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The Two Perpetual Questions

•
 

“Where do the 
probabilities 
come from?”

•
 

“Who is going to 
use this stuff in 
the real world?”
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My background in probabilistic DB
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RAQA: Resolution-Aware Query 
Answering for Business Intelligence

 (Sismanis
 

et al. 2009)

•
 

OLAP querying
 (datacubes: roll-up, drill-down)

•
 

Uncertainty due to entity 
resolution

•
 

Bounds
 

on query answers
•

 
Implemented via SQL queries

•
 

Conservative approach

City State Strict range Status

San Francisco CA [$30,$230] guaranteed

San Jose CA [$70,$200] non-guaranteed

State Strict range Status

CA [$230,$230] guaranteed

Sum(Sales) group by City,State

Sum(Sales) group by State
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The MCDB System
 (with Chris Jermaine & students)

Q(D) = 
Select SUM(sales)

AS t_sales

Schema
VG Functions

Parameter 
Tables

Random DB = D

Monte Carlo
Generator

Monte 
Carlo

Estimator

i.i.d. samples from 
possible-worlds

dist’n

E [ t_sales ]
Var [ t_sales ]
q.01 [ t_sales ]

Histogram
Error bounds

Inference

ˆ
ˆ

ˆ

Q(d1 )
Q(d2 )

:
Q(dn )

i.i.d. samples from 
query-result

dist’n

d1

d2

dn

...

Q

Q

Q

Many implementation tricks
to ensure acceptable performance
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Query-Result Distributions
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MC3: MapReduce
 

+ MCDB
 (Xu

 
et al. 2009)

Jaql

Map-Reduce

HDFS

High-level query 
language for 

semi-structured JSON 
data

Distributed File 
System

Parallel batch 
processing

Hadoop

www.jaql.org
//code.google.com/p/jaql

Tricks to manage
Pseudo-random numbers
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Where do the probabilities come from?
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Data-Warehouse Uncertainty

ETL{John Smith, San Jose}
{John Smith, Los Angeles}

Name City

John Smith (SJ, 0.66), (LA, 0.33)

Text Miner
Source Problem type

Cust0385 (DBMS, 0.8), (OS, 0.2)

09/09/2007
Re: system crash
--------------------------
This morning, my ORACLE
system on LINUX exploded
in a spectacular fireball …

Name City

John Smith LA Name Sales

J. Smith $50K

Similarity
Join

City Sales

LA $50K ? (0.92)

Data Integration

Information extraction Hotels

NY Marriott

Paris Hilton

A lovely thing to behold
is Paris Hilton in the
Springtime …

System T
Hotel Annotator ? (0.20)

{John Smith, San Jose}

(Michelakis

 

et al., 2009)
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Data-Warehouse Uncertainty –
 

Cont’d

Event Time

Buffer overflow 10/17/2007:18:20:02
System Monitor

t

f(t)

Measurement Uncertainty

Sensor_ID Temp (F)

S23 78.32
Sensor

t

f(t)

78.32
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Real-World Challenges with
 Data-Warehouse Uncertainty

•

 

People don’t like to admit that it exists!
–

 

Retailers

 

view uncertainty as failure of security, supply chain 
management

•

 

IBM research relationship manager for retail
–

 

Law enforcement
•

 

Photo ID in meth dealer trial
–

 

Scientists

 

pretend data is perfect: uncertainty undermines results
•

 

Hans-Joachim Lenz
–

 

Database vendors
•

 

Data “cleaning”

 

products

•

 

Data warehouse may not even exist!
–

 

Ex: cancer data at medical center
–

 

Ex: tomato soup supply chain data
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Stochastic Predictive Analytics 
on Big Data

•

 

Uncertain data describes future

 

or hypothetical

 

events
–

 

Based on complex, fine-grained stochastic model over big data
–

 

Minimizes denial problem
•

 

Intense recent interest in “business analytics”

 
driven by

–

 

Need for low risk, quick payback projects

 
(flexibility, low cost, fine data granularity)

–

 

Technical advances
•

 

Cloud computing
•

 

Software as a Service (SaaS)
•

 

Next generation tools, portals, visualization
•

 

Often with a spreadsheet front end
–

 

$8 Billion of such tools [Gnatovich06]
–

 

IBM services pricing
•

 

Lots of prototype activity
–

 

Fox/GreenPlum

 

[Cohen09 MAD analytics paper]
–

 

VISA/IBM [Das10 SIGMOD paper]
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Ex. 1: Portfolio Values

CustID OptionID NumShares …

John Smith 23 50 …

… … … …

OptionID InitVal … StrikeP OVal

23 $2.35 … $4.00 ?

