
Solutions Journal #issue_text# #article11#

The IDUG Solutions Journal: Letter from the Executive Editor
September 2003 - Volume 10 Number 2

The Need for Speed:

Speeding up DB2 UDB Using Sampling

 by Peter J. Haas

Introduction

 The vast amount of data in warehouses and on the web poses a major challenge for users who want to run BI or OLAP queries, execute advanced analytical, mining, and
statistical algorithms or interactively explore their data. Most of these tasks simply do not scale to the hundreds of terabytes of data often found in modern repositories. At the
same time, users are demanding that decision support systems be increasingly fast, flexible, and responsive. Although increases in CPU and disk speeds are helpful in dealing
with massive data, hardware improvements alone do not suffice. Indeed, there is evidence that computer systems are becoming slower as the volume of online data is growing at
a rate faster than Moore's law.
 To help users address these increasingly difficult scalability problems, DB2 UDB will support random sampling in SQL queries, starting with Fixpack 2 of V8.1. Sampling
techniques permit the computation of approximate query results-which often suffice in practice-in a fraction of the time required to compute an exact answer. For example, Figure
1 shows the result of executing the simple SQL aggregation query

SELECT SUM(sales) FROM transactions GROUP BY year

 on the entire transactions table and on a 1% sample of the table. As can be seen, the results for the sampled table are almost indistinguishable from those for the entire table,
while the required processing time is reduced by over two orders of magnitude.

 Besides application to aggregation queries as above, a sample can also be used for auditing purposes, interactive data exploration or as input to a mining or analysis
http://arbaltxp-011870/member/journal/sep03/article11.asp (1 of 4)5/4/2006 5:41:07 PM

Solutions Journal #issue_text# #article11#

application. In these latter settings, a sample can be viewed as a synopsis or compressed version of a set of data.
 In the following sections, we describe how sampling will work in DB2 UDB, and we show how the power of sampling can be greatly enhanced by combining DB2's basic
sampling functionality with the expressive power of SQL.

Sampling Syntax and Semantics

 Any stored table appearing in the FROM clause of a SELECT query can have an appended sampling clause. The basic syntax of a sampling clause is as follows (illustrated
here for a single table):

SELECT select_list
FROM table_name TABLESAMPLE sampling_method (P)
[REPEATABLE (S)]

 Here TABLESAMPLE is a new SQL keyword that tells DB2 to process only a sample of rows from table_name rather than all of the rows, sampling_method specifies the
method used to sample the rows, and P specifies the target percentage of rows to retrieve (between 0 and 100). The optional REPEATABLE clause, discussed below, is useful for
debugging sampling queries. DB2's syntax is consistent with the ISO SQL-200n Change Proposal that has nominally been approved by ISO's Database Languages Working
Group.
 Although the proposed ISO syntax permits a sampling clause to be associated with any table reference, DB2 will initially restrict sampling to stored tables. Thus a materialized
query table (MQT/AST) or global temporary table can be sampled, but sampling will not be allowed on logical views, nicknames (in federated databases), table expressions, table
functions, or so forth.
 DB2 supports the two sampling methods currently specified in the ISO proposal: BERNOULLI and SYSTEM. BERNOULLI sampling (with sampling percentage P) "flips a
weighted coin" for each row individually, including that row in the sample with probability P/100 and excluding it with probability 1-P/100, independently of the other rows. For this
reason the BERNOULLI sampling method is sometimes called row-level Bernoulli sampling. Although on average the sample contains P percent of the rows in the table, the
actual sample size is random and hence may differ on subsequent executions of the query. Figure 2 illustrates this.

 When there is no index available, BERNOULLI sampling retrieves
each row in the table, so that there is no I/O savings and sampling
performance can be poor. When there is an index on one or more of
the columns on the table, then DB2 performs the Bernoulli "coin
flips" on the RIDs in the index leaf pages, thereby retrieving only
those pages that contain at least one sampled row. However, even
under the most efficient possible implementation of BERNOULLI
sampling, a large fraction of the pages must be retrieved unless the
sampling fraction is extremely low.
 SYSTEM sampling permits the query optimizer to determine the
most efficient manner in which to perform the sampling. In most
cases, SYSTEM sampling applied to a table means that each page
of the table is included in the sample with probability P/100 and
excluded with probability 1-P/100. For each page that is included, all
rows on that page qualify for the sample. This sampling method is
called page-level Bernoulli sampling. SYSTEM sampling generally
executes much faster than BERNOULLI sampling, since fewer data
pages need to be retrieved. SYSTEM sampling can, however, yield
less accurate estimates for aggregate functions, e.g., SUM(SALES),
especially if there are many rows on each page or if the rows of the
table are clustered on any columns referenced in the query. The
optimizer may in certain circumstances decide that it is more
efficient to perform SYSTEM sampling as if it were BERNOULLI
sampling, for example, when a predicate can be applied by an index
and is much more selective than the sampling rate P.

