Eagle-Eyed Elephant (E3): Split-Oriented Indexing in Hadoop

Mohamed Eltabakh
Worcester Polytechnic Institute, MA, USA

Joint work with IBM Almaden, CA, USA
F. Özcan, Y. Sismanis, H. Pirahesh, P. Haas, J. Vondrak
Data Explosion

1.3 Billion RFID tags in 2005
30 Billion RFID tags by 2010

Capital market data volumes grew 1,750%, 2003-06

1.3 Billion RFID tags in 2005
30 Billion RFID tags by 2010

2 Billion Internet users by 2011

4.6 Billion Mobile Phones World Wide

Twitter process 7 terabytes of data every day

Facebook process 10 terabytes of data every day

World Data Centre for Climate
- 220 Terabytes of Web data
- 9 Petabytes of additional data

2 Billion Internet users by 2011

The Digital Universe 2009-2020

Growing By A Factor Of 44

2009: 0.8 Zb
2020: 35.2 Zettabytes

Terabytes | Petabytes | Exabytes | Zettabytes

the amount of data stored by the average company today
Hadoop Analytical Platform

- Hadoop is a software platform for *distributed processing* over:
 - *Large datasets* → Terabytes or petabytes of data
 - *Large clusters* → hundreds or thousands of nodes

- Scalability (petabytes of data, thousands of machines)
- Flexibility in accepting all data formats (no schema)
- Efficient and simple fault-tolerant mechanism
- Commodity inexpensive hardware
Hadoop: Poor Performance

- Big performance gap between Hadoop and parallel databases

E3 System addresses the 1st type of limitations (while retaining Hadoop’s desired properties)

Many lessons from DBMSs are not utilized in Hadoop
 >> Indexing, caching, materialization, partitioning, ...

Expensive operations inherent to Hadoop’s design
 >> Blocking operators, disk-intensive use, no pipelining, ...
Talk Outline

- Background and Motivation
- E3 System Features
 - Indexing and Domain Segmentation
 - Materialized Views
 - Adaptive Caching
- Performance and Evaluation
Overview on Hadoop

- Hadoop is a master-slave shared-nothing distributed architecture

![Diagram of Hadoop architecture]

- Master node (single node)
- Many slave nodes
Hadoop Execution Engine (Map-Reduce)

- **Input blocks on HDFS (splits)**
- **Produces** (k, v) $(\square, 1)$
- **Shuffle & Sorting based on** k
- **Consumes** $(k, [v])$ $(\square, [1,1,1,1,1,1..])$

- **Produces** (k', v') $(\square, 100)$

Record-level processing

Group-level processing

Users only provide the “Map” and “Reduce” functions

E3 System EDBT 2013, Mohamed Eltabakh, IBM Almaden Research
E3 Motivation & Objectives

- **Typical Scenarios:** Analytical query workloads on Hadoop with *selection predicates*
 - Multiple (possibly repeated) queries over the same data set

- **No Smart Skipping:** No indexing (or *split elimination*) embedded into Hadoop
 - Queries scan all the data splits (relevant or not)

- **Little Users’ Knowledge:** Workloads and data may change
 - Users may not know the query workload in advance or the data schema

E3 Objectives

- Discovery-based elimination of irrelevant splits
- No dependency on physical design, No data movement or DDL
- Adapt to workload and data changes
E3 Design Goals

Re-think the indexing techniques and how they complement each other to fit Hadoop’s environment

Split-Oriented Elimination (I/O)

- HDFS is block oriented
- Record-level elimination is not effective

Cover All Discriminating Attributes

- Most attributes are discriminating
- Go beyond the partitioning key(s)
Talk Outline

- Background and Motivation

- E3 System Features
 - Indexing and Domain Segmentation
 - Materialized Views
 - Adaptive Caching

- Performance and Evaluation
E3: Highlights

- **JSON-Based Data Model**
 - Works on all data types/sources that provide a mapping to JSON (JSON view of the data)

- **Pre-Processing Phase for each dataset**
 - Split-level statistics
 - Integration of several techniques

