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ABSTRACT
Enterprises often need to assess and manage the risk arising from
uncertainty in their data. Such uncertainty is typically modeled as
a probability distribution over the uncertain data values, specified
by means of a complex (often predictive) stochastic model. The
probability distribution over data values leads to a probability dis-
tribution over database query results, and risk assessment amounts
to exploration of the upper or lower tail of a query-result distribu-
tion. In this paper, we extend the Monte Carlo Database System
to efficiently obtain a set of samples from the tail of a query-result
distribution by adapting recent “Gibbs cloning” ideas from the sim-
ulation literature to a database setting.

1. INTRODUCTION
In the face of regulatory processes such as Basel II and Sol-

vency 2, enterprises are becoming increasingly concerned with man-
aging and assessing the credit, financial, engineering, and opera-
tional risk arising from uncertain data [16]. Examples of uncertain
data include future values of financial assets, customer order quan-
tities under hypothetical price changes, and transportation times for
future shipments under alternative shipping schemes.

Data uncertainty is usually modeled as a probability distribution
over possible data values, and such probabilities are often specified
via complex stochastic models. E.g., we might specify the forego-
ing uncertain financial, retail, and logistics data sets using Euler ap-
proximations to stochastic differential equations, Bayesian demand
models, and stochastic network models, respectively. This spec-
ification in turn leads to the representation of data uncertainty as
a probability distribution over possible database instances (“possi-
ble DBs,” also called “possible worlds”). Running an aggregation
query such as “select sum of sales” over uncertain data therefore
does not yield a single, deterministic result for total sales; rather,
there is a probability distribution over all possible query results.

In this setting, risk assessment typically corresponds to comput-
ing interesting properties of the upper or lower tails of the query-
result distribution; for example, computing the probability of a
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large investment loss. The problem is made more complex by the
fact that the tails of the distribution are hard to specify a priori, and
so risk analysis frequently focuses on the inverse problem of deter-
mining an extreme quantile, e.g., determining the value γ such that
there is a 0.1% probability of seeing a loss of γ or more. Such a
“value at risk” can be viewed as a probabilistic worst-case scenario,
and might be used to specify precisely where the “upper tail” of the
loss distribution starts. Proceeding further, one might be interested
in computing a more sophisticated “coherent” risk measure such as
“expected shortfall” [16], which in this example is defined as the
expected total loss, given that this loss exceeds γ. More generally,
the entire conditional distribution of the loss—given that the loss
exceeds γ—might be of interest.

MCDB In prior work, the Monte Carlo Database System (MCDB)
of Jampani et al. [13] was designed for flexible exploration of query-
result distributions under arbitrary SQL queries and a broad range
of complex, user-defined stochastic models. MCDB uses (pos-
sibly user-defined) “variable generation” (VG) functions to pseu-
dorandomly generate instances of each uncertain data value in a
database, yielding a sample from the possible-DB distribution. Re-
peating this process multiple times (i.e., executing multiple “Monte
Carlo repetitions”) generates a set of independent and identically
distributed (i.i.d.) samples from this distribution. Given an SQL
aggregation query of interest, MCDB executes the query on each
sampled DB instance, thereby generating i.i.d. samples from the
query-result distribution. MCDB uses Monte Carlo techniques to
estimate interesting features of the query-result distribution—the
expected value, variance, and quantiles of the query answer—along
with probabilistic error bounds on the estimates. Importantly, a VG
function takes as input one or more parameter tables (ordinary re-
lations) that control the function’s behavior, and produces as output
a table containing one or more correlated data values.

For n Monte Carlo repetitions, MCDB does not actually mate-
rialize an uncertain database n times; the costs for such a naive
approach would be exorbitant. Instead, MCDB executes a query
plan only once over a set of tuple bundles rather than over or-
dinary tuples—no matter how many Monte Carlo repetitions are
required—often leading to significant time savings. A tuple bundle
encapsulates the instantiations of a tuple over a set of generated DB
instances, and carries along the pseudorandom number seeds used
by the VG functions to instantiate the uncertain data values.

Limitations of MCDB for Risk Analysis Unfortunately, naive
Monte Carlo, as implemented in the original MCDB prototype,
is not the best tool for exploring the tails of a query-result distri-
bution. Consider the query SELECT SUM(loss) AS total-
Loss FROM t, where t.loss is an uncertain attribute, perhaps
representing a future financial loss. Suppose that the query-result



distribution is normally distributed, with a mean of $10 million and
a standard deviation of $1 million. Suppose that interest centers on
the upper tail of this distribution that corresponds to totalLoss
values of $15 million or more. On average, roughly 3.5 million
Monte Carlo repetitions are required before such an extremely high
loss is observed even once. If our goal is simply to estimate the
area of the tail (i.e., the probability of seeing a totalLoss value
of $15 million or more), then 130 billion repetitions are required
to estimate the desired probability to within ±1% with a confi-
dence of 95%. If the user instead wants to define the tail indi-
rectly starting at the value γ, where γ is the 0.999 quantile of the
totalLoss distribution, then standard quantile-estimation tech-
niques [19, Sec. 2.6] require roughly ten million Monte Carlo rep-
etitions to estimate γ to within ±1% with a confidence of 95%,

Our Contributions In this paper, we describe an enhanced ver-
sion of MCDB for risk analysis called MCDB-R. MCDB-R in-
herits the key strengths of MCDB. Chief among these is gener-
ality. MCDB can handle almost any stochastic model, as well as
database operations such as aggregation, grouping, and so forth.
However, unlike MCDB, MCDB-R supports efficient risk analysis.
This presents several technical challenges: efficiently locating a tail
of interest and efficiently sampling from the tail, all in the presence
of black-box VG functions and complex SQL queries. Our contri-
butions are as follows.

1. We adapt “cloning” and Gibbs-sampling ideas from the rare-
event simulation literature to develop a statistical method for both
estimating a user-specified quantile on a query-result distribution
and then generating a set of samples from the tail.

2. We show how the tail-sampling method can be integrated into
MCDB’s current tuple-bundle processing infrastructure.

3. In the Appendix, we provide guidance on both setting the sam-
pling parameters for MCDB-R and identifying situations in which
MCDB-R will be effective.

Related Work The original MCDB system was partially inspired
by several efforts to push analytic capabilities into the database or
“close to the data,” such as MauveDB [10], which was oriented to-
ward sensor data and integrated smoothing and interpolation meth-
ods. These ideas have been further developed in subsequent sys-
tems such as FunctionDB [21] and the SciDB project [20]. A recent
discussion of analytics in the database can also be found in [6], and
there have been a number of efforts to push statistical analyses into
Map-Reduce data processing environments; see, e.g., [5, 12].

MCDB is also related to “probabilistic databases” (PrDBs) [7,
8]. Uncertainty in a PrDB is typically represented not by general
stochastic models as in MCDB, but rather by explicit probabilities
on alternative tuple values. MCDB can capture the functionality of
a PrDB, but will not be as efficient or precise in cases where a PrDB
can compute answers exactly and efficiently. Overall, MCDB is
quite different from PrDBs in terms of motivation, design, and ap-
plication space. The recent PIP system [14] combines PrDB and
Monte Carlo techniques, yielding superior performance for certain
MCDB-style queries with simple VG-function parameterizations.

The current paper is also related to the general problem of “con-
ditioning” a probabilistic database, as discussed in Koch and Ol-
teanu [15]. The work in [15] focuses on exact probability calcula-
tions in the setting of PrDBs, whereas the current paper emphasizes
Monte-Carlo-based approximations.

2. SPECIFYING QUERIES IN MCDB-R
In this section, we indicate what MCDB-R looks like to a user,

via a simple example. Suppose that we want to assess potential
total financial loss over a specified subset of our clients. The steps
in the analysis are to (1) define a stochastic loss model, (2) execute
a SUM query over the uncertain loss values specified by the model,
and then (3) report pertinent features of the total-loss distribution.

