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Motivating Example 
SELECT o.name,a.driver 
FROM   owner o,  

  car c,  
  demographics d ,  
  accidents a 

WHERE  c.ownerid = o.id AND  
 o.id = d.ownerid AND 
 c.id = a.id AND 
 c.make = 'Mazda' AND  
 c.model = '323' AND 
 o.country3 = 'EG' AND 
 o.city = 'Cairo' AND 
 d.age < 30 ; 
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                   RETURN(0)  
       >7 [EO]  

                              NLJN[1]  
                           0.000781925 
                   /-------------+----------\ 
                 7                                  N/A  
              NLJN[2]                     FETCH[0]  
           0.000781925                          1  
            /------+-----\                         | 
         563              ~0.0124334         N/A  
    TEMP_SCAN[0]    FETCH[1]     ISCAN[1]  
     0.628674           0.00124377         1  
         |                             |                   | 
         563                 ~14422              N/A  
       SORT[0]           ISCAN[2]      ACCIDENTS     

0.628674           753.723        2.60179e+06  
         |                            | 
         563                    N /A  
       HSJN[1]              CAR  
     0.628674             867276  
       /------+------\ 
  162015            1000  
  SCAN[1]       FETCH[0]  
 164832            2.3113  
    |                       | 
  605999            1000  
 DEMO.           ISCAN[2]  
 605999            2.3113  
                             | 
                           N/A  
                         OWNER  
                          606000  

      RETURN(0)  
                  >7 [EO]  
                 NLJN[1]  
                22.4859  
              /-----+-----\ 
            7                 N/A  
  TEMP_SCAN[0]   FETCH[0]  
        22.4859             1  
           |                      | 
            7                  N/A  
         SORT[0]       ISCAN[1]  
        22.4859             1  
            |                     | 
            7                   N/A  
         HSJN[1]       ACCIDENTS  
         22.4859       2.60179e+06  
       /------+-----\ 
  162015              10  
  SCAN[1]          HSJN[1]  
 164832         82.6686  
    |                     /--+--\ 
  605999     14422      1000  
 DEMO.  FETCH[0]   FETCH[1]  
 605999  22237.8    2252.79  
                   |                  | 
                14422         1000  
               ISCAN[2]   ISCAN[1]  
               22237.8      1325.92  
                  |                  | 
                 N/A           N/A  
               CAR        OWNER  
               867276       606000  

SELECT o.name,a.driver 
FROM owner o,  
            car c,  
            demographics d ,  
            accidents a 
WHERE  
       c.ownerid = o.id AND  

 o.id = d.ownerid AND 
 c.id = a.id AND 
 c.make = 'Mazda' AND  
 c.model = '323' AND 
 o.country3 = 'EG' AND 
 o.city = 'Cairo' AND 
 d.age < 30 ; 

50 seconds 

2 hours and 
20 minutes 
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Motivation (Cont’d) 
•  The Independence Assumption  

–  Orders of magnitude error in estimating 
selectivity 

–  Optimizer chooses sub-optimal plans 
 
•  A simple solution: build statistics on groups 

of columns  

•  The Challenge: Huge # of possible groups 
–  Get highly “correlated” groups only 
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CORDS 

•  A system for automatically detecting 
–  Soft functional dependencies 

 

–  Correlations (statistical dependencies) 

•  Applications 
–  Data mining 
–  Query optimization (our main focus) 

Make = ‘Mazda’ è Model = ‘Accord’ 
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Outline 

•  CORDS details 
•  Application to query optimization 
•  Experimental Results 
•  Related work 
•  Conclusion 



7 
SIGMOD 2004 

Outline 
•  CORDS details 

–  Overview 
–  Enumeration 
–  Correlation detection 
–  Sampling 
–  Dependency graphs 

•  Application to query optimization 
•  Experimental results 
•  Related work 
•  Conclusion 
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CORDS: Overview 

