From MUD to MIRE: Managing Inherent Risk in the Enterprise

Peter J. Haas

IBM Almaden Research Center

San Jose, CA

The Two Perpetual Questions

• "Where do the probabilities come from?"

• "Who is going to use this stuff in the real world?"

My background in probabilistic DB

RAQA: Resolution-Aware Query Answering for Business Intelligence (Sismanis et al. 2009)

- OLAP querying (datacubes: roll-up, drill-down)
- Uncertainty due to entity resolution
- Bounds on query answers
- Implemented via SQL queries
- Conservative approach

City	State	Strict range	Status
San Francisco	CA	[\$30,\$230]	guaranteed
San Jose	CA	[\$70,\$200]	non-guaranteed

Sum(Sales) group by City,State

State	Strict range	Status	
CA	[\$230,\$230]	guaranteed	

Sum(Sales) group by State

The MCDB System (with Chris Jermaine & students)

Query-Result Distributions

MUD Workshop, September, 2010

Where do the probabilities come from?

Data-Warehouse Uncertainty

Data-Warehouse Uncertainty – Cont'd

Real-World Challenges with Data-Warehouse Uncertainty

- People don't like to admit that it exists!
 - Retailers view uncertainty as failure of security, supply chain management
 - IBM research relationship manager for retail
 - Law enforcement
 - Photo ID in meth dealer trial
 - Scientists pretend data is perfect: uncertainty undermines results
 - Hans-Joachim Lenz
 - Database vendors
 - Data "cleaning" products
- Data warehouse may not even exist!
 - Ex: cancer data at medical center
 - Ex: tomato soup supply chain data

Stochastic Predictive Analytics on Big Data

- Uncertain data describes future or hypothetical events
 - Based on complex, fine-grained stochastic model over big data
 - Minimizes denial problem
- Intense recent interest in "business analytics" driven by
 - Need for low risk, quick payback projects (flexibility, low cost, fine data granularity)
 - Technical advances
 - Cloud computing
 - Software as a Service (SaaS)
 - Next generation tools, portals, visualization
- Often with a spreadsheet front end
 - \$8 Billion of such tools [Gnatovich06]
 - IBM services pricing
- Lots of prototype activity
 - Fox/GreenPlum [Cohen09 MAD analytics paper]
 - VISA/IBM [Das10 SIGMOD paper]

Ex. 1: Portfolio Values

Customer

CustID	OptionID	NumShares	
John Smith	23	50	

EuroCallOptions

OptionID	InitVal	 StrikeP	OVal
23	\$2.35	 \$4.00	?
			/

SELECT SUM (c.NumShares * o.Val)
FROM Customer c, EuroCallOptions o
WHERE c.OptionID = o.OptionID
AND c.CustType = 'Institutional'

Option value one month from now (exercise date)

Modified Black-Scholes model for European call option:

 $dV = rVdt + (a\sqrt{V})VdW$ OVal = max $(V(t_{final}) - S, 0)$

Simulation approximation (Euler approach):

$$V(t + \Delta t) = V(t) + rV(t)\Delta t + \left(a\sqrt{V(t)}\right)V(t)\sqrt{\Delta t}Z_{j}$$
 Sample from Normal dist'n

Also CMOs, etc.

Ex. 2: Pricing Decisions

Can analyze arbitrary dynamically-defined customer segments when determining effect of price increase

Ex. 3: Individual Click Behavior (EBay)

distribution (Dirichelet prior)

Individual Markov model distribution (posterior)

Can analyze arbitrary dynamic customer segments when determining effect of changing EBay pages

Ex. 4: Clinic-Capacity Risk

MCDB: Improvement of Traditional Analytics Workflow

- Data extraction slow and bug-prone
- Only coarse-grained modeling
- No encapsulation for user

- Hard to re-link model results to DB
- Hard to deal with data updates
- Sensitivity, what-if analysis are hard

Model

Goal: Integrate model with Database

Where do the probabilities come from?