For step (1), the user defines an uncertain loss table, just as in
MCDB. Suppose for simplicity that we “model” the loss for a cus-
tomer as being distributed according to a normal distribution with
variance 1 and a mean that is customer specific. For this simple
model, we use the built-in Normal VG function that generates
normally distributed random numbers. The data needed to param-
eterize this function is stored on disk in a “parameter table” (an or-
dinary SQL table) called means(CID,m), which stores the mean
loss for each customer. The uncertain table Losses(CID,val)
that we wish to query is not stored on disk; only the schema is
stored. The schema is specified by the following SQL-like state-
ment:
CREATE TABLE Losses (CID,val) AS
FOR EACH CID IN means
WITH myVal AS Normal(VALUES(m, 1.0))
SELECT CID, myVal.* FROM myVal

This statement is identical to a standard SQL CREATE TABLE
statement, except for the FOR EACH clause. The statement gives a
recipe for constructing a sample instance of Losses. Scan through
the CIDs in the means table. For each CID, create a one-row, one-
column table myVal by invoking the Normal VG function, pa-
rameterized with the mean loss for the CID and the default variance
value of 1.0. Form a row of the DB instance by joining myValwith
the CID from the outer FOR EACH loop, as specified in the final
SELECT clause. See [13] for more details on schema specification.

For steps (2) and (3), we write a query as follows:
SELECT SUM(val) as totalLoss
FROM Losses
WHERE CID < 10010
WITH RESULTDISTRIBUTION MONTECARLO(100)
DOMAIN totalLoss >= QUANTILE(0.99)
FREQUENCYTABLE totalLoss

The first three lines correspond to a standard SQL (aggregation)
query. Since this query is being executed over uncertain data, there
is a probability distribution over the query result. The DOMAIN
clause indicates that we want to condition the query-result distri-
bution: we discard all possible query results not in the specified
domain and then we renormalize the query-result distribution so
that the total probability over the domain is 1. In our example,
the domain coincides with the upper tail of the loss distribution
corresponding to the highest 1% of losses. The MONTECARLO
keyword indicates that we will use an approximate (conditioned)
query-result distribution estimated from 100 Monte Carlo samples.

The remaining lines of the WITH clause specify the statistical
features of the query-result distribution that are to be computed.
The FREQUENCYTABLE keyword causes creation of an ordinary
table FTABLE(totalLoss,FRAC) in which the first column
contains the distinct values of totalLoss observed over the 100
tail samples, and FRAC is the fraction of Monte Carlo samples in
which each value was observed. By running the query
SELECT MIN(totalLoss) FROM FTABLE

we obtain an estimate of the lower tail-boundary, i.e., the extreme
quantile of interest, which is accurate when the number l of Monte
Carlo samples is large.1 Similarly, by executing a query such as

1As discussed in the next section, our tail-sampling algorithm also
produces an estimate of the extreme quantile, but the two estimates
will be almost identical for large l.



Algorithm 1 Systematic Gibbs sampler
1: Inputs:
2: X(0): initial random element of X r
3: k: number of Gibbs updating steps
4: Output:
5: X(k): updated value of X(0)

6:
7: GIBBS(X(0), k):
8: x← X(0) // Initialize
9: for j ← 1 to k do

10: // Perform one systematic updating step: X(j−1) → X(j)

11: for i← 1 to r do
12: xi ← GENCOND(x−i, i) // Generate from h∗i ( · |x−i)
13: end for
14: end for
15: Return x // = X(k)

SELECT SUM(totalLoss * FRAC) FROM FTABLE

we can estimate the expected shortfall, i.e., the expected loss, given
that the loss was among the highest 1% of losses.

3. MONTE CARLO BACKGROUND
We next review results from the Monte Carlo literature and show

how they are relevant to the problem of estimating an extreme quan-
tile and efficiently sampling from the tail defined by the quantile.
The key methods that we adapt are Gibbs sampling and cloning-
based methods for rare-event simulation.

3.1 Gibbs Sampling
Gibbs sampling [11] is a technique that is designed for gen-

erating samples from a high-dimensional probability distribution
function that is known only up to a normalizing constant. For
simplicity of notation, we describe the method in the setting of
simple discrete random variables; the technique extends straight-
forwardly to continuous and mixed random variables. Let X =
(X1, X2, . . . , Xr) be an r-dimensional random vector taking val-
ues in a discrete set X r and distributed according to h, so that
h(x1, . . . , xr) = P (X1 = x1, . . . , Xr = xr) for x = (x1, . . . ,
xr) ∈ X r . A key requirement of Gibbs sampling is that we can
efficiently generate samples from the conditional distributions

h∗i (u|v) = P (Xi = u | Xj = vj for j 6= i),

where 1 ≤ i ≤ r. According to this definition, h∗i is the marginal
distribution of Xi, given the values of Xj for j 6= i. For a vector
x ∈ X r , we set x−i = (x1, x2, . . . , xi−1, xi+1, . . . , xr) and then
we can define h and h∗i more concisely as h(x) = P (X = x) and
h∗i (u|v) = P (Xi = u | X−i = v) for u ∈ X and v ∈ X r−1.

Given an initial value X(0) = (X
(0)
1 , . . . , X

(0)
r ), the “system-

atic” Gibbs sampler in Algorithm 1 generates a sequenceX(0), . . . ,
X(k) of random vectors. The function GENCOND(x−i, i) invoked
in Step 12 generates a sample from h∗i ( · |x−i). Since each new
sample is generated recursively from the previous sample, the se-
quence {X(j)} forms a Markov chain. The Gibbs sampler is a
special case of a Markov Chain Monte Carlo (MCMC) sampling
technique. In our database setting, the Gibbs sampler is more ap-
pealing that other MCMC methods because it is extremely generic
in nature, requiring no special knowledge about the distribution h.
Crucially, if the initial sample X(0) is generated from h, then the
chain will be stationary in that every subsequent sample will be
distributed according to h [1, Th. XIII.5.1]. Although the samples
are not statistically independent, under mild regularity conditions

Algorithm 2 Rejection algorithm for example Gibbs sampler
1: GENCOND(v, i):
2: repeat
3: Generate u according to hi
4: until Q(u⊕i v) ≥ c
5: Return u

the random vectors X(0) and X(k) become increasingly indepen-
dent as k increases.2 This “convergence to independence” is usu-
ally exponentially fast, so that k need not be very large. (In our
experiments taking k = 1 sufficed.) Thus, if two chains {X(j)}
and {Y (j)} start from the same state X(0) = Y (0) but the re-
spective Gibbs updates are performed independently for the chains,
then X(k) and Y (k) will become approximately independent as k
increases, again typically at an exponentially fast rate.

We illustrate the method further with an example that is perti-
nent to our tail-sampling problem. Suppose that r is large and that
the components of X are statistically independent, so that h(x) =∏r
i=1 hi(xi), where hi(u) = P (Xi = u) is the marginal distribu-

tion of Xi for 1 ≤ i ≤ r. We assume that it is straightforward to
generate samples from each hi. LetQ be a real-valued function de-
fined onX r , and suppose that for some value cwe want to generate
samples from the conditional distribution

h(x; c) = P (X = x | Q(X) ≥ c) = h(x)I
(
Q(x) ≥ c

)
/pc.

Here I(A) = 1 if event A occurs and I(A) = 0 otherwise, and
pc = P (Q(X) ≥ c) =

∑
x∈Xr :Q(x)≥c h(x). If the cardinality

of X is very large, then pc is extremely hard to compute, so that
h(x; c) is known only up to the constant of proportionality pc, and
direct generation of samples from h(x; c) is nontrivial.

We can, however, apply the Gibbs sampler. Note that, by the in-
dependence of the components ofX , we have h∗i (u|v) = P

(
Xi =

u | Q(Xi ⊕i v) ≥ c
)
. Here u ⊕i v denotes the vector (v1, . . . ,

vi−1, u, vi, . . . , vk−1). Thus, samples from h∗i in Step 12 can
be generated by a rejection algorithm (Algorithm 2). To illustrate
one especially simple case, suppose that Q(x) = x1 + · · · + xr .
Then Q(u ⊕i v) = u +

∑
j vj , so that h∗i (u|v) = P (Xi = u |

Xi ≥ c −
∑
j vj). An efficient implementation of Algorithm 2

would operate on an existing Gibbs iterate x ∈ X r by subtracting
xi from Q(x), thereby computing q− =

∑
j 6=i xj , and then gen-

erating samples u from hi until u + q− ≥ c. In the following,
we write GIBBS(X(0), k, c) and GENCOND(v, i, c) to indicate the
dependence of these two algorithms on the parameter c.

