, in order to learn a high-level cardinality model that
encapsulates important statistical structure.

2.1.1. Scan-based methods

Classical statistics As discussed in Section 1, query
optimizers have from their origins collected a set of basic
statistics on all tables in the database, and on all columns
and indexes pertaining to each table. These basic statistics
are used in both the cardinality and cost models of the
optimizer, and are collected via a utility (called RUNSTATS
in IBM’s DB2 family of products) that scans each table and
each index on that table once per execution.

Besides the distributional statistics mentioned in
Section 1 (frequent values, 1D-histograms, quantiles), RUN-
STATS collects the number of pages in the table, in order to
estimate the I/O cost to access the table by a simple table
scan. Moreover, for each numerical column, RUNSTATS col-
lects the second highest and lowest values and the average
width of variable-width columns, as well as the column
cardinality. The second highest and lowest values are used
to estimate the selectivity of numerical range predicates
as a portion of a uniform distribution between these two
extreme values, assuming implicitly that the highest and
lowest values are outliers.

Scan-based, exact computation of frequent values and
quantiles is a daunting task, because straightforward
approaches—e.g. that compute quantiles via sorting the
table—are too expensive with respect to CPU and/or mem-
ory to be practical. DB2 for LUW therefore computes
approximations to these statistics by collecting a reservoir
sample [15] during the table scan, and then estimating
frequent values and quantiles by sorting the sample on
each column of interest. If the presence of frequent values
causes multiple quantiles to coincide, the frequent values
are separated out into individual histogram buckets to cre-
ate a ‘compressed’ histogram—see Poosala et al. [16] for
details. Also see Greenwald and Khanna [17] and Zhang
and Wang [18] for approximate scan-based approaches to
quantile estimation; these latter approaches have not yet
been incorporated into commercial systems.

The general problem of constructing multidimensional
histograms for approximating the joint distribution of data
values has received much attention from the database
research community; see Ioannidis [19] for a survey. This
problem is extremely challenging, and most proposed meth-
ods are too expensive to be practical, requiring multiple
passes over the data. Even when avoiding scans by using
sampling—see, e.g. Muralikrishna and DeWitt [20]—the
problem of defining the histogram buckets is nontrivial.
Several promising approaches have emerged for proac-
tive, one-pass methods for constructing multidimensional
histograms [21-23], but none have been fully investi-
gated in the context of commercial systems. See also the
discussion of graphical statistical models below, where,
instead of maintaining a single multidimensional histogram,
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the systems maintain a carefully selected set of low-
dimensional histograms.

As with frequent values and quantiles, exact computa-
tion of the column cardinality via sorting or hashing is
impractical. Most systems compute an estimate of column
cardinality based on a single scan of the table, using lim-
ited memory; see Beyer et al. [24] for a recent review
of these techniques. An important problem that arises in
parallel database systems, when the rows of a table have
been distributed among a set of processing nodes, is how
to take a set of statistics that have been computed at these
nodes and combine them into an overall statistic for the
entire table. The work in [24] addresses this problem in
the context of column-cardinality estimation.

Many techniques for collecting statistics on tables can
be adapted to statistics collection on indexes. As indicated
previously, index statistics include the number of leaf pages,
i.e. pages of leaf nodes, the number of distinct values of
the index’s key column(s), and the number of levels in the
BT tree that implements the index. These are used in the
cost model to estimate the number of I/Os to access the
table via an index, either when a key range is specified
by a predicate in the query and/or when the index is used
to provide the rows in order for an ORDER BY clause, a
GROUP BY clause, or for purposes of a sort-merge join.

Functional and other dependencies. Recall from the MAKE
and MODEL example of Section 1.2 that knowledge of a
functional dependency—i.e. knowledge that the value of an
attribute determines the value of another attribute—permits
much more accurate selectivity estimates. Inclusion depen-
dencies are similarly valuable for selectivity estimation;
recall from Section 1.2 that such a dependency exists
between columns C; and C, if every distinct value in
C) appears in C,. A number of researchers have there-
fore developed scan-based methods for detecting such rela-
tionships. For example, the TANE algorithm [25] uses
all of the data to search for generalized FDs of the form
{ai,as,...,a,} — b, where this notation means that
{ai,as,...,a,} is the minimal set of attributes whose
values uniquely determine the value of attribute b. The algo-
rithm uses a level-wise approach reminiscent of the Apriori
algorithm for association-rule mining [26]. The algorithm
also finds FDs that are approximate, in that they hold after
a small number of rows are removed from the table. As
another example, the algorithms in Bell and Brockhausen
[27] and in Petit et al. [28] execute a sequence of queries
involving joins and COUNT (DISTINCT) operations to
discover inclusion dependencies.

Algebraic constraints. Another important type of statis-
tical structure is the presence of an algebraic constraint.
Such a constraint describes a strong correlation between
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database attributes, and hence can be used to avoid the inde-
pendence assumption when estimating selectivities. Perhaps
more importantly, algebraic constraints can sometimes be
exploited to rewrite a query into a logically equivalent form
that can be processed more efficiently. For example, con-
sider a table Orders with attributes OrderDate and
ShipDate, and suppose that we discover the following
algebraic relationship:

ShipDate — OrderDate € [1, 5].

That is, an item is shipped between 1 and 5 days after the
initial order is placed. Given a query containing the predi-
cate ‘OrderDate = 3-12-2007 AND ShipDate =
8-12-2007,” the optimizer would know that it should
avoid multiplying the selectivity estimates of the two con-
juncts by assuming independence, and instead maintain
joint statistics on these attributes. The foregoing alge-
braic constraint can also be used for query rewriting. For
example, consider a query that selects all orders with
‘OrderDate = 1-12-2007." If an index is available
on ShipDate but not on OrderDate, the query can
be rewritten with a new, equivalent predicate ‘ShipDate
BETWEEN 1-13-2007 AND 1-17-2007, to make
use of the index. See Godfrey et al. [29] for further dis-
cussion of how to exploit constraints in an RDBMS. Gryz et
al. [30] discover constraints of the form bX +ay <Y <
bX + a; between attributes X and Y in a table by per-
forming a linear least-squares fit to the (X, Y) value pairs,
calculating the maximum absolute deviation of the values
in the table from the fitted line, and retaining the constraint
if this deviation is less than a specified upper bound.

Holes in joins. Gryz and others [31,32] have developed
a scan-based algorithm for discovering ‘holes in joins.’
A hole in a join between tables R and S is defined in
terms of a range [xo, x;] of values for an attribute X € R
and a similar range [y, y;] for an attribute ¥ € S such
that no elements in the Cartesian product of R and S sat-
isfy the predicate ‘R.X BETWEEN xo AND x; AND S.Y
BETWEEN yp AND y;.” Similarly to algebraic constraints,
knowledge of such empty regions can be used both to obtain
better selectivity estimates—because the presence of holes
indicates correlations between attributes—and to rewrite
queries for greater processing efficiency. For an example
of the latter technique, consider a query of the form

SELECT * FROMR, S
WHERE R.X BETWEEN uoy AND u;
AND S.Y BETWEEN vy AND v;.

Suppose that a hole of the above form is known and that
Xo <up<x; <up and yg < vy < vy <y (Fig. 5). Then
the query can be rewritten as
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Fig. 5 A hole in a join.

SELECT * FROM R, §
WHERE R.X BETWEEN x; AND u;
AND S.Y BETWEEN vy AND vy,

without changing the answer to the query. The latter query
is potentially more efficient to execute, because the pred-
icate on R.X is more selective, and hence the number of
disk accesses to R can be reduced. Experiments using real-
world workloads [32] have demonstrated query-processing
speedups of up to a factor of four, and reductions in
selectivity-estimation errors that exceeded five orders of
magnitude.

Semantic integrity constraints. Holes in joins are an
example of a class of constraints that involve specific
attribute values, rather than being constraints on the
attributes as a whole. Such constraints are sometimes called
semantic integrity constraints, and are used for ‘semantic
query optimization.” For example, Gryz et al. [30], besides
giving algorithms for discovering algebraic constraints,
also give a scan-based algorithm for discovering semantic
constraints of the form X =a — Y € [yg, y1]. (Here —
denotes logical implication). As another example, Siegel et
al. [33] and Yu and Sun [34] consider methods for discov-
ering constraints of the form A — B and JC — (A — B),
where JC is a join condition (i.e. predicate) and A — B is
a rule such as ‘s.city = chicago — t.weight >
200’. These latter approaches use machine learning tech-
niques, and have not yet been applied in a commercial
RDBMS. We also note that association rules as in Srikant
and Agrawal [35] are closely related to semantic integrity
constraints, but this topic is beyond our scope.