- **Split elimination at I/O layer (InputFormat) before creating map tasks**
 - Can be integrated into Jaql
 - Can be used in hand-coded map-reduce jobs
1) Split-Level Domain Segmentation

- Applied for all *numeric* and *date* attributes
- One-dimensional clustering to produce *multiple ranges* *(Reduces false-negative hits)*
- Given k, find the largest $k-1$ gaps in the data

Query Q(x): $[a_1, a_{10}]$ contains x

$[a_1, a_2], [a_3, a_4], [a_5, a_6], [a_7, a_8], [a_9, a_{10}]$ do not contain x
2) Coarse-Grained Inverted Index

- Split-level as opposed to record-level
- Inverted index implemented using bitmaps
- Run-Length Encoding for effective compression

Fixed-size = # of splits in the input file

Query Q(x): Only read splits 1, 2, and i
Inverted Index Limitations

- Inverted Index is of no use for *infrequent-scattered* values
 - Values appearing in *many splits*, but *few times* per split

Query $Q(v)$: Must read all splits containing value v!
3) Materialized Views

- Build a materialized view A_{MV} for each file A
- Copy the data records containing v to A_{MV}
- $|A_{MV}| << |A|$ (in splits)
- At query time, E3 re-directs $Q(v)$ from A to A_{MV}
Building the Materialized View

- **MV is relatively very small** \(|A_{MV}| \approx (1\%-2\%) \cdot |A| \)
- **Infrequent-scattered values can be too many** \(\Rightarrow \) *which v’s to select?*

Modeling as optimization problem: Submodular 0-1 Knapsack problem
- Space constraint: \(A_{MV} \) can hold M splits (R records)
- Each value \(v \) has a **profit** and a **cost**
 - \(|Splits(v)| : \# \) splits containing value \(v \) in original file \(A \)
 - \(|Records(v)| : \# \) records containing value \(v \) in \(A \)
 - \(\text{Profit}(v) = |Splits(v)| - M \)
 - \(\text{Cost}(v) = |Records(v)| \)

Select subset of values \(v \) to:
\[
\text{Maximize } \sum \text{ profit}(v) \quad | \sum \text{ cost}(v) \leq R
\]
Building the Materialized View: More Challenges

- **Submodular 0-1 Knapsack problem because**
 - Selecting ν and copying its records to A_{MV} changes the cost of all other values ν' contained in ν’s records

- **Naïve greedy algorithm is too expensive in Hadoop**
 - Requires sorting all the values (w.r.t. profit/cost) before selection

- **E3 avoids sorting**
 - Estimates an upper bound K values needed to fill in A_{MV} (over estimate)
 - One scan over the values \Rightarrow maintain the top K in max-heap (profit/cost)
 - Select from the top K (in order) until A_{MV} is full
Talk Outline

- Background and Motivation

- E3 System Features
 - Indexing and Domain Segmentation
 - Materialized Views
 - Adaptive Caching

- Performance and Evaluation
Optimizing Conjunctive Predicates

- Conjunctive predicates can be *together* very selective
 - But also harder to optimize (each predicate by itself may not be selective)

File A

- Split 1: \{v, \ldots\}, \{w, \ldots\}
- Split 2: \{v, \ldots\}, \{w, \ldots\}
- Split 3: \{v, w, \ldots\}
- Split 4: \{v, \ldots\}, \{w, \ldots\}, \{v, \ldots\}
- Split N: \{v, \ldots\}, \{w, \ldots\}, \{v, \ldots\}

Query Q(v,w) \(\Rightarrow\) *read split 3 only*

- **Index cannot help:** \(\text{splits(v)} \cap \text{splits(w)} = \{1, 2, 3, \ldots, N\}\)
- **Materialized Views cannot help:** domain is too large to enumerate
Handling “nasty” Value-Pairs

• Too expensive to identify all such value pairs \((v, w)\)
 - Require computing \(|\text{splits}(v) \cap \text{splits}(w)| \gg |\text{splits}(v, w)|\) for all \((v, w)\) value pairs