To see the relevance of the above example to MCDB-R, consider
a database consisting of a single table R having a single, random
attribute A and exactly r tuples in all possible worlds (e.g., like the
Losses table in Section 2 with the CID attribute dropped). Sup-
pose that we interpretXi above as the random variable correspond-
ing to the value of the ith tuple (1 ≤ i ≤ r) and Q as an aggre-
gation query over the values in R. Then the foregoing discussion
shows that if we have somehow obtained a DB instance D(0) sam-
pled from h(x; c)—i.e., an instance that is “large” in the sense that
Q(D(0)) ≥ c—we can run the Gibbs sampler with the rejection
algorithm for k steps to obtain another random instance D(k) that
is (approximately) independent of D(0) and also ‘large”—i.e., also
distributed according to h(x; c). That is, once we have obtained
a DB instance corresponding to an upper tail of the query-result

2More precisely, the Markov chain associated with the Gibbs sam-
pler is usually “irreducible” and “aperiodic” in an appropriate
sense, and the chain “mixes” at an exponential rate; see [3].



distribution, we can generate additional, independent instances that
also yield query results lying in the tail.

In the general MCDB-R setting, we can still interpretX as a ran-
dom vector in which each component corresponds to an uncertain
value in the database, but the components of X decompose into
mutually independent blocks, where the variables within a block
are dependent and are all generated via a call to a specified VG
function. Moreover, the number of variables in a block—i.e., the
number of values returned by a VG function—may vary over DB
instances. Although formal discussion of Gibbs sampling at this
level of generality would lead to very cumbersome notation, the
basic idea is the same as above.

3.2 Rare-Event Simulation
The foregoing discussion shows that Gibbs sampling can be used

to generate essentially independent samples from a tail of the query-
answer distribution, starting from a “large” DB instance. However,
such a starter instance can be hard to obtain, even when the quantile
that defines the tail is known a priori. To address this challenging
problem, we adapt ideas from the literature on “rare-event simula-
tion”—see, e.g., [17] for an overview. The primary goal of rare-
event simulation is to estimate the probabilities of very infrequent
events; quantile estimation has received very little attention.

The two main techniques for rare-event simulation are impor-
tance sampling (IS) and cloning, also called splitting. The idea in
IS is to sample from a modified possible-DB distribution (by suit-
ably modifying the VG functions) such that extreme DB instances
are generated with high frequency. Due to numerical instability,
however, IS is known to behave badly for high dimensional prob-
lems [2]. In our setting, the effective dimension typically is roughly
equal to the number of tuples in a relation, rendering IS unusable.
We therefore look to cloning techniques.

The cloning approach has been of interest to the simulation com-
munity for a long time, but only recent work [2, 4, 18] has consid-
ered the type of “static” Monte Carlo simulations that are of inter-
est in our setting. These algorithms start with a set of n randomly
generated “particles.” Each particle gives rise to a Markov chain
that is obtained by repeatedly applying a random MCMC update
(“perturbation”) to the particle. The set of particles is “enriched”
by deleting “non-extreme” particles and cloning “extreme” parti-
cles. The “Gibbs cloning” framework of Rubinstein [18] provides
a general formulation of these ideas that we adapt for our purposes.

3.3 Adapting the Gibbs Cloner
Adapting and specializing the Gibbs cloning framework to our

setting—the application to quantiles is novel—yields the basic pro-
cedure of Algorithm 3. In the algorithm, we represent a random
databaseD as a vector of random variables, as per our prior discus-
sion. (We treat each deterministic data value c as a random variable
that is equal to c with probability 1.) In the algorithm, we maintain
a set S of DB instances over a sequence of bootstrapping steps, so
called because we are “bootstrapping” our way out to the tail. At
the start of the ith step, S contains ni instances, and the algorithm
proceeds by (1) purging all but the top 100pi% “elite” (most ex-
treme) instances, (2) cloning the elite instances to increase the size
of S up to ni+1, and then (3) perturbing each instance in S using
the Gibbs sampler, in order to re-establish (approximate) indepen-
dence while ensuring that all instances yield query results that lie
in the current tail. The function CLONE(S, n) operates by simply
duplicating each DB instance in S approximately n/|S| times.

The Appendix describes how to choose the algorithm parame-
ters to efficiently control the relative difference between the desired
upper-tail probability p and the actual probability of the upper tail

Algorithm 3 Basic tail-sampling algorithm
1: Inputs:
2: p: target upper-tail probability
3: l: desired number of tail samples
4: Outputs:
5: γ̂: estimate of (1− p)-quantile
6: S: set of l samples from h( · ; γ̂)
7: Parameters
8: k: number of Gibbs updating steps
9: m: number of bootstrapping steps

10: n1, n2, . . . , nm: intermediate sample sizes
11: p1, p2, . . . , pm: intermediate tail probabilities
12:
13: // Initialize
14: Generate databases D(1), . . . , D(n1) i.i.d. according to h( · )
15: S ← {D(1), D(2), . . . , D(n1) }
16: nm+1 ← l
17: // Execute m bootstrapping steps
18: for i← 1 to m do
19: γ̂i ← the (pi|S|)-largest element of {Q(D) : D ∈ S }
20: Discard all elements D ∈ S with Q(D) < γ̂i
21: S ← CLONE(S, ni+1)
22: for D ∈ S do // Gibbs-update step
23: D ← GIBBS(D, k, γ̂i) // GIBBS defined as in Sec. 3.1
24: end for
25: end for
26: return γ̂ = γ̂m and S

defined by the quantile estimator γ̂. In particular, we show that this
relative error is minimized by setting ni = n and pi = p1/m for
1 ≤ i ≤ m. Here n = N/m, where N is the total number of
samples over all bootstrapping steps; increasing N increases cost
but improves accuracy. We assume these values throughout.

After the ith purge, the smallest query-result value for the re-
tained elite samples is an estimate of γi, defined to be the (1 −
pi/m)-quantile of the query-result distribution; thus the γi’s are in-
creasing and γm corresponds to the extreme quantile of interest. At
each step i, we estimate a 1−p1/m quantile ofFi−1, the conditional
distribution of the query result Q(D), given that Q(D) ≥ γi−1.
(Here we take γ0 = −∞.) For typical values of, say, p = 0.001
andm = 4, we see that even though we ultimately need to estimate
an extreme 0.999-quantile, at each step we merely need to estimate
a 0.82-quantile, a much easier problem.

4. IMPLEMENTATION OVERVIEW
In the following sections, we describe how we implemented tail

sampling (or TS for short) as in Algorithm 3. The goal is to pre-
serve, to the extent possible, the computational efficiency of the
MCDB tuple-bundle processing mechanism as discussed previously.

4.1 The Gibbs Looper and Data Streams
In the MCDB-R setting, we call the iterative process in Algo-

rithm 3 the Gibbs Looper. There are two key variables that track
the progress of the this algorithm: cutoff and curQuantile.
In terms of our previous notation, cutoff is the γi value that de-
fines the current tail and, after i iterations, curQuantile = pi/m

is the probability that a query-result instance falls in the current tail.
At each iteration of the Gibbs Looper, each of the n versions

(i.e., realized instances) of the database is randomly perturbed by
the Gibbs sampler to form n new DB versions. Initially, a cloned
database has the same contents as its parent, but as each DB ver-



sion is perturbed by its Gibbs sampler, parent and child will drift
apart. To “fuel” the perturbation, the Gibbs sampler needs access
to a stream of random data. There is a data stream associated with
every uncertain data value (or correlated set of uncertain data val-
ues) in the database. E.g., consider the random Losses table from
Section 2. The tuple bundle corresponding to a given customer is
initially enhanced with a seed for use by the pseudorandom number
generator (PRNG). Repeated execution of the Normal VG func-
tion, parameterized with the customer’s mean loss value m, pro-
duces a stream of realized loss values for the customer. In MCDB,
the first n elements of the stream simply correspond to the cus-
tomer’s losses in n Monte Carlo repetitions, i.e., in n generated
DB instances. In MCDB-R, because of the rejection algorithm (Al-
gorithm 2) used in the Gibbs sampler, there is a more complicated
mapping from DB instance to position in the stream, but the Gibbs
sampler nonetheless goes to the stream whenever it needs a loss
value for the customer. We will often refer to a stream of data via
the PRNG seed that was used to produce it.

In general, a VG function may produce a table of correlated data
values when called, so an “element” of a stream may actually com-
prise a set of values. Also, a given PRNG seed may occur in mul-
tiple tuples—due to a 1-to-m join of the random table to another
table—or multiple times in a tuple bundle due to a self-join.

