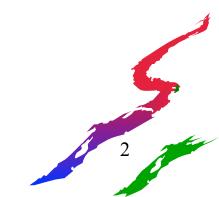
CORDS: Automatic Discovery of Correlations and Soft Functional Dependencies

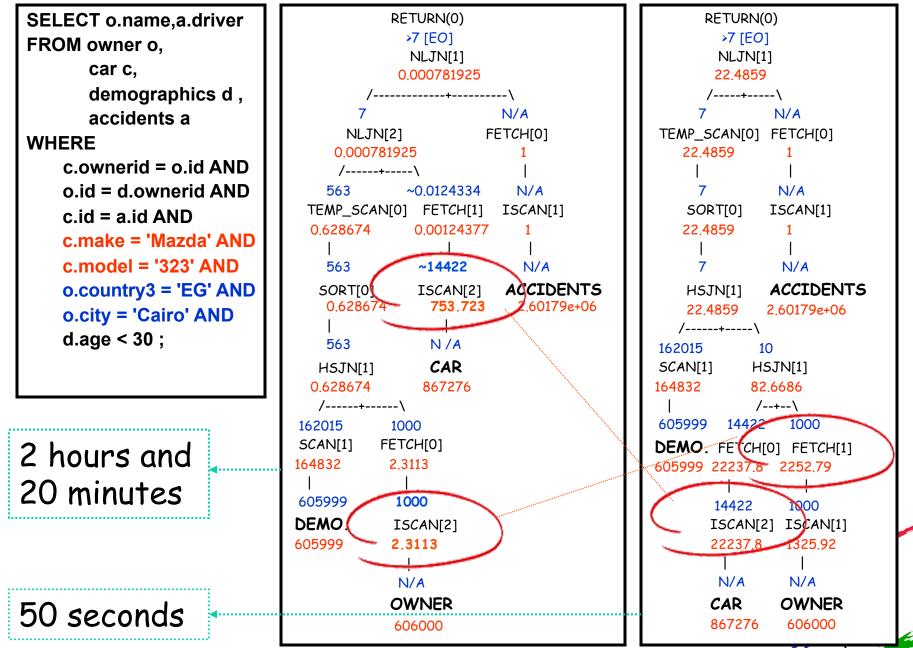
Ihab Ilyas⁺ Volker Markl^{*} Peter Haas^{*} Paul Brown^{*} Ashraf Aboulnaga⁺

*IBM Almaden Research Center ⁺University of Waterloo (work performed while at IBM)

Motivating Example

SELECT o.name,a.driver FROM owner o, car c, demographics d, accidents a WHERE c.ownerid = o.id AND o.id = d.ownerid ANDc.id = a.id ANDc.make = 'Mazda' AND c.model = '323' AND o.country3 = 'EG' AND o.city = 'Cairo' AND d.age < 30 ;





Motivation (Cont'd)

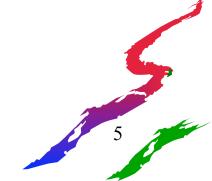
- The Independence Assumption
 - Orders of magnitude error in estimating selectivity
 - Optimizer chooses sub-optimal plans
- A simple solution: build statistics on groups of columns
- The Challenge: Huge # of possible groups
 Get highly "correlated" groups only

CORDS

A system for automatically detecting
Soft functional dependencies

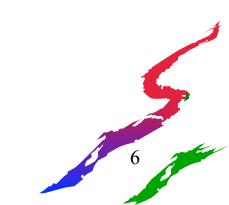
Make = 'Mazda' 🗲 Model = 'Accord'

- Correlations (statistical dependencies)
- Applications
 - Data mining
 - Query optimization (our main focus)



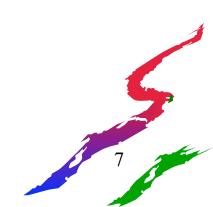
Outline

- CORDS details
- Application to query optimization
- Experimental Results
- Related work
- Conclusion



Outline

- CORDS details
 - Overview
 - Enumeration
 - Correlation detection
 - Sampling
 - Dependency graphs
- Application to query optimization
- Experimental results
- Related work
- Conclusion