Keys. Another important statistical characteristic is the
set of keys in a table. In general, a key is a set of columns
whose concatenated values contain no duplicate rows, and
serve to uniquely identify a data item. The knowledge of
keys can be used to (i) provide better selectivity estimates,
(ii) provide a query optimizer with improved access paths
that can lead to speedups in query processing, e.g. by avoid-
ing unnecessary sorts, (iii) allow the DBA to improve the

efficiency of data access via physical design techniques
such as data partitioning or the creation of indexes and
materialized views, (iv) provide new insights into appli-
cation data, and (v) automate the data-integration process
[36]. Traditionally, all relevant keys were assumed to be
known to the DBA and explicitly declared to the system.
In real-world scenarios with large, complex databases, an
explicit list of keys is often incomplete, if available at all.
Many keys or approximate keys, although potentially valu-
able, are unknown to the RDBMS because

o the key represents a ‘constraint’ or ‘dependency’ that
is inherent to the data domain but unknown to both
the application developer and the DBA;

e the key arises fortuitously from the statistical proper-
ties of the data, and hence is unknown to the appli-
cation developer and DBA;

e the key is known and exploited by the application
without the DBA explicitly knowing about it;

e the DBA knows about the key but for reasons of cost
chooses not to explicitly identify or enforce it; or

e the key is approximate in that the number of dupli-
cates, though nonzero, is very small.

Many of the unknown keys are composite keys, that is, keys
consisting of two or more attributes. The unknown keys in
a database represent a loss of valuable information.

The GORDIAN algorithm in Sismanis et al. [37] efficiently
computes all keys in a table. The basic idea behind GORDIAN
is to formulate the problem as a datacube! computation
problem [38] and then to interleave the cube computation
with the discovery of all nonkeys—sets of attributes that
are not keys. Finally, GORDIAN efficiently computes the
complement of this collection, yielding the desired set of
keys. The rationale for this approach is that nonkeys are
easier to discover than keys: a putative key, based on the
data seen so far, can be invalidated as more data is scanned
(due to observation of previously unseen duplicate values),
whereas the nonkey property, once discovered, will never
be invalidated. Although the general problem of discovering
a minimal composite key—i.e. a composite key with the
fewest possible number of attributes—is NP-complete
[39], GORDIAN appears to have good ‘typical case’ behavior
on real-world datasets. For example, when restricted to
a class of datasets in which attribute-value frequencies
follow the generalized Zipf distribution, GORDIAN has a time

! A datacube represents the aggregation of a ‘measure’ variable
along different ‘dimensions.” For example for a ‘sum’ datacube
with measure variable sales and with time and geography dimen-
sions, a given ‘cell’ might contain the total sum of sales for a
given month and for a given set of cities. Contingency tables in
statistics correspond to ‘count’ datacubes.

Statistical Analysis and Data Mining DOI:10.1002/sam



232 Statistical Analysis and Data Mining, Vol. 1 (2009)

complexity that is polynomial in both the number of rows
and columns.

Graphical statistical models. Several authors have pro-
posed the use of graphical statistical models to capture the
global correlation structure in relational data. Such depen-
dency information can be used for purposes of statistics
configuration. Moreover, such models embody a concise
representation of the joint frequency distribution of the
attributes in a table, which can be used directly for selec-
tivity estimation.

For example, Deshpande et al. [40] first capture the
correlation structure of the data by means of a ‘decompos-
able interaction model.” Such a model can be represented
graphically as a Markov network, i.e. an undirected graph
in which the nodes represent attributes and an edge rep-
resents a direct correlation between the attributes that it
connects. Two attributes that are separated by an attribute
A are conditionally independent, given A. The Markov net-
work serves to define a collection of (possibly nondisjoint)
groups of attributes, which correspond to the cliques (max-
imal completely connected subgraphs) of the network. A
joint histogram is maintained for each clique, and desired
joint distributions are computed by combining marginal fre-
quencies for the various histograms according to rules that
are determined by the interaction model. In one simple
scenario, for example, the cliques correspond to disjoint
groups of correlated attributes, and attributes in differ-
ent cliques are considered to be independent. Thus, if a
table contains attributes A, B, C, and D and there are
two cliques [A, B] and [C, D], then the selectivity of
the predicate ‘A =a AND D =d’ would be computed
as fap(a, +)fcp(+,d), where fap and fcp are the
joint relative frequency functions encapsulated in the his-
tograms on the two cliques, f(a, +) = ZbeB fap(a,b),
and fep(+.,d) =) ..c fep(c,d). More generally, the
model can deal with conditional independence relation-
ships, e.g. in which attributes A and C are independent,
given the value of a third attribute B. For this example,
the cliques would be [A, B] and [B, C], and the selectiv-
ity of the predicate ‘A =a AND B =b AND C = ¢’ can
be computed as fap(a, b) fec(b,c)/fpc(b, +) or, equiv-
alently, fap(a,b) fpc(b,c)/fap(+,b). To limit computa-
tional complexity, cliques are constrained to contain at most
three or four attributes. The interaction model is fitted using
a heuristic ‘forward selection’ search process, in which full
independence is assumed initially—so that there is exactly
one singleton clique per attribute—and cliques are built up
incrementally based on improvements in the approximation,
as measured by decreases in Kullback-Liebler distance. For
a given proposed interaction model, the number of buckets
per histogram is allocated using a greedy algorithm, and
bucket boundaries within each histogram are also selected
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in a greedy fashion. The resulting overall candidate model
is then scored.

Getoor et al. [13] explore an approach somewhat similar
to the one above, but based on a directed Bayesian network
representation, in which a given attribute is independent of
its nondescendants, given its parents. In this framework,
the relative frequency distribution is represented via a set
of conditional univariate probability distributions, where
the distribution of a given attribute is conditioned on the
values of its parents. To handle joins, the authors extend the
basic model to allow the parents of an attribute in a given
table R to include attributes in another table S, provided
that R has a foreign key that points to S—recall from
Section 1.2 that column F in R is a foreign key that points
to S if S has a key column K and every value in R.F
appears in S.K. The authors call this model a probabilistic
relational model (PRM); see Getoor and Taskar [41] for a
recent discussion of such models. As in [40], a PRM is
fitted to the data using a heuristic search through possible
correlation structures. For a given candidate structure, the
needed conditional probabilities are simply estimated via
sample frequencies when the column cardinality is not too
large; otherwise, bucketizing techniques analogous to those
in [40] must be used.

Although the foregoing approaches can yield very accu-
rate selectivity estimates, graphical statistical models have
not yet been incorporated into commercial systems. The
key drawbacks seem to be the relatively high coding effort
and level of sophistication required, as well as the relatively
high computational expense of the approach both in fitting
the model and in computing estimates during optimization.

Statistical learning techniques. A final class of proac-
tive techniques represents the statistical features of the data
indirectly, via a learned statistical model. This approach
defines a vector v of ‘features’ that concisely characterizes
the query, the dataset, and the available system resources.
A set of exploratory queries is executed, corresponding to
a variety of values of v, and the corresponding query cost
¢ is observed for each v. The resulting set of (v,c¢) pairs is
used to learn a statistical model that predicts the query cost
from the input feature values. Babu et al. [42] argue that
a proactive approach involving exploratory queries, rather
than a reactive approach involving user queries, is needed
in order to cover a broad enough range of possible query-
processing conditions. Some statistical learning approaches
that have been considered in the database research com-
munity include linear and nonlinear regression [43-45],
interpolation schemes [46], neural nets [11,12], and, more
recently, transform regression [47]. The statistical learning
approach has so far been proposed primarily for estimat-
ing the cost of expensive user-defined functions, and in
the context of multidatabase systems and XML systems, but



P.J. Haas et al.: Statistical Properties for Query Optimization in RDBMS 233

the technology could potentially be applied directly in the
RDBMS setting.

2.1.2. Sampling-based methods.

As databases become ever larger, proactive techniques
that require a full scan of the data become harder to
use in practice, especially if—as is often the case—these
techniques are not massively parallelized. Consequently,
there has been an increasing amount of interest in sampling-
based methods. For example, the RUNSTATS utility in DB2
for LUW can now be configured to sample the data, rather
than execute a full scan. In general, any of the foregoing
scan-based methods can in principle simply be applied to
a sample of the data—e.g. sampling has been proposed
for use with the GORDIAN key-finding method discussed in
Section 2.1.1—but the resulting accuracy of this approach
is not well understood in general.

We now describe several recent methods for discovering
statistical features in which sampling techniques are integral
to the algorithms. Almost all of the algorithms described
below assume that a simple random sample of the rows in
a table is available. Such a sample is typically too expen-
sive to compute on the fly. For example, if a disk page
contains 100 rows, a simple calculation shows that collect-
ing a sample of 2% of the rows would require that roughly
87% of the pages be fetched, and the resulting I/O cost
would be close to that of a full scan. One possibility is
to amortize the cost of sampling by incrementally main-
taining a random sample; Gemulla et al. [48,49] provide
several algorithms for this purpose. Another possibility is
to simply use page-level sampling, and adapt the sampling-
based procedures to deal with the statistical correlation that
can result when rows are assigned to disk pages nonran-
domly, e.g. based on their column values. This approach is
analogous to the ‘cluster sampling’ techniques found in the
finite-population sampling literature; see Haas and Konig
[50] for a discussion of page-level, row-level, and hybrid
sampling schemes for relational databases. Such extensions
of sampling-based algorithms from row- to page-level sam-
pling can be quite challenging, and have received relatively
little study so far. In the context of parallel database sys-
tems, it is often desirable to obtain samples of the rows
of a table independently at each processing node and then
combine these samples into an overall sample of the rows
in the table. This issue has been explored by Brown and
Haas [51] and by Gemulla et al. [48,49].