4.2 An Example
We illustrate the Gibbs Looper in more detail using the total-loss

query of Section 2 as an example; for brevity, we drop the CID col-
umn from the Losses and means tables, as well as the selection
predicate on CID from the query itself. Suppose that there are three
customers and that the corresponding three rows in the means ta-
ble have values 3.0, 4.0, and 5.0, respectively. Also suppose that
p = 1/32 and n = 4, so that we want to generate a sample of
four total losses that are each in the top 3.125% of the total-loss
(i.e., query-result) distribution. We will usem = 5 iterations of the
Gibbs Looper to generate the samples.

First, the underlying VG function is used to generate three streams
of random data, as depicted in Fig. 1. The first four values pro-
duced by each VG function are assigned, in sequence, to each of
the n = 4 DB versions, as in Fig. 1(a). After this initialization, iter-
ation i = 1 of the Gibbs Looper begins. First, the two DB versions
with final SUM values in the lowest 100(1 − p1/m)% percentile
(50% in our example) are discarded, and the remaining two elite
DB versions are cloned. “Cloning” is accomplished by duplicating
the assignment of random values from each stream of random data
to the various DB versions, as depicted in Fig. 1(b). The current
value for cutoff at this point is set to be 12.07, since this is the
aggregate value associated with the least-extreme remaining DB
version. cutoff also serves as an estimate for the point at which
there is only a 100p1/m% (= 50%) chance of seeing a larger value
for the answer to the SUM query.

Since two of the DB versions have been duplicated, it is neces-
sary to perturb all of the versions so that they are sufficiently differ-
entiated. In our example, the Gibbs sampler begins the perturbation
by attempting to replace the value 3.26 that is associated with the
first stream of loss values (the stream associated with mean value
3.0). This is done by considering the next unassigned random
value associated with mean 3.0—indicated in bold in Fig. 1(b).
Unfortunately, this value (which is 3.24) cannot be used to replace
3.26, because it would result in an overall aggregate value of 12.05,
which does not meet or exceed the current value of cutoff =
12.07. Thus, the 3.24 is rejected. Next, the 5.13 is considered.
Since the 5.13 would result in an overall aggregate value of 13.94
(which exceeds cutoff), the 5.13 is accepted.

The procedure is repeated using the other two streams. The 4.59
associated with mean.val= 4.0 is replaced with 4.55 (acceptable
since this decreases the aggregate value to 13.90, which exceeds the
cutoff of 12.07), and the 4.22 associated with mean.val = 5.0 is
replaced with 4.29, resulting in the state of Fig. 1(c).

DB version two is updated in the same way. The value 3.26 is
replaced with 4.07 (acceptable, since the new aggregate value is
12.88). An attempt is made to replace the 4.59 associated with
mean.val = 4.0 using 3.68. However, this would reduce the
overall aggregate for DB version two to 11.97, which does not meet
or exceed the current value for cutoff. So the 3.68 is rejected,
and 5.16 (the next unassigned value associated with mean.val =
4.0) is chosen. Finally, the 4.22 is replaced with 5.77, resulting in
Fig. 1(d). After DB versions three and four are updated, the result
is Fig. 1(e). Then iteration i = 2 begins, and cloning the top two
DB versions gives us Fig. 1(f). This whole process is repeated until
the end of iteration i = m.

4.3 Implementing A Gibbs Looper
In practice, there are many possible ways to implement a Gibbs

Looper in the presence of complicated database operations such as
joins. The simplest would maintain n different random versions of
the database. Then, in each iteration of the Gibbs looper (where an
“iteration” is the process of perturbing all n DB versions) and for
each DB version, we would undertake the following steps. For each
stream of random data, we would (1) replace the current stream
element that is being used in the DB version with a new stream
element, (2) run the query over the modified DB version, (3) accept
the new stream element if the new query result exceeds cutoff
and otherwise try steps (1) and (2) again.

The drawback of such an implementation is that it requires run-
ning the underlying query many, many times over many, many
random databases. For example, imagine that we will maintain
n = 100 DB versions, each requiring a modest one million streams
of random data. Imagine that the Gibbs Looper needs ten iterations
to complete and that we need to reject (on average) ten random val-
ues before one is accepted. In this case, we will need to run an
entire query plan 100 × 106 × 10 × 10 = 1010 different times to
complete the TS procedure, which is obviously unacceptable.

We therefore use MCDB’s tuple-bundle trick of running the un-
derlying query only once, no matter how many DB versions are
needed. The extensions to MCDB’s tuple-bundle mechanism are
many and intricate; we now sketch the key ideas.

5. GIBBS TUPLE BUNDLES
As with MCDB, query execution in MCDB-R is organized around

the idea of bundling together the different versions of a tuple over
the generated DB instances. To execute a query, MCDB-R runs a
plan that pushes a stream of instantiated tuple bundles into a spe-
cial GibbsLooper operation. These bundles must have all of
the information necessary to implement the process illustrated in
Fig. 1, i.e., given a DB version and a stream of random data, the
Gibbs Looper must be able to determine which random value from
the stream is assigned to the DB version, and then efficiently deter-
mine the effect of an update to the value on the final query result.
This requires that MCDB tuple bundles must be augmented with a
notion of “lineage” that links each random value in the database to
the stream from which it came.

Gibbs tuples therefore differ from MCDB tuple bundles. Instead
of containing a PRNG seed, a Gibbs tuple contains a pointer to a
“tail-sampling seed”, or TS-seed for short. This object, described in
Section 6 below, augments the basic PRNG seed with “bookkeep-
ing” information needed by the Gibbs Looper. In an MCDB bun-
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Figure 1: Running the tail-sampling process to obtain four DB instances

dle, PRNG seeds may be discarded if they are no longer needed. In
MCDB-R, a TS-seed handle can never be discarded, because each
random value must always point to its associated PRNG (i.e., asso-
ciated stream). Another important difference is that, whereas an in-
stantiated MCDB tuple bundle contains exactly n stream elements
per random value—one for each Monte Carlo repetition—an in-
stantiated Gibbs bundle contains many more elements, because the
Gibbs Looper can use up many stream elements during the Gibbs
perturbation process.3 Indeed, the Gibbs Looper may run out of
data during processing and need to re-execute part of the query
plan (see Section 9). The number of stream elements to instantiate
in a Gibbs tuple is chosen to trade off the cost of carrying lots of
data throughout the query plan with the cost of re-executing part of
the query if the data runs out.

For an example of how Gibbs tuples are pushed through a query

3Because instantiated values are often needed to prepare tuple bun-
dles for the Gibbs Looper—see the example below—they cannot
be simply generated on the fly during Gibbs-Looper operation.

plan, consider the following query, which determines a company’s
total salary “inversion,” resulting from certain employees who earn
more than their managers:

SELECT SUM(emp2.sal - emp1.sal)
FROM emp AS emp1, emp AS emp2, sup
WHERE sup.boss = emp1.eid AND emp1.sal < 90K
AND sup.peon = emp2.eid AND emp2.sal > 25K
AND emp2.sal > emp1.sal

Imagine that the attribute emp.sal is random, and we want three
samples from the tail of the query-result distribution. The resulting
query plan and execution of this query is illustrated in Fig. 2.

This plan operates over Gibbs tuples rather than ordinary tuples.
An instantiated Gibbs tuple can have one or more arrays of random
values; every array of random values is associated with exactly one
PRNG seed. A Gibbs tuple can also have one or more isPres at-
tributes. An array of isPres values is created when a selection pred-
icate is applied to a random attribute, and indicates for each DB
instance whether or not the predicate is satisfied. If the predicate
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Figure 2: Gibbs-tuple processing over a multi-table query plan

is not satisfied in any DB instance, then the entire Gibbs tuple is
dropped. (Unlike MCDB, we cannot simply record isPres values
for the entire tuple, since attribute values change individually dur-
ing Gibbs sampling.) Finally, note that the query plan makes use of
the MCDB-R Seed and Instantiate operations. The former
operation attaches the handle for a TS-seed to each Gibbs tuple,
and the latter operation uses a PRNG seed to attach a subsequence
from a stream of random values to the Gibbs tuple.