CORDS: Overview

- Phase1: Enumeration
 - Enumerate all possible candidate column pairs
 - Apply pruning rules to limit # for Phase 2
- Phase2: Correlation detection
 - For each candidate column pair:
 - Test for spurious correlation (trivial cases)
 - Test for soft functional dependency
 - Test for correlation

CORDS: Enumeration

- All possible column pairs
 - Within each table ("trivial" pairing rule)
 - Across all joinable tables (PK-FK pairing rule)
- Prune the candidates (flexible rule set)
 - Type constraints
 - No CLOBs or BLOBs
 - Compatible types
 - Pairing Constraints
 - Declared PK with all possible FK
 - Declared PK and FK
 - Workload Constraints

CORDS: Correlation Detection

[1] Test for trivial cases (assume |A| ≥ |B|) IF |A| ≈ |R|: RETURN ("A is a soft key") IF |A| ≈ 1 or |B| ≈ 1: RETURN ("Trivial column")
[2] Sample R to get S

[3] Test for soft functional dependency

IF $|S| \gg |A,B|$ AND $|A| \approx |A,B|$:

RETURN (" $A \rightarrow B$ with strength |A|/|A,B|")

[4] Skew Handling for Chi-squared Test

IF "skewed": FILTER S with the frequent values

[5] Sampling-based Chi-squared Test

Build a (skew-dependent) contingency table for A ? B from S Apply Chi-squared test If correlated, RETURN ("Correlated with degree of correlation = x") else RETURN ("not correlated")

CORDS: Sampling

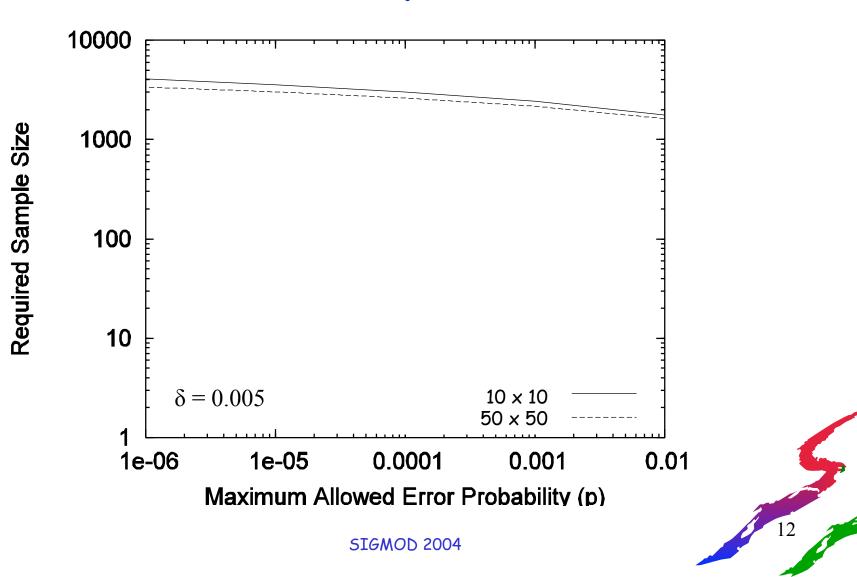
- Choose size of S such that
 - $Pr(``correlated'' | correlation < \delta) < p$
 - $Pr(``not correlated'' | correlation > \delta) < p$
- Required sample size independent of
 - # rows in R
 - Dimensions of contingency table (almost)
 - Error probability p (almost)
- Novel approximation for sample size
 - Special case: d x d contingency table

$$n \approx \frac{\left[-16d^2 \log\left(p\sqrt{2\pi}\right)\right]^{1/2} - 8\log\left(p\sqrt{2\pi}\right)}{1.69\delta d^{0.858}}$$