… … … …

Customer EuroCallOptions

SELECT SUM (c.NumShares

 

* o.Val)
FROM Customer c, EuroCallOptions

 

o
WHERE  c.OptionID

 

= o.OptionID
AND c.CustType

 

= ‘Institutional’

Sample from
Normal dist’n

       ( ) ( ) ( ) ( ) ( ) jV t t V t rV t t a V t V t tZ

Simulation approximation (Euler approach):

      final            OVal max ( ) ,0dV rV dt a V V dW V t S

Modified Black-Scholes

 

model for European call option:

Option value
one month from now

(exercise date)

Also CMOs, etc.
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Ex. 2: Pricing Decisions

•

 

Can analyze arbitrary

 

dynamically-defined

 

customer segments when 
determining effect of price increase

Data for all
customers pr

ic
e

demand

Global demand
distribution (prior)

Data for one
customer pr

ic
e

demand

Individual demand
distribution (posterior)

CustID
Unit
Price

Order 
Amount

J. Smith $10.20 500

… … …

Bayes Theorem
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Ex. 3: Individual Click Behavior 
(EBay)

•

 

Can analyze arbitrary dynamic

 

customer segments when 
determining effect of changing EBay pages

Click data for all
EBay customers

Global Markov model
distribution (Dirichelet prior)

Data for one
customer

Individual Markov model
distribution (posterior)

x32

p1

p4

p3

p2

x13

x14
x34

x24

y32

p1

p4

p3

p2

y13

y14
y34

y24
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Ex. 4: Clinic-Capacity Risk

Medical data for all
customers

Pharmacy data for all
customers

Stochastic
dosage model

Cox hazard-rate
disease model

CustID Time period Resource 
needed

Jane Smith June-Sept ?

… …

Clinic-resource
demand model

http://images.google.com/imgres?imgurl=http://www.clipartheaven.com/clipart/health_%26_medical/cartoons/medical_records_clerk.gif&imgrefurl=http://www.thehealthblog.net/index.php%3Fs%3Dallergies&h=477&w=490&sz=17&hl=en&start=5&usg=__unBRDKtQLVrAFuwllZgJeqJFVZk=&tbnid=qKJF3OYDE_MZjM:&tbnh=127&tbnw=130&prev=/images%3Fq%3Dmedical%2Brecords%26gbv%3D2%26hl%3Den


17
MUD Workshop, September, 2010

MCDB: Improvement of 
Traditional Analytics Workflow

Analyst (PhD)
Develops model

Model

Model fitting

Data
reduction

Model application
& querying

Arena, R, Matlab,…

Model

•

 

Data extraction slow and bug-prone
•

 

Only coarse-grained modeling
•

 

No encapsulation for user

•

 

Hard to re-link model results to DB
•

 

Hard to deal with data updates
•

 

Sensitivity, what-if analysis are hard

Goal: Integrate model with Database Model

Arena, R, Matlab,…
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Where do the probabilities come from?

From stochastic predictive models over big data
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Who is going to use this stuff
in the real world?
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Key Driver: Risk Management

•
 

Ex: Projected sales under 
micromarketing campaign

•
 

Ex: ERP
–

 

# OS experts for help desk
–

 

Demand projected from historical 
text data (2x uncertainty)

–

 

Provide principled safety factor

•
 

Regulatory pressure
–

 

Basel II, Solvency II

•
 

Business pressure
–

 

Ex.: Energy Risk Professionals

SELECT SUM (s.amount)
FROM SALES s,

 

CUST c
WHERE s.ID

 

= c.ID
AND c.city

 

= ‘Los Angeles’

Query-result
distribution

pr
ob

ab
ilit

y

Total LA sales

expected
answer

pr
ob

ab
ilit

y

Loss

5%
VaR

expected
loss

Loss
distribution
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Challenge: Decision-makers’
 Poor Intuition About Risk

Flaw of averages (weak form): Flaw of averages (strong form):

Wrong value of mean:
f(E[X]) ≠

 

E[f(X)]

Mean correct,

 
Variance ignored

Sam Savage’s book
(why we underestimate risk)
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Examples

•

 

Red River (ND) flooding
•

 

Perishable Inventory

 
(Red Lobster)

•

 

U.S. accounting standards (FASB)
•

 

Project completion time:

 
10 parallel tasks, E[Ti ] =  6 mo.