6. TAIL-SAMPLING SEEDS
A TS-seed contains both the PRNG seed needed to instantiate

a stream of random values and the information needed to map the
current value of an attribute in a DB version to a position in the
stream. This mapping is needed to compute a query-result value for
the current DB version. E.g., in Fig. 2, the query plan produces a set
of three Gibbs tuples that are piped into the GibbsLooper oper-
ation. Suppose that we have the assignment (seed1, 1), (seed2,
1), (seed3, 2), (seed4, 2) for a DB version. That is, Joe’s salary
is $28K (the first value in his stream), Ann’s salary is $39K (the
second value in her stream), and so forth. Then the query result
for this DB version is ($28K - $24K) = $4K, since Joe makes $4K
more than Sue and no other employee makes more than their boss.

In MCDB-R, a TS-seed contains (1) a TS-seed identifier, (2) the
actual PRNG seed used to produce a stream of random data, (3) the
range of stream values currently materialized and present within
the Gibbs tuples, (4) the last random value in that range that has
previously been assigned to any DB version for this TS-seed, and
(5) the random value currently assigned to each DB version for this
TS-seed. Item (5) is the mapping described above, and item (4)
is needed during Gibbs rejection sampling to obtain a new random

value. Item (3) is needed to quickly determine whether the Gibbs
Looper has run out of data and, if so, the position in the stream
from which to start replenishing. A call to the Seed operator both
adds a seed handle to a Gibbs tuple and creates the actual TS-seed
data structure for the tuple, which is written to disk.

7. THE GIBBS LOOPER
The Appendix describes the GibbsLooper operator in detail.

A key feature is that it switches the inner and outer for loops of Al-
gorithm 3. Rather than perturb DB versions one at a time, looping
through the random data values (i.e., the TS-seeds), the algorithm
perturbs data values one at a time, looping through the DB versions,
thereby amortizing expensive data scans.

Specifically, GibbsLooper inserts the Gibbs tuples into a disk-
based priority queue; the initial sort key for a Gibbs tuple is the
smallest TS-seed handle in the tuple. GibbsLooper then iterates
through the overall set of TS-seed handles in increasing order. For
each TS-seed handle, it loads the TS-seed—and all “associated”
Gibbs tuples that contain at least one handle for the TS-seed—into
memory. Then, for the first DB version, it consults the TS-seed to
determine the first unused stream value to try in the rejection algo-
rithm. It uses the associated Gibbs tuples to compute the changed
value of the query result for the DB version due to the new stream
value, and then checks if the new query-result value still exceeds
cutoff. If so, then GibbsLooper accepts the new stream value
and moves on to update the next DB version. If not, it tries again
until an appropriate stream value is found. Once all DB versions
have been updated, it reinserts all of the Gibbs tuples into the prior-
ity queue—first updating the sort key for each reinserted tuple to be
the next largest TS-seed handle in the tuple—and moves on to the



next overall TS-seed handle. (Thus a Gibbs tuple will be processed
multiple times if it contains multiple TS-seed handles.)
GibbsLooper is efficient because it essentially merges Gibbs

tuples in the disk-based priority queue with a sorted file containing
all of the TS-seeds. When a TS-seed is loaded into memory, the
priority queue is used to quickly obtain all of the Gibbs tuples that
could possibly be affected by an update of the TS-seed.

8. JOINS ON RANDOM ATTRIBUTES
One issue that demands more explanation is how GibbsLooper

handles join predicates on random attributes. E.g., suppose R1

joins with R2 on a random attribute, and R2 joins with R3 on a
deterministic attribute. Some t2 in R2 is modified when one of its
random attributes is updated, so it joins with both a t1 fromR1 and
a t3 from R3—the result is that a new tuple “pops” into existence.

Fortunately, this case is easily handled by MCDB-R. When the
underlying query plan is run (before GibbsLooper is ever in-
voked), original MCDB’s Split operation is run on any random
attribute or attributes that are to be joined. This operation changes
the attributes so that they are no longer random and transfers any
non-determinism to the isPres attribute. E.g., consider a Gibbs tu-
ple g with schema (fname, age)where attribute fname is con-
stant, and attribute age is non-constant. Specifically, age = 20
for the first and third values in the stream of random data stored
in the Gibbs tuple, and age = 21 for the second and fourth val-
ues: g = (Jane,(20,21,20,21),(Y,Y,Y,Y)), where the
last nested vector contains the isPres values, and indicates that Jane
appeared in all four Monte Carlo repetitions (though with varying
ages). An application of the Split operation to t with Atts =
{age} yields two Gibbs tuples: g1 = (Jane,20,(Y,N,Y,N))
and g2 = (Jane,21,(N,Y,N,Y)). Then, any join on the age
attribute is a join on a deterministic attribute, and we will not have
the problem of new Gibbs tuples “popping” into existence, since
two sets of Gibbs tuples (each associated with one of Jane’s pos-
sible ages) would both be created and sent to GibbsLooper. Fur-
thermore, only one of them can be valid at a time: if, e.g., Jane’s
age is updated to be 21, then the mapping information within the
TS-seed associated with Jane’s age is updated as well, causing
any Gibbs tuple associated with an age of 20 to become invalid.

9. RE-RUNNING THE QUERY PLAN
Since each Gibbs tuple contains only a finite amount of data,

the Gibbs Looper may run out of data while perturbing a DB ver-
sion. If so, MCDB-R discards all existing Gibbs tuples, empties the
GibbsLooper priority queue, and then runs the entire query plan
again to produce the required data. The newly-created Gibbs tuples
that contain the data are piped into the GibbsLooper operation.

During such a “replenishing” run, query-plan execution differs
from the first time around in a couple of ways. First, the result of
each deterministic part of the query plan is materialized and saved
during the first run, avoiding the need to repeat these computa-
tions during replenishment. Second, the Instantiate opera-
tion never adds stream values to a Gibbs tuple that have already
been processed; it only adds new or currently assigned values.

10. CONCLUSION
MCDB-R extends the MCDB system to permit risk evaluation

in the database. Space constraints have forced us to exclude some
important material from the paper. Some very brief benchmarking
results, given in the Appendix, provide evidence for the accuracy of
the method and show a reduction in processing time from roughly
18 hours in MCDB to 11 minutes in MCDB-R.

Acknowledgements This work was supported in part by the US
DoE under grant no. DE-SC0001779 and the US NSF under grant
no. 0915315, and by a Sloan Foundation Fellowship.

11. REFERENCES
[1] S. Asmussen and P. W. Glynn. Stochastic Simulation:

Algorithms and Analysis. Springer, 2007.
[2] Z. I. Botev and D. P. Kroese. An efficient algorithm for

rare-event probability estimation, combinatorial
optimization, and counting. Methodol. Comput. Appl. Prob.,
10:471–505, 2008.

[3] R. C. Bradley. Basic properties of strong mixing conditions:
A survey and some open questions. Probab. Surveys,
2:107–144, 2005.

[4] F. Cérou, P. D. Moral, T. Furon, and A. Guyader. Rare event
simulation for a static distribution. INRIA Research Report
6792, Rennes, France, 2009.

[5] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. R. Bradski, A. Y.
Ng, and K. Olukotun. Map-reduce for machine learning on
multicore. In NIPS, pages 281–288, 2006.

[6] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and
C. Welton. MAD skills: New analysis practices for big data.
PVLDB, 2(2):1481–1492, 2009.
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APPENDIX
A. THE GIBBS LOOPER IN DETAIL

A.1 Initialization
Aside from n, m, and p (see Section 3.3), GibbsLooper takes

as input five principal arguments:

1. The pipeline producing the input stream of Gibbs tuples.

2. The aggregate operation from whose tail distribution Gibbs-
Looper will sample, e.g., sum(sal2-sal1) in Fig. 2.

3. The final selection predicate (e.g., sal2 > sal1 in Fig. 2) that
must be applied to each tuple prior to inclusion of the tuple’s value
in the aggregate. In particular, any selection predicate that refer-
ences random attributes generated by more than one PRNG seed
must be pulled up into GibbsLooper. Such a predicate cannot
be applied lower in the query plan, because the Gibbs sampling will
arbitrarily combine random values from the streams associated with
different PRNG seeds, and it is not possible to know the outcome
of the predicate before GibbsLooper runs its Gibbs sampler.