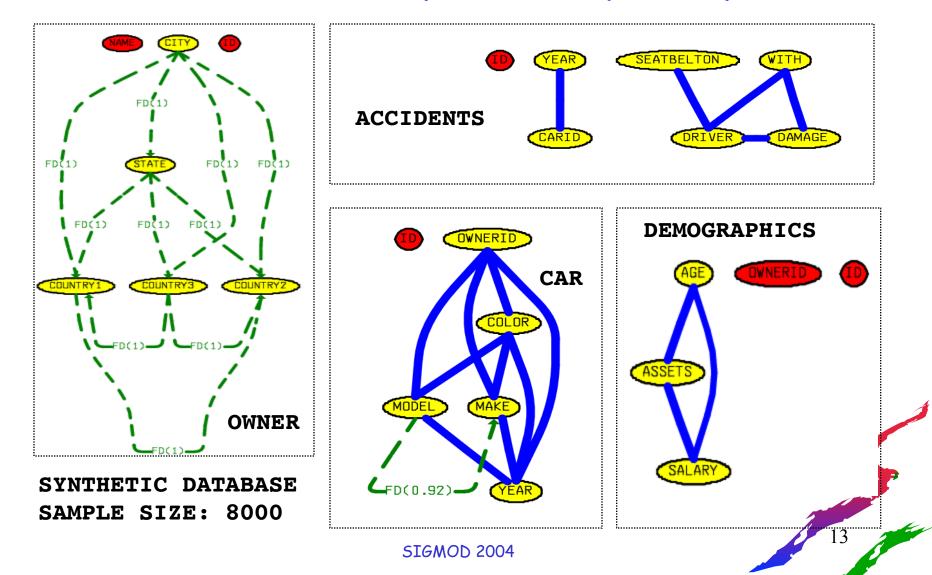
SIGMOD 2004

Correlation measured by "mean-square contingency"

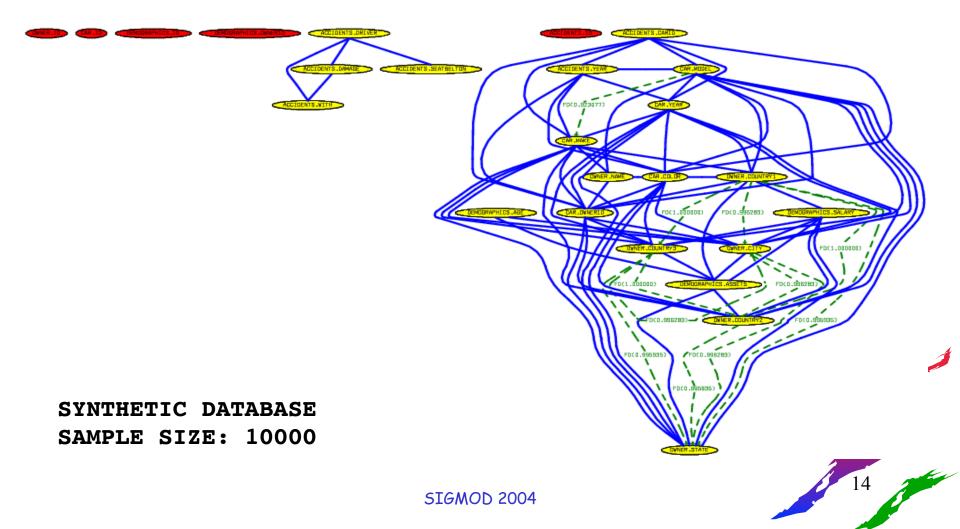
A Fixed Sample Size is OK



CORDS: Dependency Graph



CORDS: Dependency Graph (across tables)

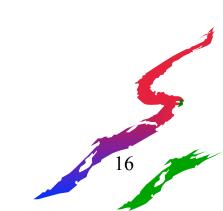


Outline

- CORDS details
- Application to query optimization
- Experimental Results
- Related work
- Conclusion

Column Group Stats (CGS)