•  Phase1: Enumeration 
–  Enumerate all possible candidate column pairs 
–  Apply pruning rules to limit # for Phase 2 

•  Phase2: Correlation detection 
–  For each candidate column pair: 

•  Test for spurious correlation (trivial cases) 
•  Test for soft functional dependency 
•  Test for correlation 
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CORDS: Enumeration 
•  All possible column pairs 

–  Within each table (“trivial” pairing rule) 
–  Across all joinable tables (PK-FK pairing rule) 

•  Prune the candidates (flexible rule set) 
–  Type constraints 

•  No CLOBs or BLOBs 
•  Compatible types 

–  Pairing Constraints 
•  Declared PK with all possible FK 
•  Declared PK and FK 

–  Workload Constraints 
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CORDS: Correlation Detection 
[1] Test for trivial cases (assume |A| ≥ |B|) 

IF |A| ≈ |R|: RETURN (“A is a soft key” ) 
IF |A| ≈ 1  or |B| ≈  1: RETURN (“ Trivial column” ) 

[2] Sample R to get S 
[3] Test for soft functional dependency 

 IF |S| >> |A,B| AND |A| ≈ |A,B|: 
             RETURN (“ AèB with strength |A|/|A,B|” ) 
[4] Skew Handling for Chi-squared Test 

 IF “skewed”:  FILTER S with the frequent values 
[5] Sampling-based Chi-squared Test 

 Build a (skew-dependent) contingency table for A � B from S 
 Apply Chi-squared test 

          If correlated, RETURN (“Correlated with degree of correlation = x”) 
             else RETURN (“not correlated”) 
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CORDS: Sampling 
•  Choose size of S such that 

–  Pr(“correlated” | correlation < δ) < p 
–  Pr(“not correlated” | correlation > δ) < p 

•  Required sample size independent of 
–  # rows in R 
–  Dimensions of contingency table (almost) 
–  Error probability p (almost) 

•  Novel approximation for sample size  
–  Special case: d x d contingency table 

( ) ( )π π
δ

⎡ ⎤− −⎣ ⎦≈

1/22

0.858

16 log 2 8log 2
1.69

d p p
n

d

Correlation measured by  
“mean-square contingency” 
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A Fixed Sample Size is OK 

10 x 10 
50 x 50 

δ = 0.005 
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OWNER

ACCIDENTS

SYNTHETIC DATABASE
SAMPLE SIZE: 8000

CORDS: Dependency Graph 

CAR

DEMOGRAPHICS
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SYNTHETIC DATABASE
SAMPLE SIZE: 10000

CORDS: Dependency Graph  
(across tables) 
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Outline 

•  CORDS details 
•  Application to query optimization 
•  Experimental Results 
•  Related work 
•  Conclusion 
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Column Group Stats (CGS) 

•  Statistics about a group of columns 

•  Relatively easy to compute 
–  Concatenate columns 
–  Then obtain “usual” statistics 

•  Ex.: For two columns A and B 
–  |A,B| = # of distinct (a,b) values 
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Using CGS 
•  PA: “Make = Mazda”  and  PB: “Model = 323” 

•  Assuming uniformity & independence: 

       Selectivity(PA AND PB) =  1/|Make| x 1/|Model| 

•  Exploit CGS |Make,Model|:  
–  Apply adjustment factor =|Make|x|Model| / |Make,Model| 
–  Selectivity(PA AND PB) = 1 / |Make,Model| 

•  Error due to faulty independence assumption is eliminated! 