4. The grouping attributes (if any) for the query.4

5. A file containing all of the TS-seed objects, sorted on each
object’s handle.

Given these inputs, GibbsLooper initially processes the stream
of incoming Gibbs tuples by computing the initial aggregate value
for each of the n DB versions and inserting the tuples into a disk-
based priority queue, sorted by the smallest TS-seed handle in each
Gibbs tuple (as discussed in Section 7). The initial aggregate val-
ues are computed for the TS-seed mapping in which the ith value
in each stream is mapped to the ith DB version for 1 ≤ i ≤ n.
Next, GibbsLooper discards the “non-elite” DB versions whose
aggregate totals are in the bottom 100(1− p1/m)% by overwriting
them with clones of the elite versions. The cutoff value is set
equal to the smallest aggregate value. The overwriting of a non-
elite DB version by a clone of an elite version is accomplished dur-
ing a single read/write pass through the TS-seed file (see below).

A.2 Performing the Perturbation
At this point, the GibbsLooper is ready to begin perturbing

the various DB versions using a Gibbs sampler. The manner in
which the perturbation is accomplished is best illustrated using an
example, given as Fig. 3.

Fig. 3(a) begins with the three Gibbs tuples that were output from
the query plan of Fig. 2, inserted into the GibbsLooper’s prior-
ity queue. (For simplicity, we drop the isPres attributes and look at
only two DB instances.) The four TS-seeds are also depicted, as are
the two DB versions that correspond to the initial TS-seed mapping
(described above). The goal at this point to perturb these versions
via Gibbs sampling, subject to the constraint that the total aggre-
gate value must meet or exceed cutoff = $1K. Note that while
the evolving DB versions are depicted in the figure, they are never
actually materialized; they are completely determined, however, by
the current state of the Gibbs tuples and the TS-seeds.

To obtain two new DB versions with SUM values that meet or
exceed cutoff, the first TS-seed handle, (seed1), is considered,
and the lone associated Gibbs tuple is removed from the priority
queue, as in Fig. 3(b). DB version one is updated by assigning the
first unassigned random value associated with seed1 to the DB
version, transforming (24K, Sue, 28K, Joe) into (24K, Sue, 25K,
4Grouping is handled by, in effect, treating a GROUP BY query over
g groups as g separate, simultaneous queries, each with a selection
predicate that limits the query to a specific group.

Joe). This decreases the final aggregate result from $4 to $1K,
since Joe’s salary exceeds Sue’s by $1K. Because the total salary
inversion still meets the cutoff of $1K, the update is accepted.

Next, we attempt to update DB version two. The next unas-
signed random value in the stream associated with seed1 is the
fourth one, which transforms (25K, Sue, 26K, Joe) into (25K, Sue,
21K, Joe). This changes the final aggregate value to $0, and so this
proposed update is rejected. Next we try the fifth random value in
the stream. This gives us (25K, Sue, 27K, Joe), which increases
the final aggregate value to $2K, and so it is accepted. We are now
done with seed1, and so we reinsert the one Gibbs tuple associ-
ated with this seed back into the priority queue, after first updating
its sort key to its next largest seed handle, (seed2); see Fig. 3(c).

As shown in Fig. 3(d), the two Gibbs tuples associated with
(seed2) are then removed from the priority queue. The assign-
ments for seed2’s stream are updated in much the same way as
for seed1; note, however, that seed2 influences two tuples in
each DB version. Once the update of seed2 is complete and both
of the associated Gibbs tuples have been reinserted back into the
priority queue, we are left with Fig. 3(e). Note that the keys for
these reinserted Gibbs tuples are now (seed4) and infinity.
The value infinity is used because the random values associ-
ated with seed1 and seed2 have been each been updated—there
is no reason to consider this Gibbs tuple again during this particular
perturbation, so it is forced to the tail of the queue.

As illustrated in Fig. 3(f), we now move to (seed3). The two
DB instances are updated with respect to seed3; because seed3
control’s Ann’s salary and Ann has no impact on the query result,
both updates are trivially accepted. The process continues with
(seed4), which again has no effect on the final query result, at
which point both DB versions are fully perturbed (Fig. 4(a)).

Since all of the TS-seed handles have been processed, it is now
time to clone the elite DB versions and overwrite the non-elite ver-
sions. This process is illustrated by the transition from Fig. 4(a)
to Fig. 4(b). In a single read/write pass, the column in each TS-
seed that records the assignment for DB version two is simply
copied to the column for version one. Now the first iteration of
GibbsLooper has completed, and iteration two can begin.

B. WHEN WILL MCDB-R WORK BEST?
Algorithm 1—and hence Algorithm 3—will work best when, for

each most-likely extreme databaseD, the query resultQ(D) is rel-
atively insensitive to changes in the value of a single data value
x. This scenario fails, e.g., for a SUM query in which data values
X1, . . . , Xr are i.i.d. according to a “subexponential” distribution
such as lognormal or Pareto. Under such a heavy-tailed distribu-
tion, P (X1 + · · · + Xk > c) ≈ kP (X1 > c) for large c; i.e.,
with high probability, the query result for an extreme databaseD—
viewed as a vector y of values—will lie in the upper tail because
some individual yi is extremely large. After generating a new can-
didate value u for yi in Algorithm 2, the value of Q(u ⊕i y) will
likely drop sharply, and many candidates will be required prior to
acceptance in Line 4. Our approach is thus unlikely to be univer-
sally applicable. That said, it is still useful for a wide class of risk-
estimation problems, as evidenced by the extensive applied litera-
ture that pertains to extreme-value theory for light-tailed distribu-
tions and by the prevalence of aggregates, such as SUM and AVG,
that have the insensitivity property under a light-tailed regime.

C. SETTING PARAMETERS
In this section, we address the key question of how to choose the

parameters in Algorithm 3. Because the cost of a Gibbs-updating



77K Jim 24K Sue

24K
25K
26K
22K
23K

Sue 45K
39K
43K
47K
44K

Ann77K
76K
72K
79K
70K

Jim
(seed2) (seed3)(seed4)

28K
26K
25K
21K
27K

Joe
(seed1)

24K
25K
26K
22K
23K

Sue
(seed2)

77K
76K
72K
79K
70K

Jim
(seed4)

SUM = 4K

24K Sue 28K Joe
77K Jim 45K Ann

(seed1) (seed3)(seed2)
Priority Queue

Tail

H
ea

d

DB Version 1

76K Jim 25K Sue

SUM = 1K

25K Sue 26K Joe
77K Jim 27K Ann

DB Version 2

77K Jim 27K Sue

45K
39K
43K
47K
44K

Ann77K
76K
72K
79K
70K

Jim
(seed3)(seed4)

24K
25K
26K
22K
23K

Sue
(seed2)

77K
76K
72K
79K
70K

Jim
(seed4)

SUM = 1K

24K Sue 25K Joe
77K Jim 45K Ann

(seed3)(seed2)
Priority Queue

Tail

H
ea

d

DB Version 1

76K Jim 25K Sue

SUM = 2K

25K Sue 27K Joe
77K Jim 27K Ann

DB Version 2

24K
25K
26K
22K
23K

Sue
(seed2)

28K
26K
25K
21K
27K

Joe
(seed1)

(seed1)

77K Jim 24K Sue

24K
25K
26K
22K
23K

Sue 45K
39K
43K
47K
44K

Ann77K
76K
72K
79K
70K

Jim
(seed2) (seed3)(seed4)

28K
26K
25K
21K
27K

Joe
(seed1)

24K
25K
26K
22K
23K

Sue
(seed2)

77K
76K
72K
79K
70K

Jim
(seed4)

SUM = 1K

24K Sue 25K Joe
77K Jim 45K Ann

(seed2) (seed3)(seed2)
Priority Queue

Tail

H
ea

d

DB Version 1

76K Jim 25K Sue

SUM = 2K

25K Sue 27K Joe
77K Jim 39K Ann

DB Version 2

77K Jim 22K Sue

24K
25K
26K
22K
23K

Sue

45K
39K
43K
47K
44K

Ann

77K
76K
72K
79K
70K

Jim

(seed2)

(seed3)

(seed4)

28K
26K
25K
21K
27K

Joe
(seed1)

24K
25K
26K
22K
23K

Sue
(seed2)

77K
76K
72K
79K
70K

Jim
(seed4)

SUM = 3K

22K Sue 25K Joe
77K Jim 45K Ann

(seed2)

(seed3)

(seed2)

