Mathematical Writing
Overview
Translating Between English and Math
Review of Implications and Their Contrapositives
Mathematical Proofs
Tracing a Proof
Simple Proofs About Numbers
Overview

Goal: Learn to write mathematically

- We’ll first study properties of common mathematical objects (starting with integers)
- We’ll learn how to present mathematical proofs about these properties to others
- We’ll focus on **inductive** proofs, the most common type
Definition 1

A positive integer \(n > 1 \) is prime if it cannot be factored as \(n = a \cdot b \), where both \(a \) and \(b \) are greater than 1.

Definition 2

A perfect square is a positive integer that is equal to \(z^2 \) for some positive integer \(z \).
Translating Between English and Math

Unlike English, most math statement are implications
 ▶ In English: “Whenever an object has property \(P \) then it must have property \(Q \)”
 ▶ In mathspeak: “if \(p \), then \(q \)” \(p \rightarrow q \)
 ▶ English allows a wide variety of equivalent forms

Example: rewrite into “if, then form”
 ▶ Whenever \(n \) is an even integer, \(2n^3 + n \) is divisible by 3
 \[\text{If an integer is even, then } 2n^3 + n \text{ is div. by } 3 \]
 ▶ For every prime \(n \), \(n^2 - n + 41 \) is prime
 \[\text{If } n \text{ is prime, then } n^2 - n + 41 \text{ is prime} \]
 ▶ The sum of the interior angles in any triangle is 180°
 \[\text{If } t \text{ is a triangle, then the sum of } t's \text{ interior angles is } 180° \]

Observations
 ▶ Not every mathematical statement is true (2nd statement is false) \(n = 41 \)
 ▶ Not every mathematical statement is about numbers
Review of Implications and Their Contrapositives

Trooper Jones in the Pub

- The law: “if you are drinking beer, then you are at least 21 years of age”
- Law is broken if someone is drinking beer and under 21
- I.e., “if p, then q” is false only if p is true and q is false
- So trooper is looking for a counterexample

<table>
<thead>
<tr>
<th>Hypothesis (p)</th>
<th>Conclusion (q)</th>
<th>Implication (If p, then q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>You are drinking beer</td>
<td>You are at least 21</td>
<td>You are obeying the law</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Lecture 6
Recall contrapositives

- Contrapositive of \(p \rightarrow q \) is \(\neg q \rightarrow \neg p \)

- A proposition (or a predicate) and its contrapositive are logically equivalent

- Example:

 Implication: “If you are drinking beer, then you are at least 21 years of age, ”

 Contrapositive: “If you are under 21 years of age, then you are not drinking beer”
Mathematical Proofs

Trooper Jones proves that the law is being obeyed

- Jones makes sure there are no counterexamples (p true and q false)
- Easy, since at most 4 people to check (and some of them don't need checking)
- This procedure holds true in general

Example: play the role of Trooper Jones

1. For every integer $n \geq 1$, if n is odd, then $n^2 + 4$ is a prime number
2. For every positive integer n, if n is odd, then $n^3 - n$ is divisible by 4

<table>
<thead>
<tr>
<th>n</th>
<th>$n^2 + 4$</th>
<th>Prime?</th>
<th>n</th>
<th>$n^3 - n$</th>
<th>Divisible by 4?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>Y</td>
<td>1</td>
<td>0</td>
<td>$0 \cdot 4 = 0$</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>Y</td>
<td>3</td>
<td>24</td>
<td>$6 \cdot 4 = 24$</td>
</tr>
<tr>
<td>5</td>
<td>29</td>
<td>Y</td>
<td>5</td>
<td>120</td>
<td>$30 \cdot 4 = 120$</td>
</tr>
<tr>
<td>7</td>
<td>53</td>
<td>Y</td>
<td>7</td>
<td>336</td>
<td>$44 \cdot 4 = 336$</td>
</tr>
<tr>
<td>9</td>
<td>85</td>
<td>N</td>
<td>9</td>
<td>720</td>
<td>$180 \cdot 4 = 720$</td>
</tr>
</tbody>
</table>

Observations

- No need to check even numbers
- If you haven't found a counterexample yet, that doesn't mean there isn't one
The essence of a proof

- You will never find a counterexample
- Equivalently, no matter what number is chosen that satisfies the hypothesis, it is guaranteed to also satisfy the conclusion
Mathematical Proofs as Games

The essence of a proof

- You will never find a counterexample
- Equivalently, no matter what number is chosen that satisfies the hypothesis, it is guaranteed to also satisfy the conclusion

Proof as a game between Author and (Skeptical) Reader

1. Reader chooses a value of n that satisfies the hypothesis
2. Author tries to demonstrate that conclusion is true for this value of n
3. If conclusion is true for this choice of n, Author is successful & Reader takes another turn
4. If conclusion is false for this choice of n, Reader wins
The essence of a proof

- You will never find a counterexample
- Equivalently, no matter what number is chosen that satisfies the hypothesis, it is guaranteed to also satisfy the conclusion

Proof as a game between Author and (Skeptical) Reader

1. Reader chooses a value of n that satisfies the hypothesis
2. Author tries to demonstrate that conclusion is true for this value of n
3. If conclusion is true for this choice of n, Author is successful & Reader takes another turn
4. If conclusion is false for this choice of n, Reader wins

Observation

- If statement is true, then the game never ends
- So Author writes an argument to convince Reader that game will never end
- This argument is a mathematical proof
- Author and Reader must agree on the meaning of all terms in the statement
First Example

Informal statement

Other than 3, 4 there is no pair of consecutive integers where the first is a prime number and the second is a perfect square.
First Example

Informal statement

Other than 3, 4 there is no pair of consecutive integers where the first is a prime number and the second is a perfect square.