Classical statistics. Some of the classical column statis-
tics can be quite challenging to estimate from a sample,
and a detailed discussion is beyond the present scope. For
examples of the complexities involved, see the discussions
in [52-54] on estimation of column cardinality (under
both row- and page-level sampling), in [55] on estimation

of the k most frequent values, and in [56] on estimation of
the extreme values. Quantiles are perhaps the easiest of the
column statistics to estimate from a sample—quantile esti-
mation is a classical topic in the finite-population sampling
literature [57, Sec. 5.11].

Algebraic constraints. The ‘bump-hunting” B-HUNT tool
of Brown and Haas [58] automatically discovers algebraic
constraints between pairs of columns in relational data.
These constraints are a variant of the type discussed in
[30]—see Section 2.1.1—and take the form y @& x € S,
where & € {4+, —,/} and S is a union of disjoint inter-
vals. In general, the algebraic constraints may be ‘fuzzy,’
in that they hold for most, but not all, of the records
in the database. Figure 6 illustrates a fuzzy constraint
that involves a union of three disjoint intervals (i.e. three
‘bumps’ in the histogram), which holds for all but a small
number of records. A key feature of B-HUNT is that the
constraint discovery is based on a sample of the data, so
that fuzziness is unavoidable in general. Nonetheless, these
fuzzy constraints can be taken as strong evidence of corre-
lation, and so can be used to improve selectivity estimation.
Moreover, B-HUNT can be used to improve the efficiency
of data access during query processing. The idea is to gen-
erate special ‘exception’ tables to store the (small) set of
records that violate a discovered constraint. Then the fuzzy
constraints can be used to rewrite queries so as to take
advantage of indexes, data partitioning, and so forth, in
analogy to [30]. The execution of each rewritten query is
followed by special processing to correctly handle the data
in the exception tables; this latter processing is inexpensive,
because the exception tables are small.

Algebraic constraints are discovered by applying statisti-
cal histogramming, segmentation, or clustering techniques
to the sampled data. Exploiting classic sampling results of
Scheffé and Tukey [59,60], B-HUNT automatically selects
a sample size that ensures (with high probability) a user-
specified upper bound on the size of the exception table,
and hence on the cost of exception-table processing. The
size and number of bump intervals are chosen to optimally
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Fig. 6 Example of a fuzzy algebraic constraint: deliveryDate —
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trade off the filtering power of the constraint and the com-
plexity of processing the rewritten query that exploits the
constraint.

B-HUNT employs a novel analysis of the database schema
to generate pairs of candidate attributes. The general
approach involves systematically enumerating candidate
attribute pairs while simultaneously pruning unpromising
candidates using a flexible set of heuristics. Since the
attributes in a candidate pair can belong to different tables,
the enumeration process involves, among other things, find-
ing declared or undeclared key columns and then finding
foreign keys that point to these columns (Section 1.2). A
ranking of the discovered relationships based on estimated
‘benefit’ is used to limit the number of maintained algebraic
constraints to be used during query optimization. Figure 7
shows the effect of using B-HUNT on the execution times
of a set of queries from the TPC-H benchmark, where the
database size exceeds 2.3 Tb. As can be seen, there were
no significant performance decreases, a number of queries
had significant speedups, and one particularly long-running
query was sped up by a factor of almost 7.

Correlation discovery. As discussed previously, knowl-
edge of correlations between attributes is useful in avoid-
ing erroneous independence assumptions when estimating
selectivities, as well as in determining groups of columns
on which to maintain joint statistics such as the G statistics
mentioned in Section 1.2. The corps (CORrelation Detec-
tion via Sampling) tool of Ilyas et al. [61] automatically
discovers correlations and ‘soft’ functional dependencies
between columns. A soft Fb between columns C; and C,
is a generalization of the classical notion of a ‘hard’ FD
in which the value of C; completely determines the value
of C. In a soft Fp (denoted by C; = C3), the value of
C| determines the value of C, with high probability. An
example of a hard D is given by Country and Conti-
nent; the former completely determines the latter. On the
other hand, for cars, Make is determined by Model via a
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Fig. 7 Effect of B-HUNT on TPC-H query execution times.
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soft dependency: given that Model = 323, we know that
Make = Mazda with high probability, but there is also a
small chance that Make = BMW.

CORDS both builds upon and significantly modifies the
technology of the B-HUNT system discussed previously. As
with B-HUNT, CORDS searches for column pairs that might
have interesting and useful correlations in a manner similar
to B-HUNT, combining systematic enumeration with heuris-
tic pruning. Also, as with B-HUNT, CORDS analyzes only
a sample of rows in order to ensure scalability to very
large tables. The similarities end here, however. Although
B-HUNT discovers soft algebraic relationships between
numerical attributes, CORDS employs a robust chi-squared
analysis to identify correlations between both numerical and
categorical attributes, and an analysis of the number of dis-
tinct values in the sampled columns to detect soft Fps. The
chi-squared analysis is ‘robust’ in the sense that the algo-
rithm automatically checks for trivial cases such as soft keys
and single-valued columns, and automatically deals with
skew in the data when determining the data grouping for
the chi-squared contingency table. The sample size required
for the chi-squared analysis is essentially independent of the
database size, so that the algorithm is highly scalable.

In slightly more detail, CORDs operates as follows. For a
table R, consider two attributes R.A and R.B with domains
D4 and Dpg, and denote by f,g a sampling-based estimate
of the fraction of rows r such that ».A = « and r.B = 8.
Also denote by f,4 and fig the corresponding estimated
marginal relative frequencies. A correlation between two
columns is roughly defined to be a ‘significant’ departure
from the independence condition. This latter condition is
defined to hold if and only if ;ﬂ = fa, f_ﬁﬂ, where f?
denotes the actual relative frequency of an attribute value
in R. Assume for simplicity that the number of attribute
values is small enough, and the attribute-value frequencies
are uniform enough, so that no bucketization is needed; i.e.
the rows and columns of the two-way contingency table
correspond to the distinct values of the respective attributes.
(We use standard statistical terminology: a contingency
table based on M observations is a display of the attribute-
value frequencies in a Dy x Dp array, with table entries
of the form n,g = Mf,g; moreover, marginal absolute
frequencies of the form ney = Mf,, and nyg = Mf g
are displayed as row and column totals, respectively.) To
test for correlation, CORDS uses the standard chi-squared
statistic, defined for M observations by

(faﬂ - fot+f+ﬁ)2
Z_M ~JoP  JedIAP
X 22 Fur Frp

aeDy peDp

The correlation test rests on the fact that if the attribute
frequencies approximately satisfy the independence condi-
tion and M is large, then x2 will have approximately a
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chi-squared distribution with r degrees of freedom, where
r = (|Da| — 1)(|Dg| — 1). corDs asserts a soft Fb of the
form C| = C; if and only if the ratio D(Cy)/D(Cy, C;)
is close to 1, where D(C;) is the number of distinct val-
ues in column Cy, and D(C;, C;) is the number of distinct
(Cy, C) value pairs in the table.

Experimental results for the initial CORDS prototype in
DB2 for LUW (Fig. 8) indicate that merely discover-
ing two-way correlations—and thus maintaining CG statis-
tics on pairs of columns in DB2—reduced the worst-
case selectivity-estimation errors by an order of magnitude
for a real-world query workload. Maintaining three-way
joint statistics provided some further improvement, but the
marginal benefit of maintaining higher-order joint statis-
tics is seen to diminish sharply, especially in the face of
the sharply increasing cost of correlation discovery and
joint-statistics maintenance. A similar phenomenon is men-
tioned in [40]. A scatter plot of the query execution time
with and without corps for 300 real-world queries—see
Fig. 9—shows that the worst-case query execution time
was also reduced by an order of magnitude.

Because correlation between attributes is so prevalent in
the real world, any correlation-detection method is likely
to discover a large number of correlated attribute pairs.
It is therefore often necessary to rank discovered pairs in
decreasing order of correlation; then, for example, mul-
tivariate statistics can then be maintained on the ‘most
correlated’ attributes, subject to memory and processing
constraints. To obtain a ranking, the X2 statistic can be
normalized to yield a measure of the ‘distance from inde-
pendence.” This distance is called the mean-square contin-
gency distance (MscD), and is defined in Cramér [62] as
¢ = XZ/[M(d — 1)], where d = min(|D4/, |Dp|). It can
be shown that 0 < ¢? < 1. Moreover, ¢> = 0 if and only if
independence holds, and ¢? = 1 if and only if a functional
dependency exists between the attributes. The attribute pairs
can then be ranked in decreasing order of MScD.
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In the corps work and in its extension to a query-
feedback setting (see Section 3.1 below), the MsCD was
used as the measure of correlation, i.e. ‘distance from
independence,” mostly for convenience, because the met-
ric is relatively simple and its statistical properties are well
understood. In principle, CORDs and related methods can be
based on other measures of statistical dependence. See, for
example, Read and Cressie [63] for a general family of
association measures based on ‘power divergence’ statis-
tics. This family includes MscD and mutual information as
special cases; the different members of the family are sen-
sitive to different types of departures from independence,
and the authors make a case for a member of the family
that does not correspond to the usual metrics.

2.2. Workload-aware Methods

The approaches described in Section 2.1 proactively ana-
lyze the database schema and the data items themselves
to discover useful statistical information. However, know-
ing more about the expected query workload gives richer
context and allows targeted, efficient discovery of useful
statistical relationships. In the following, we summarize a
variety of proactive, workload-aware approaches.