Priority Queue

Tail

H
ea

d

DB Version 1

76K Jim 23K Sue

SUM = 4K

23K Sue 27K Joe
77K Jim 39K Ann

DB Version 2

77K Jim 22K Sue

24K
25K
26K
22K
23K

Sue45K
39K
43K
47K
44K

Ann 77K
76K
72K
79K
70K

Jim
(seed2)(seed3) (seed4)

28K
26K
25K
21K
27K

Joe
(seed1)

24K
25K
26K
22K
23K

Sue
(seed2)

77K
76K
72K
79K
70K

Jim
(seed4)

SUM = 3K

22K Sue 25K Joe
77K Jim 45K Ann

(infinity)(seed3) (seed4)
Priority Queue

Tail

H
ea

d

DB Version 1

76K Jim 23K Sue

SUM = 3K

23K Sue 27K Joe
77K Jim 39K Ann

DB Version 2

77K Jim 22K Sue

24K
25K
26K
22K
23K

Sue

45K
39K
43K
47K
44K

Ann

77K
76K
72K
79K
70K

Jim
(seed2)

(seed3)

(seed4)
28K
26K
25K
21K
27K

Joe
(seed1)

24K
25K
26K
22K
23K

Sue
(seed2)

77K
76K
72K
79K
70K

Jim
(seed4)

SUM = 3K

22K Sue 25K Joe
77K Jim 43K Ann

(infinity)

(seed3)

(seed4)
Priority Queue

Tail

H
ea

d

DB Version 1

76K Jim 23K Sue

SUM = 4K

23K Sue 27K Joe
76K Jim 47K Ann

DB Version 2

(a) (b)

(c) (d)

(e) (f)

seed1 62 1 5 5 3 5
seed2 27 1 5 2 1 2
seed3 91 1 5 2 1 2
seed4 14 1 5 2 1 2

se
ed

 id
en

tif
ie

r

PR
N

G
 se

ed
lo

w
 it

er
. n

um
.

hi
gh

 it
er

. n
um

.
m

ax
. u

se
d 

ite
r.

V
1 

ite
r. 

nu
m

.
V

2 
ite

r. 
nu

m
.

seed1 62 1 5 2 1 2
seed2 27 1 5 2 1 2
seed3 91 1 5 2 1 2
seed4 14 1 5 2 1 2

se
ed

 id
en

tif
ie

r

PR
N

G
 se

ed
lo

w
 it

er
. n

um
.

hi
gh

 it
er

. n
um

.
m

ax
. u

se
d 

ite
r.

V
1 

ite
r. 

nu
m

.
V

2 
ite

r. 
nu

m
.

seed1 62 1 5 5 3 5
seed2 27 1 5 2 1 2
seed3 91 1 5 2 1 2
seed4 14 1 5 2 1 2

se
ed

 id
en

tif
ie

r

PR
N

G
 se

ed
lo

w
 it

er
. n

um
.

hi
gh

 it
er

. n
um

.
m

ax
. u

se
d 

ite
r.

V
1 

ite
r. 

nu
m

.
V

2 
ite

r. 
nu

m
.

seed1 62 1 5 5 3 5
seed2 27 1 5 5 4 5
seed3 91 1 5 2 1 2
seed4 14 1 5 2 1 2

se
ed

 id
en

tif
ie

r

PR
N

G
 se

ed
lo

w
 it

er
. n

um
.

hi
gh

 it
er

. n
um

.
m

ax
. u

se
d 

ite
r.

V
1 

ite
r. 

nu
m

.
V

2 
ite

r. 
nu

m
.

seed1 62 1 5 5 3 5
seed2 27 1 5 5 4 5
seed3 91 1 5 2 1 2
seed4 14 1 5 2 1 2

se
ed

 id
en

tif
ie

r

PR
N

G
 se

ed
lo

w
 it

er
. n

um
.

hi
gh

 it
er

. n
um

.
m

ax
. u

se
d 

ite
r.

V
1 

ite
r. 

nu
m

.
V

2 
ite

r. 
nu

m
.

seed1 62 1 5 5 3 5
seed2 27 1 5 5 4 5
seed3 91 1 5 4 3 4
seed4 14 1 5 2 1 2

se
ed

 id
en

tif
ie

r

PR
N

G
 se

ed
lo

w
 it

er
. n

um
.

hi
gh

 it
er

. n
um

.
m

ax
. u

se
d 

ite
r.

V
1 

ite
r. 

nu
m

.
V

2 
ite

r. 
nu

m
.

Figure 3: The perturbation process for the “salary inversion” query

iteration is proportional to the data size and hence extremely expen-
sive, we choose the number of iterations k to be as small as possi-
ble, subject to the requirement that, after the Gibbs-update step in
line 23, the ni+1 databases in S are approximately statistically in-

dependent. The MCMC literature provides a variety of procedures
for determining k. Recall, however, that a sequence of Gibbs sam-
ples typically “forgets” its initial state exponentially fast, so that
very small values of k suffice in practice; as mentioned previously,
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Figure 4: Perturbation example, continued

taking k = 1 worked well in experiments.
Now suppose that k has been fixed and is sufficiently large so that

Gibbs updating yields samples that can be viewed as independent.
Also suppose that the total numberN of samples over all bootstrap-
ping steps has been fixed. We consider the problem of selecting m,
n1, . . . , nm and p1, . . . , pm to minimize statistical error.

One approach is to minimize the relative difference between the
desired upper-tail probability p and the actual probability of the
upper tail defined by the quantile estimator γ̂m. I.e., we solve the
following optimization problem:

minimize
m,n1,...,nm,p1,...,pm

E
[( F̄0(γ̂m)− p

p

)2]
(1)

such that
m∑
i=1

ni = N and
m∏
i=1

pi = p (2)

pi ∈ [0, 1] and ni ∈ { 0, 1, . . . , N } , 1 ≤ i ≤ m (3)

Here F0(x) = P
(
Q(D) < x

)
and F̄0 = 1 − F0. Given a so-

lution to the minimization problem (1)–(3), the overall parameter-
selection task will reduce to selection of N . We refer to the mini-
mand in (1) as the mean-squared relative error (MSRE).

Note that an alternative goal might be to control the relative error
of γ̂m directly. For light-tailed query-result distributions, which are
the class of primary interest in this paper, minimizing MSRE rather
than minimizing the relative error of γ̂m typically leads to more
stringent error control. E.g., suppose that, unknown to us, F0 is the
standard normal distribution, and that our desired tail probability is
p = 0.001, so that γ ≈ 3.090. If we allow the actual tail probabil-
ity to deviate from p by no more than±1%, then the corresponding
estimate of γ will lie approximately in the range (3.087, 3.093),
which represents a maximum error of about ±0.1%.

In the following, we fix k and N as described above, and show
how to select values of m, n1, . . . , nm, and p1, . . . , pm that ap-
proximately solve the minimization problem (1)–(3). We assume
that F0 is continuous and strictly increasing.

We first abstract the process by which Algorithm 3 computes γ̂m.
For real numbers c1, c2, . . . , cm, set

F1(x; c1) =
F0(x)− F0(c1)

1− F0(c1)
= P

(
Q(D) < x | Q(D) ≥ c1

)
,

and for 2 ≤ i ≤ m recursively define

Fi(x; c1, . . . , ci)

=
Fi−1(x; ; c1, . . . , ci−1)− Fi−1(ci; c1, . . . , ci−1)

1− Fi−1(ci; c1, . . . , ci−1)

for any sequence c1, c2, . . . , cm. An inductive argument estab-
lishes the identity Fi(x; c1, . . . , ci) = F1(x; ci) for 2 ≤ i ≤ m.
For a set X1, X2, . . . , Xn of i.i.d. samples from a strictly increas-
ing continuous distribution function F , the order statistics are de-
noted as X(1) < X(2) < · · · < X(n). Setting ri = ni(1 −
pi) (rounded to the nearest integer), and assuming that k is suffi-
ciently large as discussed previously, we can view Algorithm 3 as
follows. The algorithm proceeds by generating n1 i.i.d. samples
X0,1, X0,2, . . . , X0,n1 from F0. Then, for i = 1, 2, . . . ,m, the
algorithm (1) sets γ̂i = Xi−1,(ri) and (2) generates ni+1 samples
Xi,1, . . . , Xi,ni+1 from Fi( · ; γ̂1, . . . , γ̂i) = F1( · ; γ̂i).