•  Error due to uniformity assumption remains 
–  In practice, most error is due to independence assumption 
–  Future work: exploit column group distribution statistics 
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CORDS for Query Optimization 
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CORDS: Recommending CGS 
•  Rank Soft FD’s by their Strength 
 
•  Rank correlation by their degree of correlation  

–  Mean-square contingency or p-value 
 
•  Break ties using the adjustment factor: 

 
                   |A|x|B| 

Adjustment factor  =  
                      |A,B| 

 
•  Can rank by adjustment factor 
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CORDS: Recommending CGS 
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CORDS: Recommending CGS 
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Outline 

•  CORDS details 
•  Application to query optimization 
•  Experimental Results 
•  Related work 
•  Conclusion 
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Experiments (Performance) 
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Experiments (Accuracy vs. Time) 
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Experiments (Diminishing Return) 
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Related Work (Ours) 
•  Query Driven (LEO) 

–  Compare the actual selectivity to the estimated 
(adjustment factor) 

–  Identify groups with large adjustments 
–  Limited to columns in workload 
–  “Learning” can take time (lack of robustness) 

•  Data-driven (B-HUNT)  
–  Look at the data 
–  Identify columns with algebraic constraints 
–  Rewrite query to exploit the algebraic 

constraints 
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Related Work (Others) 
•  Data-driven: 

–  Bayesian/Markov networks 
•  Correlation criteria: conditional independence, x-entropy, mean-

square contingency, etc. 
•  Scalability issues: Can be expensive to construct, maintain 
  

–  Mining of FDs and semantic integrity constraints 
•  Exact results obtained 
•  No sampling, so very expensive 

–  Association-rule mining 
•  Relations between specific attribute values 
•  CORDS considers attributes as a whole 
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Related Work (Others) 

•  Query-driven: 
–  SITs 

•  Query workload + optimizer estimates determine stored 
stats (single column of views) 

–  STHoles 
•  Detects correlation for specified columns 

–  SASH 
•  Dynamic Markov network model (scalability?) 



29 
SIGMOD 2004 

Advantages of CORDS 
•  Simplicity 

–  Pairwise correlations only 
–  Effective combination of simple algorithms 

•  Scalability to large DBs 
–  Simplicity + use of sampling 

•  Feasible and effective for commercial systems 
–  Relatively easy to implement 
–  Low runtime overhead 
–  Large speedups in query processing 
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Outline 

•  CORDS details 
•  Application to query optimization 
•  Experimental Results 
•  Related work 
•  Conclusion 
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Conclusion 
•  Goal: Automatically, efficiently discover correlations + soft FDs 

•  A simple and effective solution: CORDS  
–  Enumeration + Pruning Rules + Sampling + Chi-square/Counting 
–  Dependency graphs for mining 
–  CGS ranking and exploitation for optimization 

•  Future work 
–  3-way dependencies? 
–  Interactive dependency graphs (“slider bars”) 
–  Applications to schema discovery 
–  Synthesize query + data-driven approaches 
–  XML data? 
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Backup Slides 
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Mean-Square Contingency 
•  Measures statistical dependence between columns A and B: 

•  Where 

•   Properties 
–  0 ≤ φ2 ≤ 1 
–  φ2 = 0: independence 
–  φ2 = 1:  hard FD 

π π π
φ

π π= =

−
=

− ∑∑ g g

g g

2
2

1 1

( )1
min( , ) 1

BA dd
ij i j

i jA B i jd d

π

π π π π

=
= = =

= =∑ ∑g g

 (bucketized) domain size for column X   (X = A,B)
 fraction of ( , ) pairs with  and 

 and 

X

ij

i ij j ij
j i

d
a b a i b j
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Chi-Squared Test 
•  Consider special case: dA = dB = d 
•  Idea: declare correlation if estimated value of n (d-1) φ2 is 

“large” 
•  Estimate by 

•  If true independence (φ2 ≤ δ) 
–   χ2 has ≈  chi-squared distribution with ν = (d-1)2 “degrees of 

freedom” 
•  p-value for observed value χ2 = u   

–  p-value = Pr(χ2  ≥ u | independence) 
•  Reject independence if p-value < pmin (or χ2 > umax) 

–  I.e., reject if independence is too unlikely 
•  Requirement: not too many small or zero nij values 
 

χ
= =

−
=∑∑ g g

g g

2
2

1 1

( )BA dd
ij i j

i j i j

n n n
n n