Selecting the most important statistics. Knowledge of
the workload can be exploited to concentrate the limited
resources available for statistics collection and storage on
the ‘hottest” portions of the database, i.e. those most likely
to enjoy future activity. One tool for doing this is the Statis-
tics Advisor, which is part of the Optimizer Expert tool in
DB2 for z/OS; see Bruni et al. [64]. This tool analyzes
the predicates in all queries of the workload to determine
which statistics to collect, and generates specific RUNSTATS
statements appropriately. For example, RUNSTATS will col-
lect a relatively large number of frequent-value statistics on
a column that is referenced in many equality predicates. If
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the workload is available before it needs to be run, then the
statistics can be collected in time to benefit optimization of
that workload’s queries. Otherwise, the statistics, once col-
lected, will benefit later executions of the same or similar
workload.

Gathering statistics at optimization time. A number of
researchers have suggested collecting statistics at the time
a query is optimized, thereby exploiting knowledge about
the query to guide the statistics collection. For Microsoft
SQLServer, Chaudhuri and Narasayya [65] have proto-
typed an approach, called Magic Number Sensitivity Anal-
ysis (MNSA), that attempts to leverage the query optimizer
in order to determine the statistics that are most relevant to
a given workload query, and hence should be proactively
collected prior to optimization. The optimizer is invoked
twice in order to decide whether the current set of statistics
is sufficient. In the first invocation, all unknown selectivi-
ties are set to a very small value € > 0 and in the second
invocation, all unknown selectivities are set to a large value
1 — €. If the estimated costs of the two QEPs are within %
of each other (for a predefined ‘magic number’ ¢t), the cur-
rent set of statistics is considered sufficient, otherwise the
system identifies the most important statistics to collect.
These statistics are identified by calling the optimizer again
to get a QEP based on the current set of statistics, together
with the estimated costs for each operator in the plan. The
statistics associated with the most expensive operators are
designated as the most important.

More recently, El-Helw et al. [66], in developing their
just-in-time statistics (JITs) framework, propose an alterna-
tive proactive approach to determine, collect, and materi-
alize statistics just prior to the optimization of each query.
The statistics take the form of selectivities for predicates in
the query. The goal is not only to improve the selectivity
estimation for the query at hand, but to exploit the statistics
when optimizing ‘similar’ queries in the future.

Figure 10 gives a high-level architectural description of
JjiTs. Entities drawn with dotted lines already exist in current
query engines, whereas entities in solid lines are new JITS
modules. The QSS archive is a repository of adaptive single-
and multidimensional histograms that incorporate the col-
lected query-specific statistics. Specifically, the system may
decide to integrate a newly collected statistic into the cur-
rent set of histograms. The integration is performed using
maximum-entropy techniques; see the discussion of the 1S0-
MER histogram in Section 3.2 for further details. The Query
Analysis module analyzes the query structure, after parsing
and rewriting, to determine all relevant statistics, and gen-
erates a list of candidate statistics to collect. The Sensitivity
Analysis module processes the candidate statistics to decide
the most crucial statistics to collect by examining the query
and the existing statistics, along with the history of data
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activity, e.g. the frequency of updates and deletes on a par-
ticular table. The sensitivity analysis module can potentially
exploit sophisticated techniques to determine the sensitivity
of the query to a particular statistic, e.g. by incorporating the
planning module in a manner similar to the MNSA method in
[65]. The Statistics Collection module collects the required
statistics, and uses them to update the QSS archive of his-
tograms. The Plan Generation and Costing module uses the
information in the QSS archive and the system catalog to
select a QEP. Finally, the Statistics Migration module peri-
odically updates the system catalog using the information
in the QSS archive.

A key difference between JiTs and the scheme in [65]
is that JITs uses a much lighter-weight sensitivity analysis
than MNsA, avoiding expensive optimizer invocations. Such
invocations can also be inaccurate when statistics are badly
out of date, because the QEPS from which costs are com-
puted are based on inaccurate information. Another key
difference is that the statistics collected by JITS can be
query-specific.

Statistics on intermediate tables. For SQLServer, Bruno
and Chaudhuri [67] extend the above approaches and
develop a method called Statistics on Intermediate Tables
(s1Ts) that collects and stores statistics not just on base
tables, but on the result of queries. SITs encapsulate impor-
tant statistical information about a dataset. In DB2 for
LUW [68], siTs are also called ‘statistical views’—cf.
Section 1.2. SITs or statistical views can be obtained proac-
tively by running a utility such as RUNSTATS on the result of
the defining query. The major challenges of this approach
are: (i) determining for which of the many subexpressions
of an sQL workload the system should collect siTs, and
(ii) ensuring that the query optimizer is able to exploit
siTs if they exist for some subexpression of a given query.
Bruno and Chaudhuri use MNSA sensitivity analysis to solve
challenge (i), and standard view-matching algorithms to
handle challenge (ii). Experimental results in [67] showed
improvements in query time up to two orders of magnitude.

3. REACTIVE APPROACHES

The methods in the previous section required proactive
data gathering, either by the user or by the system, to
discover statistical structure in the data. In recent years,
increasing attention has been given to approaches that pig-
gyback on top of query execution. The motivation is simple:
since information is being gathered when processing pro-
duction queries, why not exploit this ‘free’ information?
Of course, this approach will only work if the information
truly is ‘free,” or almost so. A key concern is the over-
head of monitoring the query execution and recording the
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Fig. 10 JITS architecture.

statistics. The initial version of the LEO (LEarning Opti-
mizer) project [69] opportunistically gathered statistics on
a view as a byproduct of query execution, with the goal of
computing multiplicative ‘correction factors’ for the opti-
mizer’s selectivity estimates. Experiments with the LEO
prototype indicated that the required monitoring could be
accomplished with an acceptably small runtime overhead
(typically less than 5%).

The LEO approach has evolved into a method for auto-
mated statistics configuration; see Aboulnaga et al. [70].
As each predicate is evaluated during query execution, a
query feedback record (QFR) is created that comprises a
predicate descriptor, the actual predicate cardinality, and
the optimizer’s cardinality estimate. LEO populates a guery
feedback warehouse (Qfw) with these QFRs and uses them
for a variety of statistics-configuration tasks, including the
discovery of correlations, the automatic triggering of statis-
tics collection, and determining the number of quantiles and
frequent values to collect on each column. The remainder
of this section describes these, and other, reactive methods.

3.1. Detecting Correlations

We now describe several feedback-based analogs to
the proactive correlation-discovery methods described in
Section 2. The sasH method of Lim et al. [71] adapts
the graphical statistical modeling approach in [40]—see
Section 2.1.1—to the reactive setting. The ‘restructuring

statistics
migration

sensitivity

phase’ of sasH uses feedback to build a decomposable
interaction model, just as in [40], to represent the cor-
relation structure of the data. That is, the attributes in a
table are partitioned into cliques, a multidimensional his-
togram is maintained for each clique, and joint selectivities
for attributes in different cliques are obtained by combin-
ing marginal selectivities according to rules specified by
the interaction model. A key difference from [40] is that
a candidate model is scored by comparing the difference
between the true selectivities observed in a set of feedback
queries and the selectivities estimated from the candidate
model. The search algorithm is also slightly different: at
each step, the next ‘move’ is determined as either a greedy
local improvement in the assignment of attributes to cliques
or a greedy improvement in the configuration of bins in a
histogram for one of the existing cliques, whichever yields
the largest decrease in estimation error relative to the feed-
back queries. Finally, the histograms are updated using a
‘delta’ (steepest descent) rule. As discussed below, this
updating approach can lead to inaccuracies, because feed-
back is not added in a consistent manner. In principle, a
consistent, maximum-entropy-based approach (as described
in Section 3.2 below) can be used instead, at the cost of
increased complexity. As with the proactive version of this
approach, the complexity and cost of the method has so far
prevented it from being incorporated into commercial sys-
tems. Moreover, there are a number of applications, such
as database compression [72] and analysis of data from
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system monitors, where it suffices simply to discover sets
of correlated attributes, but the foregoing methods do not
allow such discovery to be decoupled from the task of con-
structing detailed histograms.