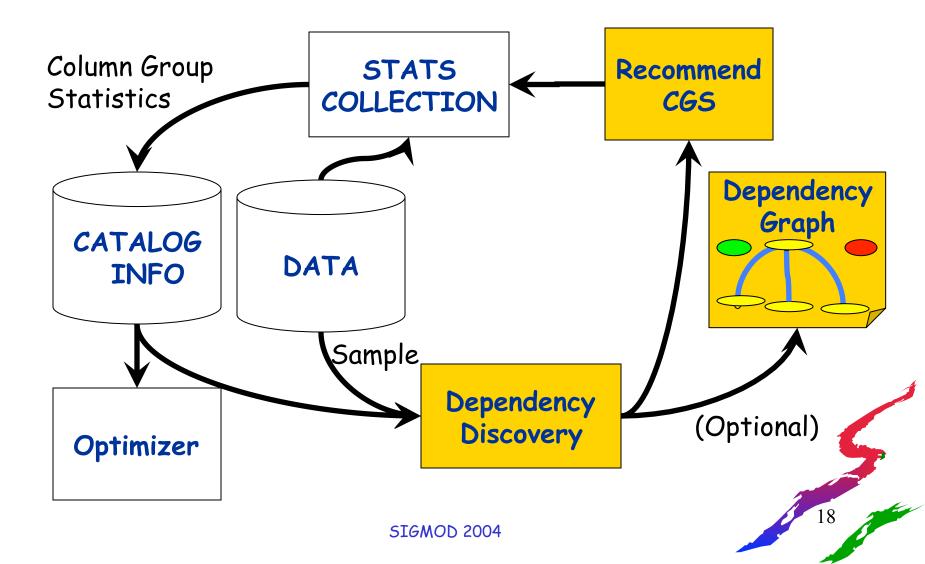
- Statistics about a group of columns
- Relatively easy to compute
 - Concatenate columns
 - Then obtain "usual" statistics
- Ex.: For two columns A and B
 - |A,B| = # of distinct (a,b) values



Using CGS

- P_A : "Make = Mazda" and P_B : "Model = 323"
- Assuming uniformity & independence:
 Selectivity(P_A AND P_B) = 1/|Make| × 1/|Model|
- Exploit CGS |Make,Model|:
 - Apply adjustment factor = |Make|x|Model| / |Make,Model|
 - Selectivity(P_A AND P_B) = 1 / |Make,Model|
- Error due to faulty independence assumption is eliminated!
- Error due to uniformity assumption remains
 - In practice, most error is due to independence assumption
 - Future work: exploit column group distribution statistics

CORDS for Query Optimization



CORDS: Recommending CGS

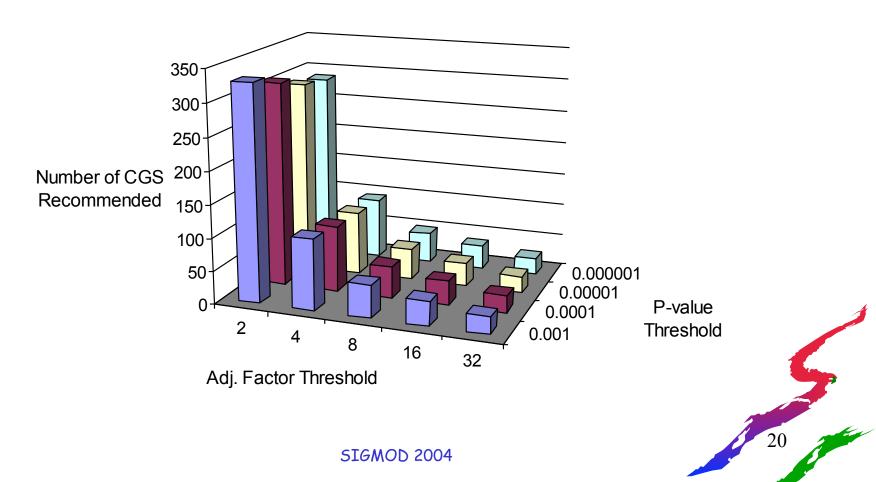
- Rank Soft FD's by their Strength
- Rank correlation by their degree of correlation
 Mean-square contingency or p-value
- Break ties using the adjustment factor:

Adjustment factor = $\frac{|A| \times |B|}{|A,B|}$

• Can rank by adjustment factor

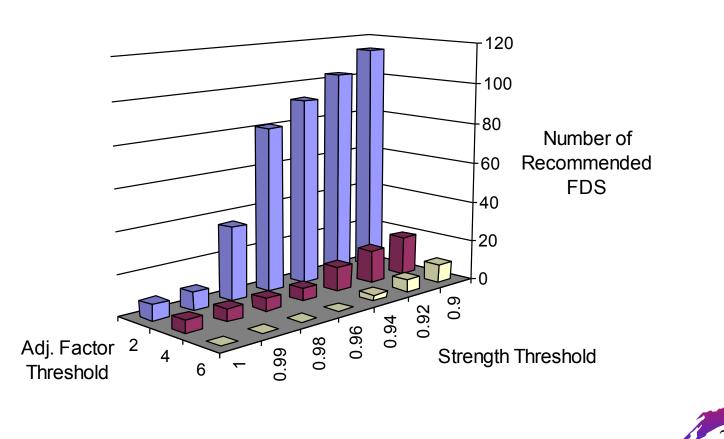
CORDS: Recommending CGS

Census Data (2000 samples) 2065 Discovered Correlations



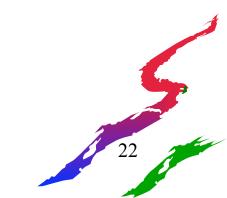
CORDS: Recommending CGS

Census Data (2000 samples) 114 Soft Fds Discovered

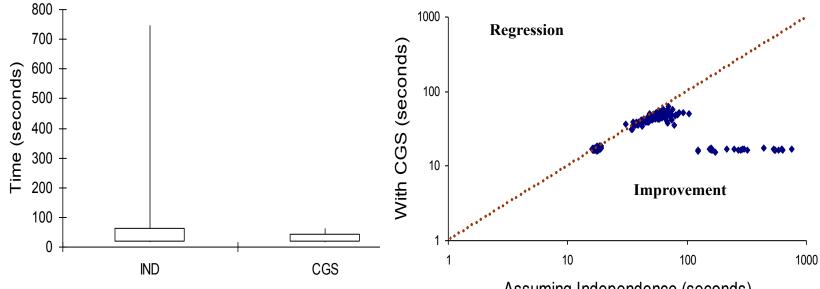


Outline

- CORDS details
- Application to query optimization
- Experimental Results
- Related work
- Conclusion



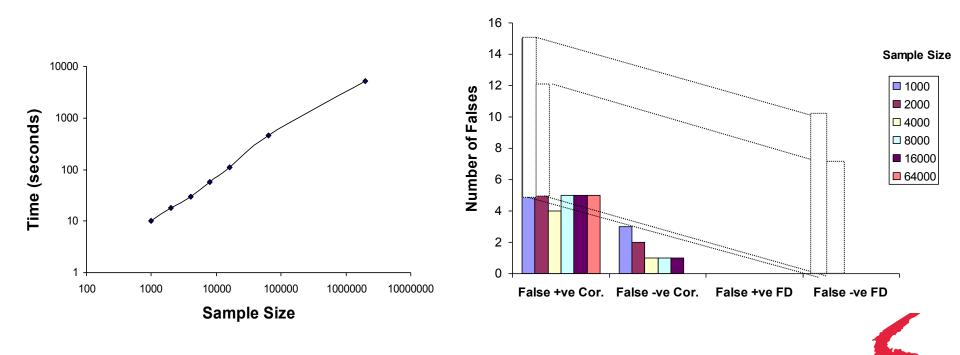
Experiments (Performance)



Assuming Independence (seconds)

23

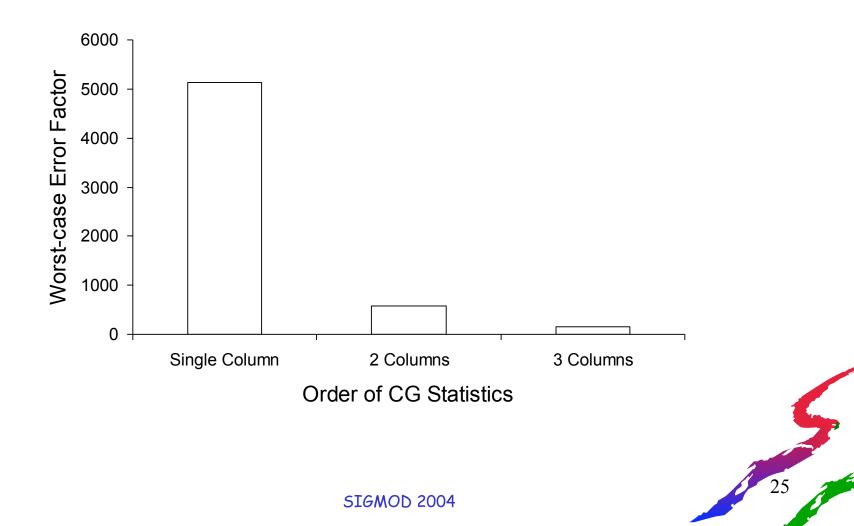
Experiments (Accuracy vs. Time)



