
Eagle-Eyed Elephant (E3): Split-
Oriented Indexing in Hadoop

Mohamed Eltabakh
Worcester Polytechnic Institute, MA, USA

Joint work with IBM Almaden, CA, USA

F. Özcan, Y. Sismanis, H. Pirahesh, P. Haas, J. Vondrak

E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

Data Explosion

2 E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

4.6 Billon
Mobile Phones
World Wide

1.3 Billion RFID tags in 2005
30 Billion RFID
tags by 2010

2 Billion Internet
users by 2011

Twitter process
7 terabytes of
data every day

Facebook process
10 terabytes of
data every day

World Data Centre for Climate
! 220 Terabytes of Web data
! 9 Petabytes of additional data

Capital market
data volumes grew
1,750%, 2003-06

Hadoop Analytical Platform

•  Hadoop is a software platform for distributed processing over:

•  Large datasets à Terabytes or petabytes of data

•  Large clusters à hundreds or thousands of nodes

3

Scalability (petabytes of data, thousands of machines)

Flexibility in accepting all data formats (no schema)

Commodity inexpensive hardware

Efficient and simple fault-tolerant mechanism

E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

Hadoop: Poor Performance

•  Big performance gap between Hadoop and parallel
databases

4

Expensive operations inherent to Hadoop’s design
 >> Blocking operators, disk-intensive use, no pipelining, ...

Many lessons from DBMSs are not utilized in Hadoop
 >> Indexing, caching, materialization, partitioning, …

E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

Talk Outline

Ø Background and Motivation

Ø E3 System Features
Ø  Indexing and Domain Segmentation

Ø  Materialized Views

Ø  Adaptive Caching

Ø  Performance and Evaluation

5 E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

Overview on Hadoop

•  Hadoop is a master-slave shared-nothing distributed architecture

6

Master node (single node)

Many slave nodes

E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

Hadoop Execution Engine
 (Map-Reduce)

7

Shuffle & Sorting
based on k

Reduce

Reduce

Reduce

Map

Map

Map

Map

Input blocks on
HDFS (splits)

Produces (k, v)
 (, 1)

Parse-hash

Parse-hash

Parse-hash

Parse-hash

Consumes(k, [v])
 (, [1,1,1,1,1,1..])

Produces(k’, v’)
 (, 100)

Users only provide the “Map” and “Reduce” functions
Record-level
processing

Group-level
processing

E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

E3 Motivation & Objectives

Ø  Typical Scenarios: Analytical query workloads on Hadoop with selection predicates

•  Multiple (possibly repeated) queries over the same data set

Ø  No Smart Skipping: No indexing (or split elimination) embedded into Hadoop

•  Queries scan all the data splits (relevant or not)

Ø  Little Users’ Knowledge: Workloads and data may change

•  Users may not know the query workload in advance or the data schema

8 E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

E3 Design Goals

Split-Oriented Elimination (I/O)

•  HDFS is block oriented

•  Record-level elimination is not effective

9

0"
25"
50"
75"

100"
125"
150"
175"
200"

0%"(Full"
Index)"

20%" 40%" 60%" 80%"

N
um

be
r'o

f'F
ie
ld
s'

Discrimina3on'Power'(X"%)"

Number'of'Fields'vs.'Discrimina3on'Power'

Cover All Discriminating Attributes

•  Most attributes are discriminating

•  Go beyond the partitioning key(s)

Original File

Relevant Splits
to Query

Re-think the indexing techniques and how they complement each other
to fit Hadoop’s environment

E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

Talk Outline

Ø Background and Motivation

Ø E3 System Features
Ø  Indexing and Domain Segmentation

Ø  Materialized Views

Ø  Adaptive Caching

Ø  Performance and Evaluation

10 E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

E3: Highlights

11

•  JSON-Based Data Model

•  Works on all data types/sources that provide a mapping to

JSON (JSON view of the data)

•  Pre-Processing Phase for each dataset

•  Split-level statistics

•  Integration of several techniques

•  Split elimination at I/O layer (InputFormat) before creating map tasks

•  Can be integrated into Jaql

•  Can be used in hand-coded map-reduce jobs

E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

1) Split-Level Domain Segmentation

•  Applied for all numeric and date attributes

•  One-dimensional clustering to produce multiple ranges (Reduces
false-negative hits)