At the opposite end of the spectrum, an extremely simple
approach was the correlation analyzer (CA) method pro-
posed in Aboulnaga et al. [70], which detects pairwise
correlations. As in Section 2.1.2, consider two attributes
R.A and R.B with domains D4 and Dpg, and now denote
by fup the actual fraction of rows such that r.A = o and
r.B = B. Also denote by f,4 and fig the correspond-
ing (actual) marginal relative frequencies. The QFw pro-
vides a set of observations O = { Oy, O,, . . ., O, }, where
1 <n < |D4g x Dg| and each observation O; concerns a
conjunctive predicate of the form ‘A =«; AND B = g;°
with o; € D4 and B; € Dp. Each subpredicate that appears
in the conjunctive predicate, e.g. ‘A = ¢;’ in the above
example, is called a simple predicate. Each observation O;
is a set having one of the forms

@) O ={ fupi fures Frp: )
(i) O; = { Jaipis Sai+ }
(i) O; = {faiﬂi’ f+8 }
(iv) O = {faiﬂi }

depending on the feedback that is available. Then, for a
particular observation O; = { fu,g;. fu;+ f+p |- an obser-
vational correlation is declared if the relationship

l—-€e< St <1l+4e
fot,-+ +Bi

fails to hold, where € is a small prespecified positive param-
eter less than 1. If a pair of attributes has at least two
observational correlations, then the attributes are consid-
ered correlated. The original description in [70] does not
specify what to do if f,,4 or fig is unavailable. In such
a case, the method proposed in Haas et al. [73] can be
used—the idea is to choose the missing values to provide
as much support for the independence as possible, while
being roughly consistent with the optimizer estimates (i.e.
staying within the observed degree of error in the QFW).
This choice of missing values minimizes the chance of
incorrectly discovering a correlation; such false positives
are to be avoided because they lead to significant storage
and maintenance costs. For purposes of correlation rank-
ing—cf. the discussion of corDS—the cA method com-
putes the correlation measure for the attribute pair (A, B)
essentially as ) .| fo;8, — fa;+ f+p; |- The problem with the
cA method is that the value of € is completely ad hoc.
Moreover, the cA method does not combine all feedback
observations pertinent to attributes A and B in a principled
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manner, which can lead to unstable behavior of the detec-
tion algorithm. Finally, the dependency measure has been
shown experimentally to lead to unstable, erratic rankings.

To address these problems, a principled yet relatively
simple method for correlation detection and ranking was
recently introduced by Haas et al. [73]. The idea is to
emulate the chi-squared analysis of CORDS. A key technical
challenge in the reactive setting is that frequency informa-
tion is not available for all attribute-value pairs (o, ) €
Dy x Dgp, as required for chi-squared theory. Information
is at hand only for those pairs { (¢, 8;): 1 <i <n} that
correspond to the available feedback observations; i.e. the
contingency table is incomplete.

To deal with this technical issue, the method in [73] uses
a statistic of the form Hy = Mx"'Qx, where the superscript
‘t’ denotes transpose, the vector X = (x1, X2, ..., X,) i
defined by

o faiﬂi - faf+f+ﬂi
g = T T
fa,-+f+/3i
for 1 <i <n (where we take 0/0 = 1), and the matrix

Q is specified as the pseudoinverse of the n x n matrix
X = ||loj;|| given by

’

(1= o)1= fip,)

1 yy s if i = j;
o _% ifi # j, 4 =aj, and B; # B;;
ij— ]_.erﬁ[_ o . . .
-t ifi #j, i #aj,and i = Bj;
1 ifi #j, #aj,and B # B;.

It can be shown that Hy; = 0 if and only if the indepen-
dence condition holds. Moreover, for large M, the statistic
Hy; has approximately a chi-squared distribution with r
degrees of freedom. Here r is the rank of QO and a superpop-
ulation model is assumed in which rows of R are generated
from a joint probability distribution p on (D4, Dp), where
Pop = P{rA=oaandr.B=B}= foi f1p for each a €
Dy and B € Dp. That is, Hy has roughly a chi-squared
distribution when the table is generated from a truly inde-
pendent distribution whose marginals coincide with those
actually observed in the data. Using these results, correla-
tion detection can proceed in a manner almost identical to
CcorDS. The above development has assumed complete feed-
back observations; incomplete observations are handled as
described previously. For n QFRrs, the complexity of the Hy,
computation is O(n3), which is expensive, but the method
can be made practically feasible by using a random sam-
ple of QFRs and/or by incrementally maintaining Hy, using
singular-value decomposition (SVD) updating techniques;
see [73].

Because the contingency table is incomplete in the reac-
tive setting, ranking correlated attribute pairs is also more
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challenging than in the proactive CORDS setting. The MSCD
cannot be computed, and normalization becomes nontriv-
ial. As shown in [73], an upper bound on Hj, can be
obtained via an application of the Courant-Fischer Mini-
max Theorem, and Hjs can be divided by this bound to
scale it to the interval [0, 1]. This bound, however, can
be numerically unstable. Fortunately, experiments in [73]
indicate that, for ranking purposes, it suffices to approxi-
mate the upper bound by a high (e.g. 0.99) quantile of the
chi-squared distribution.

3.2. Maintaining Frequency Distributions

As can be seen from the foregoing discussion, maintain-
ing a univariate and/or multivariate histogram of attribute
frequencies can be a key task, both directly in query opti-
mization and indirectly in discovering correlation structure.
Proactive methods for histogram construction are based on
sampling [16,20,74] or scanning [10,21-23,75]. In this
section we show how query feedback can be used not
only to determine which histograms to maintain, as dis-
cussed in Section 3.1, but also to incrementally maintain
an approximation for a frequency distribution by adjust-
ing the buckets of a histogram H (A1, ..., Ag) on attributes
Ai, Az, . . ., Ay based on observed cardinalities. In the fol-
lowing, we assume for ease of exposition that each attribute
A; is numerical, taking values in an interval [/;, u;], so that
the joint frequency distribution of the data is defined over
the Cartesian product space S = ]_[le[li, u;l.

Incremental maintenance of a histogram based on query
feedback has to address the following challenges:

1. Enforcing consistency: The histogram distribution
must, at every time point, be consistent with all cur-
rently valid feedback and not incorporate any ad hoc
assumptions.

2. Dealing with data changes: Changes of the databases
through updates, inserts, and deletes can invalidate
old query feedback. Such feedback must be efficiently
identified and its effect on the histogram must be
undone.

3. Meeting a limited space budget: An RDBMS usually
limits the size of a histogram to a few disk pages.
Adding more feedback to the histogram while main-
taining consistency leads to an increase in the his-
togram size. To meet a limited space budget, the
relatively ‘important’ feedback must be identified and
retained, and the less important feedback discarded.

The notion of using feedback for estimating selectivities
was originally proposed by Chen and Roussopoulos [43].
Pioneering work on adaptive histograms is described in
[76,77], and, as discussed previously, the sasH algorithm

in [71] contains an adaptive histogram mechanism. In par-
ticular, Bruno et al. [77] introduced a novel data structure
called STHoLEs. This data structure—in which buckets can
have recursively defined holes—achieves high storage effi-
ciency for a histogram in the presence of highly nonuniform
attribute-value distributions (Fig. 11). A significant defi-
ciency in all of this work is a lack of the crucial consistency
property, even for static data. The 1SOMER method of Sri-
vastava et al. [78] addresses all of the above challenges
by using the STHOLEs data structure in combination with
a maximum-entropy principle, approximating the true data
distribution by the ‘simplest’ distribution that is consistent
with all of the currently valid feedback.

The idea behind ISOMER is to initially use a single
histogram bucket, so that all attribute values are assumed to
be mutually independent and uniformly distributed. Given a
piece of query feedback, i.e. given the number of rows that
satisfy a specified predicate g, ISOMER first adjusts bucket
boundaries (possibly creating new buckets in the process) so
that each bucket lies either completely inside or completely
outside the region in attribute-space specified by ¢; Fig. 12
illustrates the process in two dimensions. ISOMER then uses
the maximum-entropy principle to adjust the bucket counts
so that the data distribution represented by the histogram
is the ‘simplest’ distribution that is consistent with the
feedback information observed so far.

In more detail, after a boundary adjustment, denoted by
by, by, . . ., by the current set of buckets in the multidimen-
sional ISOMER histogram, and by n(by), n(bs), . . ., n(by)
the corresponding bucket counts. Each bucket b; has a
hyperrectangular bounding box denoted by C(b;); i.e.
bucket b; is bounded between two constant values in each
dimension. (Although 1SOMER actually uses the STHOLES
data structure, in the following discussion we simplify the
exposition by ignoring the fact that holes can occur in
buckets, because this detail only affects the formula for
the volume of a bucket; see [78] for a discussion in full
generality). We also denote by C(g) the hyperrectangu-
lar subregion of S that is specified by predicate g. The
boundary adjustment step ensures that, for each bucket b
and predicate ¢g; incorporated so far, either C(b) € C(g;)

Attribute 1

Attribute 2

Fig. 11 STHoLEs data structure (two dimensions).
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bo C(by)

Fig. 12 Bucket-boundary adjustment in ISOMER.

or C(b) N C(g;) = . ISOMER uses the query feedback to
impose constraints on the permissible bucket counts of a
histogram, and solves the problem of incorporating new
query feedback as a constrained entropy maximization
problem over the bucket counts. That is, ISOMER associates
a probability distribution P, and hence an entropy value
H(P), with every possible histogram over the current set
of buckets. In accordance with the maximum-entropy prin-
ciple, ISOMER then maximizes H (P) over the set of all
such histograms that are consistent with the current set of
constraints from the query feedback.