From stochastic predictive models over big data

Who is going to use this stuff in the real world?

Key Driver: Risk Management

- Ex: Projected sales under micromarketing campaign
- Ex: ERP
 - # OS experts for help desk
 - Demand projected from historical text data (2x uncertainty)
 - Provide principled safety factor
- Regulatory pressure
 - Basel II, Solvency II
- Business pressure
 - Ex.: Energy Risk Professionals

Global Association of Risk Professionals

SELECT SUM (s.amount) FROM SALES s, CUST c WHERE s.ID = c.ID AND c.city = 'Los Angeles'

Challenge: Decision-makers' Poor Intuition About Risk

Flaw of averages (weak form): Flaw of averages (strong form):

Examples

- Red River (ND) flooding
- Perishable Inventory (Red Lobster)
- U.S. accounting standards (FASB)
- Project completion time: 10 parallel tasks, *E*[*T_j*] = 6 mo.
- Data cleansing
- Machine learning
- Trio agg. paper (MUD 2008)
- Basic probability

"Expected to crest at 50 feet"

22

Probability Management and Interactive Spreadsheets

- DIST 1.1 standard
 - DIST = distribution string
 - IID Monte Carlo (multivariate) samples
 - Compressed, with metadata
- Ensures correct, coherent risk computations throughout enterprise and beyond
 - E.g., Royal Dutch Shell
- "Electricity network" for probability
 - Royal Dutch Shell, Merck Pharmaceutical, Oracle, Wells Fargo Bank, Bessemer Trust, and IBM
- DISTs can be manipulated like numbers
 - Facilitates interactive spreadsheets (demo)

Audit seal of approval

Demo 1

Demo 2

Probability Management and Probabilistic Databases

- ProbDBs can be a source of DISTs
 - Directly from MCDB
 - Can sample from
 - exact distributions
 - approximate empirical distributions
 - Fitted distributions (e.g., compute mean, var)

for aggregation query or loss function

Greater impact on decision-makers

Who is going to use this stuff in the real world?

Decision-makers who care about risk (Probability Management framework) Risk-Orientation Leads to Interesting Research

- Ex 1: MCDB-R
- Ex 2: Risk in top-K queries

Ex. 1: MCDB-R

Goals

- Determine tail of query-result dist'n (e.g., 0.99-quantile = VaR_{0.01})
- Generate samples from tail*

Challenge for naïve MCDB

Huge # of replications needed

Loss

Normal(\$10M,\$1M) loss:

On average, 3.5x10⁶ reps before even one \$15M loss is observed!

*Degen, M., Lambrigger, D.D., Segers, J.: Risk Concentration and Diversification - Second-Order Properties. *Insurance: Mathematics and Economics* 46(3), 2010

MUD Workshop, September, 2010

31

32

33

Ex. 2: Portfolio Theory of IR

• Wang and Zhu [SIGIR 2009]

- Uncertain relevance (score)
- Balance mean/variance of "overall relevance" of document group = sum_i (R_i x w_i)
- Diversification of documents
- Q: Other loss functions?

Summary

- Easier to sell "stochastic predictive analytics over big data" than "data warehouse uncertainty" to real-world clients
- Risk management is a key driver in this setting but decision-makers are surprisingly clueless
- Probability-management ecosystem: a channel from ProbDBs to decision-makers?
- Risk-orientation leads to interesting research questions as well as potential impact

Special Thanks

- Sam Savage
- Amol Deshpande
- Chris Jermaine and students
- Yannis Sismanis

Further Details:

- RAQA: ICDE 2009
- MCDB: SIGMOD 2008
- MC³: SIGMOD 2009
- ProbIE: SIGMOD 2009
- MCDB-R: VLDB 2010

http://probabilitymanagement.org

www.almaden.ibm.com/cs/people/peterh peterh@almaden.ibm.com Thank You!