• Sampling does not work

• E3’s Solution: Adaptive cache
 - Only “cache” pairs that are:
 • Very nasty (high savings in splits if cached)
 • Referenced frequently
 • Referenced recently
4) Adaptive Caching for “nasty” Value-Pairs

- Select the value-pairs based on the observed query workload

- **Given** \((Q = P1 \text{ and } P2)\) over values \(v\) and \(w\)
 - Compute \((\text{splits}(v) \cap \text{splits}(w))\) from the inverted index
 - Monitor which map tasks return output records \(\rightarrow \text{splits}(v, w)\)
 - If \(|\text{splits}(v) \cap \text{splits}(w)| \gg |\text{splits}(v, w)|\), then
 - Add \((v, w, \text{splits}(v, w))\) to the cache

Cache is limited in space, value-pairs can be too many
E3’s Cache Replacement Policy

- **LRU may perform poorly**
 - It does not take savings into account

- **SFR (Savings-Frequency-Recency) Replacement Policy**
 - Compute a weight for candidate \((v,w)\):
 - *Savings in splits*: the bigger the saving, the higher the weight
 - *Frequency*: the more frequently queried, the higher the weight
 - *Recency*: the more recently queried, the higher the weight
E3 Computation Flow

Need two jobs to pre-process the data

Data split

Map-Phase (split-level)

(v, SplitId, RecordCount, …)

Reduce-Phase (dataset-level)

Selected subset of nasty values

Inverted Index

Range statistics

Final output

Final output

Materialized view

Map-only job

Map-reduce job
E3 Query Evaluation
(Putting It All Together)

1) Read file A & set of predicates P

E3 Wrapper

2) Consult E3’s metadata (A, P)

Input Format

3) Return list of relevant splits
 Or A_{MV}

4) Read A, list of splits
 OR

5) Input splits to query evaluation
 (map-reduce engine)

E3 Metadata

>> Ranges & inverted index in light-weight DB

>> Materialized views are in HDFS
Talk Outline

- Background and Motivation
- E3 System Features
 - Indexing and Domain Segmentation
 - Materialized Views
 - Adaptive Caching
- Performance and Evaluation
Experimental Setup

- **Datasets (800GB)**
 - Transaction Processing over XML (TPoX) – Orders
 - 4 levels of nesting, 181 distinct fields
 - Transaction Processing Council (TPCH) – LineItems
 - 1 level (no nesting), 16 distinct fields

- **Cluster**
 - 41 nodes cluster: 1 master, and 40 data nodes, 8 cores
 - 160 Mappers and 160 Reducers
 - Block size = 64MB, Replication factor = 2

- **Performance**
 - Wall clock savings at query time
 - Computation cost of (1) Ranges, (2) Indexes, (3) Materialized view
 - Storage overhead of (1) Ranges, (2) Indexes, (3) Materialized view
Query Response Time Savings

- Query: read(hdfs('input')) → filter (P1 ^ P2) → count();
 - Equality predicates
- Savings depend on selectivity ➞ up to 20x with E3 optimizations
Computation Cost (TPoX)

- Costs are shared whenever possible
- Requires ~12 selective queries to redeem the cost
Computation Cost (TPCH)

- Requires ~8 selective queries to redeem the cost
Summary & Lessons Learned

• **Eagle-Eyed Elephant (E3)** integrates various indexing and elimination techniques to effectively eliminate splits (I/O)

• Up to **20x savings** can be achieved using E3 optimizations

• Discovery-based, No DDL or data movement

• Partitioning alone is not enough. Also indexing alone is not enough

• More complex data ➔ More preprocessing cost ➔ more queries to redeem the cost
Related Work: Key Differences

- Integration between multiple split-elimination techniques
 - Others use one mechanism

- Use of caching and materialized views is novel in Hadoop’s environment

- Elimination of splits before reading them (I/O)
 - Others skip splits after retrieving them from disk
Eagle-Eyed Elephant (E3): Split-Oriented Indexing in Hadoop

Thank You