To define P and H (P), consider an arbitrary histogram
having k& Buckets, denoted by D the number of distinct
tuple values (i.e. distinct elements of S) that occur in the
table and by D = {vy, v, . . .,
The probability distribution associated with the histogram
is P = (p1, p2, . .
a tuple randomly selected from the table has value equal to

vp } the set of these values.
., Pp), where p; is the probability that

v;. To obtain an explicit formula for p;, note that ISOMER
assumes that the D distinct values are distributed uniformly
throughout S, so that a fraction f(b) = vol[C(b)]/ vol(S)
of these values lie in bucket b. There are n(b) tuples
in bucket b, and ISOMER assumes a uniform distribution
among the distinct values in a bucket. Denote by b}’f the
bucket in which the value v; lies. The estimated proba-
bility that a randomly selected tuple has value v; is the
probability that the tuple belongs to b;f times the probabil-
ity that the value of the tuple is equal to v; and not to any

of the other distinct values in bucket b;f. The first prob-
ability equals n(b}f) /N and the second probability equals
1/ [ f (bj)D], where N is the total number of rows in the
table. Thus p; = n(b%)/[f(b5)ND] for 1 < j < D. The
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entropy H (P) corresponding to the distribution P is there-
fore given by

D
H(P)=->) p;ln(p))
D n*) n(®*)
_Z J In J
= FOHND | fGHND

k
_Z Z n(b;) 1n|: n(b;) :|

i=1 jlv;eC(b;) f®i)ND fWi)ND

For each value of i, since bucket b; has f (b;) D distinct val-
ues, the inner sum consists of f(b;) D identical terms. Using
this observation together with the fact that Zle nb;) =N
we find that

~ N vol(C(b;))ND

_ 1 n(b;) vol(S)
- Z"( ) In [ ol(C(b)):| ln[ ND }

The query feedback leads directly to a set of constraints on
the histogram bucket counts. Suppose that we have obtained
feedback for m predicates g1, g2, . . ., gm. Recall that, by
construction, either C(b) € C(g;) or C(b) N C(g;) = ¥ for
each bucket b and predicate g;. It follows that the constraint
corresponding to predicate g; can be written as

k
Py =~y ") m[ vol(S)n(b) ]

> ) =N, ()

bIC(H)EC(gi)

where N(g;) is the number of tuples that satisfy ¢;, as
determined from the query feedback. This constrained opti-
mization problem can be solved efficiently using, e.g. an
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Fig. 13 Maximum entropy estimation in ISOMER.

‘iterative scaling’ algorithm [78]. Figure 13 illustrates,
for a fixed bucket configuration, how the estimates are
updated as new feedback arrives. Note that the naive update
in Fig. 13(c) preserves the uniformity between black and
white cars and respects the feedback ‘#Hondas 80’, but has
violated the original feedback of ‘#Cars = 100.” After the
maximum-entropy adjustment, the distribution in Fig. 13(d)
respects both pieces of feedback, and the distribution is as
uniform as possible.

Updates to a database may make the constraint sets
inconsistent, by causing some of the constraints (especially
older constraints) to no longer hold. In order to ensure
consistency in the presence of updates, ISOMER detects
inconsistencies using a linear programming approach that
associates two ‘slack’ variables with each constraint. The
constraints in Eq. (1) are rewritten as

> nb)—N@)=s'—s], )

bIC(L)SC(g:)

for 1 <i < m. In addition, ISOMER adds the nonnegativity
constraints

nb) >0 forall b, s,s;7 >0fori=1,...,m. (3)

If there is a solution to the set of constraints Eqs (2)
and (3) such that sl.Jr =s; =0, then the solution satisfies
the ith constraint from Eq. (1). Alternatively, if s;’ or
s; is positive, then the solution does not satisfy this
constraint. Ideally, we would like a solution that satisfies the
maximum number of constraints from Eq. (1), i.e. a solution
that minimizes the number of nonzero slack variables.
Unfortunately, the problem of determining such a maximum
satisfiable subset from a set of constraints is known to be
NP-complete [79]. ISOMER instead settles for minimizing
the sum of the slack variables, because this problem can
be efficiently solved using linear programming methods.
ISOMER then discards all constraints having nonzero slack.
The actual 1ISOMER approach refines the above problem
formulation by adding weights to the constraints, in order
to discard older, outdated QFRs rather than more recent
feedback; see [78] for details.

An elegant aspect of ISOMER is that the maximum-entropy
solution yields, for free, an importance measure for each

(c) (d)

constraint. ISOMER exploits this fact to obtain a very effi-
cient procedure for detecting and discarding unimportant
constraints, in order to meet a limited space budget. Specif-
ically, ISOMER uses the quantity |A;| as the importance
measure for the ith QFR, where A; is the Lagrange mul-
tiplier associated with the ith constraint in the entropy
maximization problem. To justify this choice intuitively,
we note that if A; = 0, then removal of the ith feedback
record does not affect the bucket counts, so that the final
maximum-entropy solution is unaltered. Figure 14 illus-
trates the improvement in selectivity estimates obtained
by a 3D 1SOMER histogram relative to both the standard
DB2 optimizer and an algorithm called STGRID that uses
the STHOLES data structure but updates the histogram in a
naive manner—as in Fig. 13(c)—rather than applying the
maximum entropy principle.

Although the full 1SOMER multidimensional histogram
has not yet been implemented in a commercial system,
a one-dimensional version has been prototyped for inclu-
sion into the informix dynamic server (IDS) product—see
Behm et al. [80]—to improve selectivity estimates for
single columns. This industrial-strength version exploits
the one-dimensional nature of the histogram in order to
simplify several aspects of ISOMER. First, the complicated
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Fig. 14 Accuracy of selectivity estimates.
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STHoLES data structure is replaced with a simple bucketi-
zation scheme, using a sweep-line algorithm to determine
bucket boundaries. Next, a more efficient method is used
to incorporate new feedback into the histogram; the idea is
to aggregate, prior to the maximum-entropy computation,
those buckets that do not overlap with the new feedback
records. Finally, a simple and fast pruning method is intro-
duced to ensure that the number of buckets stays below a
specified upper bound.

3.3. Configuring Single-column Statistics

As discussed previously, virtually all commercial RDBMSS
maintain, at a minimum, single-column statistics that
include distributional information in the form of quantiles
and frequent values. A major practical issue is how many
quantiles and frequent values to maintain on a given col-
umn. Traditionally, the DBA would need to make this deci-
sion based on a painful process of trial and error; recent
years have seen several attempts by database designers to
develop methods for automatically determining the optimal
number of these statistics to maintain.

The simple-predicate analyzer (spA) in DB2 for LUW,
described in [70], automatically determines the number of
frequent values to maintain on a column. SpA periodically
scans the QFw and examines all of the errors in the simple
equality predicates that reference the column, to check
whether enough frequent values are being maintained in
the system catalog. (Because some of the statistics in the
catalog are collected using random-sampling techniques,
spA considers only those QFw entries where the observed
error exceeds the expected error from normal sampling
fluctuations.) If more frequent values are needed, then the
SPA automatically recommends an appropriate number of
frequent values to maintain. Note that following such a
recommendation also results in bringing the frequent-value
statistics up to date.

To determine the proper number of frequent values, spa
first scans the QFw and the system catalog to compile a
list of all “known’ value frequencies for the column. These
include:

1. The frequencies g1, g2, . . ., g, of the currently main-
tained frequent values, as recorded in the system

catalog,

2. The frequencies hi, hy,. .., h, of all values for
which there is a relevant record in the QFw. These
values can be considered as candidate frequent values
to maintain.

3. An average frequency assigned to each of the remain-
ing ‘rare’ (i.e. infrequent) values. This frequency is
computed, using a uniformity assumption, from the
estimated number of rows in the table and the number
of distinct values in the column.

Statistical Analysis and Data Mining DOI:10.1002/sam

frequency
A

| current frequent value |

hot
— [candidate frequent value|

v » value

Fig. 15 Frequencies used by SPA.

When multiple frequency estimates are available for a given
column value, spaA uses the most recent one. Figure 15 illus-
trates the frequency list as a bar graph, in descending order
of frequency. Suppose that the table has D distinct values
in total, and a total cardinality of N rows. Then the succes-

sive bar heights are f1, f>,.. ., fuw+n, 0, 0,. .., p. Here
f1, f2,- - -, fm+n are the frequencies gi, g2,. . ., &gu, N1,
hy, . .., h, arranged in descending order, and p is the fre-

quency of the ‘rare’ values (there are D — m — n of them),
defined as

CN—=—fi— o= = S
o= .

D—m—n

Based on this ‘known’ distribution, SPA determines the
number K of frequent values to maintain, where n < K <
m +n. If K frequent values are maintained, then, when
estimating cardinalities, the optimizer uses the exact count
for these values and an average count of

N-fHi—fr——fk

f= D—K

for each of the remaining values. The total absolute opti-
mizer estimation error over all possible simple equality
predicates (with respect to the ‘known’ distribution) is then
roughly equal to

m—+n

EK)y= > |fi—fl4+(D=m=n)p—Fl.

i=K+1

The first term represents the contribution due to the m +
n — K known frequencies that spa chooses not to retain,
and the second term is the contribution from the remaining
values. Observe that E(K) is decreasing in K. To determine
the number of frequent values to maintain, SPA initially
set K =n (the current number of maintained frequent
values) and then increases K until either E(K) falls below
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a specified threshold or K = min(m + n, B), where B is
a user-specified upper bound on the number of frequent
values to maintain.