•  Given k, find the largest k-1 gaps in the data

12

a1 a2 a4 a3 a5 a6 a8 a7 a9 a10

x

Query Q(x): [a1, a10] contains x

[a1,a2], [a3,a4], [a5,a6], [a7,a8], [a9,a10] do not contain x

E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

2) Coarse-Grained Inverted Index

•  Split-level as opposed to record-level

•  Inverted index implemented using bitmaps

•  Run-Length Encoding for effective compression

13

V1 10001010010100000…

V2 00010000100000001…

Vn 10000010000001100…

Fixed-size = # of splits in the input file

File A

Split 1 Split 2 Split 3 Split N Split i

{x, …} {x, …}

{x, …}

{x, …}

(x,{1,2, i})

Query Q(x): Only read splits 1, 2, and i

Split-Level
Inverted Index

E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

Inverted Index Limitations

14

v is infrequent-
scattered value

File A

Split 1 Split 2 Split 3 Split N Split i

{v, …} {v, …}

{v, …}

{v, …}

{v, …}

{v, …}

{v, …}

(V,{1,2,3, …, i, …, N})

Split-Level
Inverted Index

Query Q(v): Must read all splits containing value v !

Ø  Inverted Index is of no use for infrequent-scattered values

•  Values appearing in many splits, but few times per split

E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

3) Materialized Views

15

File A

Split 1 Split 2 Split 3 Split N Split i

{v, …} {v, …}

{v, …}

{v, …}

{v, …}

{v, …}

{v, …}

AMV

{v, …}

{v, …}
{v, …}

{v, …}

Split 1 Split M

{v, …}
M << N

Query Q(v): read only M splits (M << N)

•  Build a materialized view
AMV for each file A

•  Copy the data records
containing v to AMV

•  |AMV| << |A| (in splits)

•  At query time, E3 re-directs
Q(v) from A to AMV

E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

Building the Materialized View

16

•  MV is relatively very small è |AMV| ≈ (1%-2%) |A|

•  Infrequent-scattered values can be too many è which v’s to select?

•  Modeling as optimization problem: Submodular 0-1 Knapsack problem
•  Space constraint: AMV can hold M splits (R records)

•  Each value v has a profit and a cost
•  |Splits(v)|: # splits containing value v in original file A

•  |Records(v)|: # records containing value v in A

•  Profit(v) = |Splits(v)| – M

•  Cost(v) = |Records(v)|

E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

Building the Materialized View:
More Challenges

•  Submodular 0-1 Knapsack problem because

•  Selecting v and copying its records to AMV changes the cost of all other
values v’ contained in v’s records

•  Naïve greedy algorithm is too expensive in Hadoop

•  Requires sorting all the values (w.r.t. profit/cost) before selection

•  E3 avoids sorting

•  Estimates an upper bound K values needed to fill in AMV (over estimate)

•  One scan over the values è maintain the top K in max-heap (profit/cost)

•  Select from the top K (in order) until AMV is full

17 E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

Talk Outline

Ø Background and Motivation

Ø E3 System Features
Ø  Indexing and Domain Segmentation

Ø  Materialized Views

Ø  Adaptive Caching

Ø  Performance and Evaluation

18 E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

Optimizing Conjunctive
Predicates

•  Conjunctive predicates can be together very selective
•  But also harder to optimize (each predicate by itself may

not be selective)

19

File A

Split 1 Split 2 Split 3 Split N Split 4

{v, …} {v, …}

{v, w, …}

{v, …}

{v, …}

{v, …}

{v, …}

{w, …}

{w, …} {w, …} {w, …}

Query Q(v,w) ! read split 3 only

E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

Handling “nasty” Value-Pairs

•  Too expensive to identify all such value pairs (v, w)

•  Require computing |splits(v) ∩ splits(w)| >> |splits(v,w)| for
all (v,w) value pairs

•  Sampling does not work

•  E3’s Solution: Adaptive cache

•  Only “cache” pairs that are:

• Very nasty (high savings in splits if cached)

• Referenced frequently

• Referenced recently

20 E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

4) Adaptive Caching for “nasty” Value-Pairs

•  Select the value-pairs based on the observed query workload

•  Given (Q = P1 and P2) over values v and w
•  Compute (splits(v) ∩ splits(w)) from the inverted index

•  Monitor which map tasks return output records à splits(v, w)

•  If |splits(v) ∩ splits(w)| >> |splits(v, w)|, then
• Add (v, w, splits(v, w)) to the cache

21 E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

E3’s Cache Replacement Policy

•  LRU may perform poorly
•  It does not take savings into account

•  SFR (Savings-Frequency-Recency) Replacement Policy
•  Compute a weight for candidate (v,w):
•  Savings in splits: the bigger the saving, the higher the weight