 Semantically, sampling of a table occurs before any other query processing, such as applying predicates or performing joins. One can envision the original tables referenced in
a query being initially replaced by temporary "reduced" tables containing sampled rows, and then normal query processing commencing on the reduced tables. (For performance
reasons, actual processing may not occur in exactly this manner.) It follows, for example, that repeated accesses of a sampled table within the same query, such as in a nested-
loop join or a correlated subquery, will see the same sample of that table within a single execution of that query.

http://arbaltxp-011870/member/journal/sep03/article11.asp (2 of 4)5/4/2006 5:41:07 PM

Solutions Journal #issue_text# #article11#

Illustrative Examples

 Suppose we wish to estimate the sum of sales over a set of transactions using a 2% SYSTEM sample. Then we can use the following query:

SELECT SUM(sales) / 0.02
FROM transactions TABLESAMPLE
SYSTEM(2);

 Because we have computed the sum of sales over only about 2% of the rows in the table, we need to scale up our answer by a factor of 50 (i.e., 1/0.02) to estimate the sum
over the entire table. (Such a scale-up would not have been needed had we used AVERAGE instead of SUM.) If we modifiy the query to look as follows:

SELECT SUM(sales) / 0.02
FROM transactions TABLESAMPLE
SYSTEM(2) REPEATABLE(3);

 then we will take the exact same sample from transactions every time that we execute the query, and hence compute the same estimate every time (assuming that transactions
is not modified between query executions). If we change the argument of REPEATABLE from 3 to 17, then we will also get the same estimate every time we run the modified
query, but this latter estimate will differ from the estimate that we obtain using a REPEATABLE argument equal to 3.
 We can also compute the join of two samples:

SELECT s.a, t.b
FROM s TABLESAMPLE SYSTEM(1), t
TABLESAMPLE SYSTEM(1)
WHERE s.key = t.fkey;

 In general, the join of samples has very different statistical properties from the sample of a join, e.g., as computed by the following query:

CREATE USER TEMPORARY TABLESPACE;
DECLARE GLOBAL TEMPORARY TABLE r(a REAL, b REAL);
INSERT INTO SESSION.r
(SELECT s.a, t.b FROM s,t WHERE
s.key = t.fkey);
SELECT a, b FROM SESSION.r TABLESAMPLE
SYSTEM(0.01);

 (We use a global temporary table for this query because such tables are inexpensive to create and modify; no entries are created in the system catalog and the table persists
only for the duration of the database connection.)
 Sampling can be used to obtain quick estimates of simple aggregates that are computed over joins, provided that the appropriate scaleup factor is used; e.g., a SUM must be
scaled up by a factor of 1 / (product of sampling rates). Here is an example:

SELECT SUM(s.a * t.b) / (0.05 * 0.01)
FROM s TABLESAMPLE SYSTEM(5), t
TABLESAMPLE SYSTEM(1)
WHERE s.c > s.d;

 The estimate computed by this query is unbiased for the true value in that if we execute the sample query over and over, then we obtain the correct answer on average.
 The scope of DB2's basic sampling tools can be greatly enhanced using the expressive power of SQL, as shown by our final example. This query permits drilldown into a
"fuzzy" data cube of sales data:

SELECT country, state, city, year, month,
 AVG(value) AS avg_sales,
FROM trans TABLESAMPLE
SYSTEM(:samp_rate), loc
WHERE trans.locid = loc.locid
GROUP BY ROLLUP(country, state, city),
ROLLUP(year, month)

http://arbaltxp-011870/member/journal/sep03/article11.asp (3 of 4)5/4/2006 5:41:07 PM

Solutions Journal #issue_text# #article11#

HAVING COUNT(*) > 100

 Note that the operations of sampling and application of predicates (including predicates implicit in a GROUP BY query) are interchangeable.

Conclusion

 Sampling will be a powerful enhancement to DB2's capabilities, potentially speeding up query processing by orders of magnitude. DB2 will support almost the entire proposed
ISO standard; we expect that additional sampling methods and other enhancements will be added both to the standard and to DB2 over time. By judiciously combining DB2's
native sampling support with the SQL language, the DB2 user can effectively apply BI, OLAP, mining, and analysis techniques even in the face of massive data volumes.

About the author

Peter Haas received a Ph.D. from Stanford University in 1986 and has been a Research Staff Member at IBM Almaden Research Center since 1987. In addition, he is currently a
Consulting Associate Professor in the Management Science and Engineering Department at Stanford and an Associate Editor for the journal Operations Research. He has played
a key role in both incorporating and exploiting sampling functionality in DB2 UDB, and has recently received an Outstanding Technical Achievement Award from IBM for this work.
He has received awards from both ACM SIGMOD and the IBM Research Division for his research on online query processing, as well as a number of IBM Invention Achievement
Awards. He is the author of over 50 conference publications, journal articles, and books.

Events | DB2 Resources | Solutions Journal | Vendor Info
Regional User Groups | IDUG Insider | Calendar

About | Home | Contact Us | Privacy

International DB2 Users Group
401 N. Michigan Ave.

Chicago, IL 60611
(312) 321-6881

http://arbaltxp-011870/member/journal/sep03/article11.asp (4 of 4)5/4/2006 5:41:07 PM

http://conferences.idug.org/
http://www.idug.org/DB2/index.asp
http://www.idug.org/journal/index.asp
http://www.idug.org/vendors/index.asp
http://www.idug.org/rugs/default.asp
http://www.idug.org/User/UserLogin.asp
http://www.idug.org/calendar/Calendar.asp
http://www.idug.org/html/about.asp
http://www.idug.org/default.asp
http://www.idug.org/feedback.asp
http://www.idug.org/html/PrivacyStatement.asp