A more accurate approach, which we will call spa+,
is described in Behm [81], in which the optimal num-
ber of both frequent values and quantiles are determined
simultaneously. spa+ uses query feedback, together with
catalog statistics, to maintain an adaptive histogram, using
maximum-entropy techniques as described in the previous
section. Then, for a given number n of frequent values and
m of quantiles, an error E(n, m) can be calculated, e.g. as
the Kolmogorov distance between the maximum-entropy
distribution (treated here as the ‘true’ data distribution) and
the optimizer’s distribution, which is based on n frequent
values and m quantiles (The Kolmogorov distance between
cumulative distribution functions G and H is defined as
sup, |G(x) — H(x)| and, in our setting, serves as an upper
bound on the absolute error of selectivity estimates over all
possible range predicates of the form / < R.A < u’.) SPA+
starts with the current value (n*, m*) and searches through
a neighborhood of (n, m) points to seek a better choice of n
and m. The size of the search space is specified by the user,
and possible search methods include brute-force enumera-
tion and steepest descent. In a sense, SPA+ is dominated
by the method in Behm et al. [80], where the relatively
accurate maximum-entropy distribution is used directly for
selectivity estimation, rather than merely for statistics con-
figuration. On the other hand, SPA+ can be incorporated into
current systems relatively easily, without requiring major
changes to the optimizer.

3.4. Dynamic Query Reoptimization

Perhaps the most extreme version of a reactive approach
to gathering statistical information for query optimization is
to collect the information during the execution of the query
itself. This dynamically obtained information can then be
used to reoptimize the query as it is being processed. This
approach makes query processing more robust, and sub-
stantially reduces the need for DBA intervention to debug
problem queries. Recent approaches to dynamic query reop-
timization include the RrIO system of Babu et al. [42]
and the Progressive Query Optimization (pop) approach
described in Markl et al. [82]. Both systems monitor errors
in cardinality estimation as intermediate steps of the QEP
are executed, in order to decide on how to continue query
evaluation.

To avoid thrashing due to continual, expensive reopti-
mizations, RIO develops ‘switchable’ plans that can dynam-
ically switch back and forth between a small number of
fixed alternative subplans when cardinality estimation errors
are detected. Such switching is much cheaper than execut-
ing a complete reoptimization. The idea is to represent the

uncertainty in a cardinality estimate as an interval around
the current estimate; for each operator, up to three alter-
native subplans are developed under assumptions of min-
imum, maximum, and currently estimated cardinalities for
the operator inputs. During query execution, RIO monitors
the actual cardinality values and chooses one of the sub-
plans of a given switchable plan if the monitored values
are ‘close’ to ones used to generate that subplan; if there
is no suitable subplan, the query is reoptimized. A draw-
back of the r10 approach is that rR1O cannot always form a
switchable plan. Moreover, by limiting the number of pos-
sible subplans to three, RIO might miss some possibly good
alternative plans. Finally, the rR10 approach also depends on
the ability to produce meaningful intervals around estimated
cardinality, a hard problem in its own right.

POP compares actual and estimated cardinalities at cer-
tain natural ‘checkpoints’ in the QEP. If a large discrepancy
is detected at a checkpoint, then query execution is stopped
and the query is reoptimized. Oscillation between optimiza-
tion and execution steps can occur any number of times dur-
ing a single query execution. A reoptimization step in POP
exploits not only the actual cardinalities observed during
query execution so far, but also the partial results that have
been computed prior to the checkpoint. In this way, pop
avoids costly recomputation of already computed results.
The mixing of measured cardinalities with statistics-based
estimates presents challenging problems for the cardinality
model of the query optimizer. pop therefore uses maximum-
entropy techniques to ensure that all knowledge is used in a
consistent way—see Section 4.1 below—so that progres-
sive reoptimization will not get stuck in an infinite loop.

4. EXPLOITING STATISTICAL INFORMATION

In this section we discuss two practical challenges that
arise when trying to exploit discovered statistical informa-
tion. One important issue is how to deal with inconsistent
information, and the other is how to maintain statistical
information over time in a heavily utilized system.

4.1. Dealing with Inconsistencies

As discussed in Section 1, inconsistent statistical infor-
mation can arise when multiple forms of discovery are used
simultaneously. For example, there may be ‘thin veneer’
information in the system catalog that has been obtained by
a RUNSTATS-like utility, perhaps augmented by frequency
information maintained in a set of ISOMER-style adaptive
histograms (over possibly intersecting sets of attributes),
perhaps further augmented with information in a QFWw.
Exacerbating this problem is that the information may have
been obtained at different times, and there may have been
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updates to the underlying tables that render some of the
information obsolete. A net effect of this inconsistency is
the possibility that multiple, nonequivalent selectivity esti-
mates may be available for a given predicate.

Specifically, consider the problem of estimating the
selectivity s; 2. ., of a conjunctive predicate of the form
P1LADP2A...A py, Where each p; is a simple predicate
of the form ‘column op literal.” Here column is a column
name, op is a relational comparison operator such as ’ =,
‘>, or ‘LIKE,” and literal is a literal in the domain of
the column; e.g. ‘MAKE = Honda’ or ‘YEAR > 1984°’.
An optimizer will always have an estimate of individual
selectivities sq, $2, . . ., s, from the statistics on individual
columns, and will typically use independence assumptions
in the absence of correlation information. Suppose, how-
ever, that n =3 and that joint selectivity estimates si 2
and sy 3 are also available, due to discovered correlations
between these pairs of attributes. Then possible estimates
for 5123 include s15253, 51,253, and s1523, and it is likely
that none of these estimates will agree with the others.
Any choice between these alternative estimates is inher-
ently arbitrary, and leads to an arbitrary choice of QEP.
Also, useful knowledge is ignored: if the estimator 15,3
is used, then knowledge of the correlation between p; and
P> is ignored, and similarly for the choice of s »s3. Ignor-
ing correlations in this manner usually results in bad plan
choices: the optimizer will be drawn toward those QEPs
about which it knows the least, because use of the inde-
pendence assumption makes these plans seem cheaper due
to underestimation of the cardinality. For example, in the
presence of a correlation between p; and p;, the estimate
1,2 1s typically more accurate, but also much larger than
the estimate 5157, which is based on an erroneous indepen-
dence assumption. Even worse, if the optimizer does not use
the same choice of estimate every time that it is required,
then different QEPs will be costed inconsistently, leading
to ‘apples and oranges’ comparisons and unreliable plan
choices. Traditional RDBMSs have used cumbersome, ad hoc
algorithms to enforce consistent choice of estimates [82,
Appendix A].

Markl et al. [83] provide a method, called MAXENT,
for consistent selectivity estimation that, similarly to 1S0-
MER, is based on a maximum-entropy approach. Given a set
of predicates P = { py, p2,. . ., pn }, the task is to deter-
mine the selectivity for each of the possible aroms —terms
in disjunctive normal form—since then the selectivity
for any predicate expressible as a Boolean formula in
P1, P2, - - ., Pn can be computed as an appropriate sum of
atom selectivities. For example, Fig. 16 displays the eight
atoms corresponding to the case of n = 3 predicates; each
atom corresponds to a basic region of the Venn diagram.
The known selectivities, such as s; 5 in Fig. 16, correspond
in general to selectivities of unions of basic regions, and
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Fig. 16 Probability space for N ={1,2,3} and T =
{13, {2}, (3}, {1, 2}, {1,3}, A }.

hence to sums of atom selectivities. The maximum-entropy
approach assigns atom-selectivity values in the ‘simplest’
manner that is consistent with the known selectivities.

In more detail, the maximum-entropy problem is for-
mulated as follows. Denote each atom by a binary string
of length n. For example, when n = 3, the string b = 100
denotes the atom p; A —p, A —p3, and so forth; see, e.g.
Fig. 16. Set N ={1,2,...,n} and denote by 2V the set
of all subsets of N. For each predicate py with X € 2N,
denote by C(X) the set of components of X, i.e. the set of
all atoms contributing to P,. Formally, C (@) = {0, 1} and

CX)={bef0,1}" |by=1foralliecX}.

For example for predicates p; and p;, we have

c({1}) = {100, 110, 101, 111},

and
C({1,2) ={110,111}.

Also denoted by T C 2V the available knowledge set, i.e.
the selectivities { sy | X € T } are assumed to be known and
available to the optimizer. Given sy for X € T, MAXENT
computes the selectivity sx for X ¢ T by solving the
following constrained optimization problem:

minimize xp log xp,
xp|be{0, 1}

bef0,1}n

subject to the |T| constraints
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XeT,

E Xp = SX,

beC(X)

where x; € [0, 1] denotes the selectivity of atom b. The
objective function is simply —1 times the entropy corre-
sponding to an atom-selectivity assignment (hence we min-
imize rather than maximize). The constraints correspond to
the known selectivities, and hence known sums of atom
selectivities. By default, one of the included constraints
is sp = Zbe{O,l}” xp = 1, which asserts that the combined
selectivity of all atoms is 1. The solution is the atom-
selectivity assignment having the maximum entropy value,
subject to the constraints. Given this solution, we can com-
pute any arbitrary selectivity sy as sy = Zbec(x) Xp. As
with ISOMER, MAXENT uses iterative scaling to solve the
optimization problem.