To analyze the behavior of F̄0(γ̂m), and hence the behavior of
the MSRE, we employ the common tactic of reducing the anal-
ysis to the setting of uniform random variables. Specifically, let
{Ui,j : 0 ≤ i ≤ m, 1 ≤ j ≤ ni+1 } be a collection of i.i.d. ran-
dom variables uniformly distributed on [0, 1]. Consider a proce-
dure that sets V0,j = U0,j for 1 ≤ j ≤ n1, and then, for i =
1, 2, . . . ,m, sets α̂i = Vi−1,(ri) and Vi,j = (1 − α̂i)Ui,j + α̂i
for 1 ≤ j ≤ ni+1. Using a standard result [1, p. 37] on uniform
random variables together with an inductive argument, it can be
shown that, for 1 ≤ i ≤ m, (1) F−1

0 (Vi−1,j) has the same distri-
bution as Xi−1,j for 1 ≤ j ≤ ni and (2) F−1

0 (α̂i) has the same
distribution as γ̂i. In particular, F̄0(γ̂m) is distributed as 1 − α̂m.
An easy argument shows that 1− α̂i = Zi(1− α̂i−1), where Zi =
1−Ui−1,(ri), which implies that 1−α̂m =

∏m
i=1 Zi. By construc-

tion, the random variables {Ui−1,(ri)}, and hence the random vari-
ables {Zi}, are mutually independent. Moreover, eachUi,(ri) has a
Beta(ri, ni − ri + 1) distribution [9]. Fixing m ∈ { 1, 2, . . . , N },
η = (n1, . . . , nm), and π = (p1, . . . , pm) satisfying (2)–(3), a
calculation using both the independence of the Zi’s and standard
properties of the Beta distribution shows that MSRE = u(η, π,m),
where u(η, π,m) = h1(η, π,m)

(
h2(η, π,m)p−2 − 2p−1

)
+ 1.

Here hc(η, π,m) =
∏m
i=1

(
(nipi + c)/(ni + c)

)
for c = 1, 2.

We now consider how to choose η, π, and m so as to approxi-
mately minimize u, subject to (2)–(3). It follows from the results
given below that p ≤ hc(η, π,m) ≤ 1 for c = 1, 2 and feasible
choices of the parameters. Moreover, h1(η, π,m) ≈ h2(η, π,m)



for the range of p and N values encountered in practice. Thus,
to a good approximation, the problem of minimizing u looks like
the problem of minimizing v(x) = x

(
(x/p2) − (2/p)

)
such that

x ∈ [p, 1]. It is easy to see that v is strictly increasing on [p, 1],
and so we want to make x as small as possible. That is, we want to
make h1 and h2 as small as possible. To this end, set

gm(N, p, c) =
( (N/m)p1/m + c

(N/m) + c

)m
for m ∈ [1, N ]. We can establish the following result.

THEOREM 1. For c ∈ { 1, 2 }, hc(η, π,m) is minimized by set-
ting m∗c = min {m ≥ 1 : gm(N, p, c) < gm+1(N, p, c) }, η∗c =

(N/m∗c , . . . , N/m
∗
c), and π∗c = (p1/m∗

c , . . . , p1/m∗
c ).

To summarize, we can approximately minimize the MSRE by (1)
computing m∗1 and m∗2 as indicated in the theorem, (2) choosing
θ = arg minc∈{1,2} u(η∗c , π

∗
c ,m

∗
c) and setting m∗ = m∗θ , and (3)

setting ni = N/m∗ and pi = p1/m∗
for 1 ≤ i ≤ m∗. In practice,

it is often the case that m∗1 = m∗2.
Thus we need only choose N . For an MSRE target value ε, we

can selectN by numerically finding min {N : w(N) ≤ ε }, where
w(N) = gm∗(N, p, 1)

(
gm∗(N, p, 2)p−2 − 2p−1

)
+ 1. Note that

limN→∞ w(N) = 0, which implies that our quantile estimator
converges in mean square to the true value as the total number of
DB versions increases.

D. BENCHMARKING
We have implemented a C++ prototype of MCDB-R with the

MCDB code base as a starting point, including all of the features
described in the paper. As with our MCDB implementation, MCDB-
R does not yet have an optimizer or SQL compiler; instead, we use
an MCDB-specific language to specify a query plan directly. We
now describe a small benchmark of our prototype. Consider the
following random version of the TPC-H orders table:
CREATE TABLE random ord (o orderkey, o yr, o tot) AS
FOR EACH o IN (SELECT * FROM orders)
WITH VAL AS Normal (VALUES(o mean, o var))
SELECT o.o orderkey, year(o.o orderdate), v.value
FROM VAL v

This version of orders attaches a normally-distributed random
“loss” value to each tuple (we use a mean and variance of one).
Now, consider the following query:
SELECT SUM(val) as totalLoss
FROM random ord, lineitem
WHERE o orderkey = l orderkey AND

(o yr = ’1994’ OR o yr = ’1995’)

Because the sum of a set of normal variables is also normal, we
know that the result of this query must itself have a normal distri-
bution with mean and variance computed as follows:
SELECT SUM(grpsize * o mean) AS mean,

SUM(grpsize * grpsize * o var) AS var FROM
(SELECT o mean, o var, COUNT(*) AS grpsize
FROM orders, lineitem
WHERE year(o orderdate) in (’1994’, ’1995’)

AND o orderkey = l orderkey
GROUP BY o orderkey, o mean, o var)

Thus, if we run the former query using adding the following:
WITH RESULTDISTRIBUTION MONTECARLO(100)
DOMAIN totalLoss >= QUANTILE(0.999)

then we can use the result of the latter query to test the accuracy
of the resulting tail sample. Using the TPC-H database (scale-
factor = 10) on an 8-core server, we ran the former query using
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Figure 5: Observed empirical CDFs versus analytic CDF

GibbsLooper parameters m = 5, p1/m = 0.25, N = 500, and
l = 100. This should (if everything is correct) compute a set of
100 samples from the 1.0− (0.25)5 = 0.99902 ≈ 0.999 quantile
of the query-result distribution. Each TS-seed is used to produce
1000 random values initially. The first three GibbsLooper it-
erations require 156, 124, and 134 seconds to complete. At that
point, the first TS-seed runs out of random data, and the query plan
is run again to fuel the last two iterations. These iterations take
122 seconds and 115 seconds to run, for a total time of around
eleven minutes to complete the tail sampling process and obtain
100 database instances in the upper 0.999-quantile. By compari-
son, MCDB would require about 18 hours for this task.

Next we tested the accuracy of MCDB-R. We re-ran the above
query, but changed how the underlying database is generated to
make the example more interesting (and difficult). We modified
random ord so that it is generated by selecting 100,000 tuples
from the orders parameter table. The mean (resp., variance) of
each normal used to generate random ord was itself generated
by sampling from an inverse gamma-distribution with shape 3 and
scale 1 (resp., shape 3 and scale 0.5). The lineitem table was
generated so that one million of the tuples join with some tuple
from random ord, and the rest find no mate. The probability that
one of those tuples from lineitem will mate with the first of the
100,000 tuples in random ord is 2 × 10−5 − 10−10. The prob-
ability that the tuple will mate with the ith tuple in random ord
is equal to the probability that it will mate with the (i− 1)th tuple,
minus 2× (10−5 − 10−10)/(105 − 1).

We ran MCDB-R 20 times on this query using GibbsLooper
parameters m = 5, p1/m = 0.25, N = 1000, and l = 100.
Figure 5 shows the 20 empirical tail CDFs that we observed (each
based on 100 samples). The true CDF for the query-result distribu-
tion (calculated analytically as described above) appears as a thick
black line on the left side of the plot. The true tail CDF correspond-
ing to the 0.99902 quantile of the query-result distribution appears
as a thick black line on the right.

It is clear from the plot that the 20 empirical tail CDFs cluster
closely around the true tail CDF. We also obtained 20 estimates of
the 0.99902 quantile by recording the value of the minimum tail
sample in each of the 20 runs. The mean value of these 20 esti-
mates was 5.0728e5, whereas the true quantile value was 5.0738e5.
The empirical standard error of the estimates was 265. To put
this in perspective, the middle 99% of the query-result distribu-
tion has a width of approximately 2503; i.e., by generating only
1000 intermediate database instances (efficiently, using Gibbs tu-
ples), MCDB-R is able to “walk” out to the upper 0.99902 quartile
and incur a standard error of only 10%.