•

 

Data cleansing
•

 

Machine learning
•

 

Trio agg. paper

 
(MUD 2008)

•

 

Basic probability

“Expected to crest at 50 feet”

0 2 4

$200

$400

$600

$800

6 8 10

stock = E[demand] = 5

co
st

demand
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Probability Management
 and Interactive Spreadsheets

•
 

DIST 1.1 standard
–

 

DIST = distribution string
–

 

IID Monte Carlo (multivariate) samples
–

 

Compressed, with metadata
•

 
Ensures correct, coherent risk computations 
throughout enterprise and beyond
–

 

E.g., Royal Dutch Shell
•

 
“Electricity network”

 
for probability

–

 

Royal Dutch Shell, Merck Pharmaceutical, Oracle, Wells 
Fargo Bank, Bessemer Trust, and IBM

•
 

DISTs
 

can be manipulated like numbers
–

 

Facilitates interactive spreadsheets

 

(demo)

Audit seal of

 
approval
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Demo 1
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Demo 2
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Probability Management
 and Probabilistic Databases

•
 

ProbDBs
 

can be a source of DISTs
–

 
Directly from MCDB

–
 

Can sample from
•

 
exact distributions

•
 

approximate empirical distributions
•

 
Fitted distributions (e.g., compute mean, var)

for aggregation query
 

or loss function
•

 
Greater impact on decision-makers



27
MUD Workshop, September, 2010

Who is going to use this stuff
in the real world?

Decision-makers who care about risk
(Probability Management framework)
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Risk-Orientation Leads to 
Interesting Research

•
 

Ex 1: MCDB-R
•

 
Ex 2: Risk in top-K queries
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Ex. 1: MCDB-R

•
 

Goals
–

 

Determine tail of query-result dist’n

 
(e.g., 0.99-quantile = VaR0.01

 

)
–

 

Generate samples from tail*
•

 
Challenge for naïve MCDB
–

 

Huge # of replications needed

*Degen, M., Lambrigger, D.D., Segers, J.: Risk Concentration and Diversification -

 

Second-Order Properties.
Insurance: Mathematics and Economics 46(3), 2010

Loss

P
ro

ba
bi

lit
y

0.99

0.01

Normal($10M,$1M) loss:

 
On average, 3.5x106

 

reps before even one $15M loss is observed!
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Gibbs-Cloner Approach

Loss

P
ro

ba
bi

lit
y

Four DB instances = four loss values
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Gibbs-Cloner Approach

Loss

P
ro

ba
bi

lit
y

.5-quantile

Elite DBs: Loss at or above
sample median



32
MUD Workshop, September, 2010

Gibbs-Cloner Approach

Loss

P
ro

ba
bi

lit
y

Clone “elite”

 

DBs
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Gibbs-Cloner Approach

Loss

P
ro

ba
bi

lit
y

Perturb DBs
(Gibbs sampler)
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Gibbs-Cloner Approach

Loss

P
ro

ba
bi

lit
y

.75-quantile

• 18 hrs  11 min
• Complex implementation issues
• Details: VLDB 2010 paper

Repeat process…
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Ex. 2: Portfolio Theory of IR

•
 

Wang and Zhu [SIGIR 2009]

–

 

Uncertain relevance (score)

–

 

Balance mean/variance of 
“overall relevance”

 

of document 
group = sumi

 

(Ri

 

x wi

 

)

–

 

Diversification of documents

–

 

Q: Other loss functions?
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Summary

•

 

Easier to sell “stochastic predictive analytics 
over big data”

 

than “data warehouse 
uncertainty”

 

to real-world clients

•

 

Risk management is a key driver in this setting 
but decision-makers are surprisingly clueless

•

 

Probability-management ecosystem: a channel 
from ProbDBs

 

to decision-makers?

•

 

Risk-orientation leads to interesting research 
questions as well as potential impact
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Special Thanks

•
 

Sam Savage
•

 
Amol

 
Deshpande

•
 

Chris Jermaine and students
•

 
Yannis

 
Sismanis
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Further Details:

www.almaden.ibm.com/cs/people/peterh
peterh@almaden.ibm.com

Thank You!

•
 

RAQA: ICDE 2009
•

 
MCDB: SIGMOD 2008

•
 

MC3: SIGMOD 2009
•

 
ProbIE: SIGMOD 2009

•
 

MCDB-R: VLDB 2010
http://probabilitymanagement.org
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