Figure 16 shows the probability space for the case N =
{1,2,3}, T = {{1}, {2}, {3}, {1, 2}, {1, 3}, @}, and selectiv-
ities S1 = 0.1, Sy = 0.2, 53 = 0.25, S12 = 0.05, 81,3 = 0.03,
and sy = 1. We have the following six constraints:

(1.) s1 = x100 + X110 + X101 + X111 = 0.1
(2.) s2 = xo10 + X011 + X110 + X111 = 0.2
(3.) s3 = x001 + Xo11 + X101 + X111 = 0.25
4.) s1,20 =x110 +x111 = 0.05

(5.) s1,3 =x101 +x111 = 0.03

(6) Sp = Zb6{0,1}3 Xp = 1

The task of selectivity estimation is to now compute a
solution for all atoms {x; | b € {0, 1}?} that maximizes
the entropy function — 3,0 1y3 X5 log x; and satisfies the
above six constraints. Any desired selectivity sy can
then be computed from the x; values as indicated pre-
viously. Figure 17 gives the results obtained when solv-
ing this constrained optimization problem. For instance,
in this maximum-entropy solution, we obtain the selectiv-
ity estimates 51 2.3 = x111 = 0.015 and 523 = x111 + X011 =
0.05167.

A technical issue that must be addressed is the a priori
elimination of atoms whose selectivity must be zero in any
feasible solution of the optimization problem; see [83] for
several solutions to this problem. MAXENT handles incon-
sistencies similarly to ISOMER by using linear programming
and slack variables. A slight difference from ISOMER is that
MAXENT uses positive slack variables not to eliminate a
constraint, but rather to adjust the value of the right-hand
side such that the modified constraint is satisfied. Thus the
modified set of constraints represents a ‘minimal’ perturba-
tion of the original constraint set such that there now exists
at least one feasible solution.

Although the discussion so far has focused on sets of
predicates such that all of the predicates in the set refer

000
0.56667

001
0.18333

Fig. 17 Maximum-entropy solution for example problem.

to a single table, it is not hard to see that the MAXENT
approach extends naturally to sets of predicates that refer
to two or more tables, i.e. sets containing both local and
join predicates. For the case of, e.g. k = 2 tables and in the
absence of any other information, the maximum-entropy
estimate of the selectivity of a join predicate is 0.5, since
any pair of rows is as likely to join as to not join. In
practice, enough information is usually available so that
the estimated selectivity is much lower than 0.5. In one
common scenario, for example, a join predicate p; is known
to be a key-to-foreign-key join, with table R; containing
the key column and table R, containing the foreign-key
column. Then the number of elements in the Cartesian
product R; x R, that satisfy p; is |R»|, because every
value in the foreign-key column has, by definition, exactly
one match in the key column. In this case, we add the
element X = {i} to the knowledge set 7, with corresponding
selectivity sy = 1/|Ry].

To handle large sets of predicates, MAXENT fixes a small
integer constant p and then (i) partitions the predicates,
if possible, into mutually independent disjoint sets with at
most wu predicates per partition, (ii) obtains a maximum-
entropy solution for each partition, and then (iii) uses the
independence assumption to combine the resulting partial
selectivities via simple multiplication. (Independence of a
given pair of predicates is indicated by the absence of a joint
selectivity on these predicates in the knowledge set T.) If
such a partitioning is impossible, then MAXENT forces a par-
titioning by removing nonsingleton elements from 7' until
a partitioning can be found. See [83] for a greedy removal
algorithm, in which the removed elements have the smallest
deviations from the independence assumption, and hence
the smallest impact on the quality of the maximum-entropy
solution. Experiments on a prototype of the algorithm in
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DB2 for LUW indicate that, using partitioning, MAXENT
can produce high-quality estimates while adding only tens
of milliseconds to the overall processing time, even for
large numbers of predicates.

4.2. Prioritizing Maintenance

For both proactive and reactive approaches, maintaining
the statistics on a table or view can consume consider-
able I/0 and CPU resources, and there can be many tables
on which to potentially collect or update statistics; the
databases used by the SAP application, for example, typ-
ically contain tens of thousands of tables. The dedicated
‘batch window’ in the middle of the night, traditionally used
to run such maintenance utilities, has pretty much disap-
peared because of globalization. How, then, can this neces-
sary maintenance be performed without adversely affecting
normal processing? Fortunately, the need to update statis-
tics varies from table to table, depending upon how much
the table has been updated since its statistics were collected
last time. Often tables containing product lists, store loca-
tions, and organizational information are relatively static
compared with tables containing transactions, inventory, or
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shipping status. It makes sense to give priority to the tables
that have changed the most. Indeed, some sort of prioriti-
zation is essential, because there are virtually never enough
system resources to process all of the tables in a database
at the same time.

In DB2 for LUW, the RUNSTATS utility has been auto-
mated to run as a ‘throttled’ background task [84]. Dur-
ing certain ‘maintenance windows,” RUNSTATS is allowed
a larger share of CPU, and the statistics for the currently
most ‘important’ tables are refreshed or collected. Without
requiring user intervention, DB2 prioritizes tables by their
‘urgency’ with respect to statistics processing. The auto-
mated prioritization method [70] used by RUNSTATS first
examines main-memory counters that record the number of
updates, inserts, and deletes for each table. For those tables
enjoying the most activity, RUNSTATS compares the current
file size against the size as recorded in the system catalog
and also samples the table to measure the degree to which
the distribution of values in each column differs from the
statistics last recorded for that column. Those frequently
accessed tables having the greatest value changes are given
highest priority for processing by RUNSTATS. This prior-
ity can also be influenced by query feedback, increasing

enable feedback
system
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monitor
queries

@

\ 4

updateby DBA
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—»| sampling-based
distribution
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guiarly act << est

v

maximum-entropy refine
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Y

Fig. 18 Informix dynamic server architecture for automatically maintaining statistics.
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the priority for those frequently accessed tables that have
seen the largest deviations between the optimizer’s selec-
tivity estimates and the observed selectivities. Special care
is taken to avoid ‘starvation’ scenarios in which statistics
for a table are seriously out of date or have never been col-
lected, yet RUNSTATS processing for the table is postponed
indefinitely.

5. CONCLUSION

We have surveyed a variety of proactive and reactive
techniques for discovering statistical features in relational
data, primarily in the context of query optimization. There
are many interesting and challenging problems still to be
solved.

As indicated in Fig. 8, detection of pairwise correla-
tions can go most of the way toward eliminating the
worst selectivity-estimation errors. Nonetheless, discover-
ing higher-order correlations can provide additional benefit.
The question is how to detect and exploit such correlations
in a practical manner. One possible approach is to extend
relatively simple techniques such as CORDs or the reactive
method of Section 3.1 to higher-order correlations; another
approach is to improve the practical performance of tech-
niques such as SASH.

One promising path for efficiently and robustly discov-
ering statistical structure in relational (and other) data is
to combine sampling-based proactive techniques with reac-
tive techniques that exploit workload and/or query-feedback
information. Some initial work in this direction includes
the DB2 prioritization method described in Section 4.2,
which combines query feedback and operation counting,
and also uses proactive sampling to evaluate the ade-
quacy of the current catalog statistics. The IDS prototype
described in [80] also combines query feedback with sam-
pling: an initial histogram on a column is created from a
sample, and the histogram is then continually refined by
applying the maximum-entropy method (as described at
the end of Section 3.2). Whenever—as determined from
query-feedback records—actual and estimated selectivities
diverge to an unacceptably large degree, the histogram is
reinitialized by taking a new sample, and the feedback-
based refinement process then starts anew; see Fig. 18.

The proactive approaches described in this paper either
use scanning, random sampling, or querying to learn about
statistical properties of the data. The machine-learning and
data mining communities, on the other hand, have been
developing a theory of active learning —see, for example,
Cohn et al. [85]—in which queries are generated in such
a way as to maximally accelerate the learning process.
Although most of this work has been focused on prob-
lems such as classification, it would be interesting to see
if any of the ideas and techniques could be adapted to the
database setting.

As we have seen, there has been much interest in
dynamic approaches to query optimization, and hence to
data gathering and discovery. This trend will likely con-
tinue, as database designers try to deal with new, com-
plicated types of semistructured and unstructured data
sources, as well as sophisticated queries over these sources.
Another motivation behind this trend is the desire to sim-
plify the DBMS architecture, especially the optimizer; see
Bhattacharjee et al. [86] for a discussion of issues in next-
generation database systems. Thus there will be an increas-
ing emphasis on discovering statistical properties of data
on the fly. Statistical technology for streaming data systems
(e.g. Motwani et al. [87]) will be increasingly relevant.

Another emerging challenge to statistical discovery in
databases is an increasing awareness that the data in a
database is often inherently uncertain. Although there has
always been a need to interpolate missing data, there has
been a sharp increase in data uncertainty arising from
entity-resolution processing in data integration, information
extraction from unstructured text, measurement errors in
sensor and radio frequency identification (RFID) data, and
deliberate anonymization of data for privacy protection. As
a result, database designers have been trying to develop
‘probabilistic database systems’ in which data uncertainty
and lineage are integral concepts; see Dalvi and Suciu [88]
for a recent survey, and also Jampani et al. [89] for a
description of a Monte-Carlo-based system that can deal
with real-world queries. A key challenge—over and above
basic questions of how to formulate and answer queries on
uncertain data—is how to handle the presence of this extra
uncertainty when searching for statistical structure.

Overall, the problem of developing industrial-strength,
efficient, scalable algorithms for discovering, and exploiting
statistical structure in databases remains challenging, and
provides many opportunities for research. We believe that
the research efforts described in this paper can benefit from
the varied skills that the database, statistics, and data mining
communities can bring to bear; we hope to see fruitful
collaborations in the future.
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