•  Frequency: the more frequently queried, the higher the weight

• Recency: the more recently queried, the higher the weight

22 E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

E3 Computation Flow

23

Map-Phase
(split-level)

Reduce-Phase
(dataset-level)

Range statistics

(v, SplitId,
 RecordCount, …)

Inverted Index

Map-Phase
(split-level)

Selected subset of
nasty values

Data split

Final output Final output

Materialized view

Final output

Map-reduce
job

Map-only
job

E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

E3 Query Evaluation
(Putting It All Together)

24

1) Read file A & set of predicates P

E3 Wrapper
2) Consult E3’s metadata (A, P)

3) Return list of relevant splits
 Or AMV

4) Read AMV

4) Read A, list
of splits

OR

5) Input splits to query evaluation
(map-reduce engine)

>> Ranges & inverted index in light-
weight DB

>> Materialized views are in HDFS

E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

Talk Outline

Ø Background and Motivation

Ø E3 System Features
Ø  Indexing and Domain Segmentation

Ø  Materialized Views

Ø  Adaptive Caching

Ø  Performance and Evaluation

25 E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

Experimental Setup

•  Datasets (800GB)
•  Transaction Processing over XML (TPoX) – Orders

•  4 levels of nesting, 181 distinct fields

•  Transaction Processing Council (TPCH) – LineItems
•  1 level (no nesting),16 distinct fields

•  Cluster
•  41 nodes cluster: 1 master, and 40 data nodes, 8 cores
•  160 Mappers and 160 Reducers
•  Block size = 64MB, Replication factor = 2

•  Performance
•  Wall clock savings at query time
•  Computation cost of (1) Ranges, (2) Indexes, (3) Materialized view
•  Storage overhead of (1) Ranges, (2) Indexes, (3) Materialized view

26 E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

Query Response Time Savings

•  Query: read(hdfs(‘input’)) à filter (P1 ^ P2) à count();
•  Equality predicates

•  Savings depend on selectivity è up to 20x with E3 optimizations

27

TPOX Saving in Query Time (800GB)

0

100

200

300

400

500

600

Full Scan
(83 Waves)

80% 60% 40% 20% 10% 5% 1%

% of Scanned Waves

Ti
m

e
(S

ec
)

TPCH Saving in Query Time (800GB)

0

100

200

300

400

500

600

Full Scan
(83 Waves)

80% 60% 40% 20% 10% 5% 1%

% of Scanned Waves

Ti
m

e
(S

ec
)

E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

Computation Cost (TPoX)

28

•  Costs are shared whenever possible

•  Requires ~12 selective queries to redeem the cost

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!"

(!!!"

)!!!"

*+,-./"0$!"
1.-2.,3/4"

5,6.73.8"
5,8.9"

*+,-./":"
5,8.9"

;<"0#=4" *+,-./":"""""
;<"

*+,-./":";<"
:"5,8.9"

!"
#
$%
&'
$(
)%

!"#$%*+%,+#-.*$%'*/010(1%&!2+3456678)%

Size: 507MB

Size: 164GB Size: 7.5GB

E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

Computation Cost (TPCH)

29

•  Requires ~8 selective queries to redeem the cost

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!"

()*+,-".$!"
/,+0,*1-2"

3*4,51,6"
3*6,7"

()*+,-"8"
3*6,7"

9:".#;2" ()*+,-"8"""""
9:"

()*+,-"8"9:"
8"3*6,7"

!"
#
$%
&'
$(
)%

!"#$%*+%,+#-.*$%'*/010(1%&!2,3456678)%

Size: 61MB

Size: 41GB

Size: 7.6GB

E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

Summary & Lessons Learned

•  Eagle-Eyed Elephant (E3) integrates various indexing and
elimination techniques to effectively eliminate splits (I/O)

•  Up to 20x savings can be achieved using E3 optimizations

•  Discovery-based, No DDL or data movement

•  Partitioning alone is not enough. Also indexing alone is not
enough

•  More complex data ! More preprocessing cost ! more
queries to redeem the cost

30 E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

Related Work: Key Differences

•  Integration between multiple split-elimination techniques
•  Others use one mechanism

•  Use of caching and materialized views is novel in
Hadoop’s environment

•  Elimination of splits before reading them (I/O)
•  Others skip splits after retrieving them from disk

31 E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

32

Eagle-Eyed Elephant (E3): Split-Oriented
Indexing in Hadoop

E3 System EDBT 2013 , Mohamed Eltabakh , IBM Almaden Research