SIGMOD 2004

24

Experiments (Diminishing Return)



Related Work (Ours)

- Query Driven (LEO)
 - Compare the actual selectivity to the estimated (adjustment factor)
 - Identify groups with large adjustments
 - Limited to columns in workload
 - "Learning" can take time (lack of robustness)
- Data-driven (B-HUNT)
 - Look at the data
 - Identify columns with algebraic constraints
 - Rewrite query to exploit the algebraic constraints

Related Work (Others)

- Data-driven:
 - Bayesian/Markov networks
 - Correlation criteria: conditional independence, x-entropy, meansquare contingency, etc.
 - Scalability issues: Can be expensive to construct, maintain
 - Mining of FDs and semantic integrity constraints
 - Exact results obtained
 - No sampling, so very expensive
 - Association-rule mining
 - Relations between specific attribute values
 - CORDS considers attributes as a whole

27

Related Work (Others)

- Query-driven:
 - SITs
 - Query *workload* + optimizer estimates determine stored stats (single column of views)
 - STHoles
 - Detects correlation for *specified* columns
 - SASH
 - Dynamic Markov network model (scalability?)

Advantages of CORDS

Simplicity

- Pairwise correlations only
- Effective combination of simple algorithms
- Scalability to large DBs
 - Simplicity + use of sampling
- Feasible and effective for commercial systems
 - Relatively easy to implement
 - Low runtime overhead
 - Large speedups in query processing

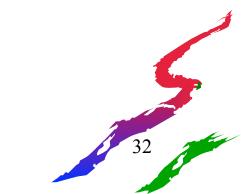
Outline

- CORDS details
- Application to query optimization
- Experimental Results
- Related work
- Conclusion

Conclusion

- Goal: Automatically, efficiently discover correlations + soft FDs
- A simple and effective solution: CORDS
 - Enumeration + Pruning Rules + Sampling + Chi-square/Counting
 - Dependency graphs for mining
 - CGS ranking and exploitation for optimization
- Future work
 - 3-way dependencies?
 - Interactive dependency graphs ("slider bars")
 - Applications to schema discovery
 - Synthesize query + data-driven approaches
 - XML data?

Backup Slides



Mean-Square Contingency

• Measures statistical dependence between columns A and B:

$$\phi^{2} = \frac{1}{\min(d_{A}, d_{B}) - 1} \sum_{i=1}^{d_{A}} \sum_{j=1}^{d_{B}} \frac{(\pi_{ij} - \pi_{ig}\pi_{gj})^{2}}{\pi_{ig}\pi_{gj}}$$

• Where

 d_{χ} = (bucketized) domain size for column X (X = A,B) π_{ii} = fraction of (a,b) pairs with a = i and b = j

$$\pi_{i\mathrm{g}} = \sum_{j} \pi_{ij}$$
 and $\pi_{\mathrm{g}j} = \sum_{i} \pi_{ij}$

- Properties
 - $0 \le \varphi^2 \le 1$
 - $\varphi^2 = 0$: independence
 - $\varphi^2 = 1$: hard FD

Chi-Squared Test

- Consider special case: $d_A = d_B = d$
- Idea: declare correlation if estimated value of $n(d-1) \varphi^2$ is "large"
- Estimate by

$$\chi^{2} = \sum_{i=1}^{d_{A}} \sum_{j=1}^{d_{B}} \frac{(n_{ij} - n_{ig} n_{gj})^{2}}{n_{ig} n_{gj}}$$

- If true independence $(\varphi^2 \leq \delta)$
 - χ^2 has \approx chi-squared distribution with v = $(d-1)^2$ "degrees of freedom"
- p-value for observed value $\chi^2 = u$
 - p-value = $Pr(\chi^2 \ge u \mid independence)$
- Reject independence if p-value < p_{min} (or $\chi^2 > u_{max}$)
 - I.e., reject if independence is too unlikely
- Requirement: not too many small or zero n_{ij} values