Theorem

For all integers $n > 4$, if n is a perfect square, then $n - 1$ is not a prime number.
First Example

Informal statement
Other than 3, 4 there is no pair of consecutive integers where the first is a prime number and the second is a perfect square.

Theorem
For all integers $n > 4$, if n is a perfect square, then $n - 1$ is not a prime number.

Some sample plays of the game:

<table>
<thead>
<tr>
<th>Reader’s n</th>
<th>Author’s factorization</th>
<th>Prime?</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4^2 = 16$</td>
<td>$15 = 3 \times 5$</td>
<td>no</td>
</tr>
<tr>
<td>$6^2 = 36$</td>
<td>$35 = 5 \times 7$</td>
<td>no</td>
</tr>
<tr>
<td>$7^2 = 49$</td>
<td>$48 = 6 \times 8$</td>
<td>no</td>
</tr>
<tr>
<td>$10^2 = 100$</td>
<td>$99 = 9 \times 11$</td>
<td>no</td>
</tr>
<tr>
<td>$12^2 = 144$</td>
<td>$143 = 11 \times 13$</td>
<td>no</td>
</tr>
</tbody>
</table>
Pattern of the game

Reader chooses $n = m^2$, then Author tries to factor $n - 1$
Pattern of the game
Reader chooses \(n = m^2 \), then Author tries to factor \(n - 1 \)

Recall: \(m^2 - 1 = (m - 1)(m + 1) \)
First Example, Continued

Pattern of the game

Reader chooses $n = m^2$, then Author tries to factor $n - 1$

Recall: $m^2 - 1 = (m - 1)(m + 1)$

Informal proof

Every time you choose a perfect square (greater than 4) for n, say, $n = m^2$ (m a positive integer), I can factor $n - 1$. This is because $n - 1$ is the same as $m^2 - 1$, which factors as $(m - 1)(m + 1)$. As long as these factors are both at least 2—which they are since $n > 4$—this will demonstrate that $n - 1$ is not prime.
First Example, Continued

Pattern of the game

Reader chooses $n = m^2$, then Author tries to factor $n - 1$

Recall: $m^2 - 1 = (m - 1)(m + 1)$

Informal proof

Every time you choose a perfect square (greater than 4) for n, say, $n = m^2$ (m a positive integer), I can factor $n - 1$. This is because $n - 1$ is the same as $m^2 - 1$, which factors as $(m - 1)(m + 1)$. As long as these factors are both at least 2—which they are since $n > 4$—this will demonstrate that $n - 1$ is not prime.

Formal proof

Let a perfect square $n > 4$ be given. By definition of a perfect square, $n = m^2$ for some positive integer m. Since $n > 4$, it follows that $m > 2$. Now the number $n - 1 = m^2 - 1$ can be factored as $(m - 1)(m + 1)$. Since $m > 2$, then both $m - 1$ and $m + 1$ are greater than 1, so $(m - 1)(m + 1)$ is a factorization of $n - 1$ into the product of two positive numbers, each greater than 1. By the definition of a prime number, it follows that $n - 1$ is not prime.
Tracing a Proof

<table>
<thead>
<tr>
<th>$n = m^2$</th>
<th>$n - 1$</th>
<th>$(m - 1)(m + 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = (3)^2$</td>
<td>8</td>
<td>$(3 - 1)(3 + 1) = (2)(4)$</td>
</tr>
<tr>
<td>$n = (4)^2$</td>
<td>15</td>
<td>$(4 - 1)(4 + 1) = (3)(5)$</td>
</tr>
<tr>
<td>$n = (7)^2$</td>
<td>48</td>
<td>$(7 - 1)(7 + 1) = (6)(8)$</td>
</tr>
<tr>
<td>$n = (10)^2$</td>
<td>99</td>
<td>$(10 - 1)(10 + 1) = (9)(11)$</td>
</tr>
<tr>
<td>$n = (12)^2$</td>
<td>143</td>
<td>$(12 - 1)(12 + 1) = (11)(13)$</td>
</tr>
<tr>
<td>$n = (25)^2$</td>
<td>624</td>
<td>$(25 - 1)(25 + 1) = (24)(26)$</td>
</tr>
</tbody>
</table>

Note:

- A trace helps you understand a proof, it is **not** a proof itself
- A trace can help you detect flaws in faulty proofs
Some More (Precise) Definitions

Definition 1
An integer is **even** if it can be written in the form \(n = 2 \cdot K \) for some integer \(K \). An integer \(m \) is **odd** if it can be written in the form \(n = 2 \cdot L + 1 \) for some integer \(L \).

Definition 2
An integer is **divisible by 4** if it can be written in the form \(n = 4 \cdot M \) for some integer \(M \).

Closure property of the integers
Whenever the operations of addition, subtraction, or multiplication are applied to integers, the result is an integer.

Example: Use the definitions to show the following
- 72, 0, and -18 are even
- 81 and -15 are odd
- 72 is divisible by 4
- For any choice of integer \(n \), \(4n^2 - 2n \) is even

\[
72 = 2 \cdot 36 \quad 0 = 2 \cdot 0 \quad -18 = 2 \cdot -9
\]
\[
81 = 2 \cdot 40 + 1 \quad (L = 40 \text{ in the definition})
\]
\[
72 = 4 \cdot 18 \quad (M = 18 \text{ in the definition})
\]
\[
4n^2 - 2n = 2 \cdot (2n^2 - n) \quad 2n^2 - n \text{ is a integer, by closure}
\]
Another Example

Proposition

The result of summing any odd integer with any even integer is an odd integer.

Proof

1. Let odd integer x and even integer y be given.
2. By the definition of “odd”, there exists an integer A such that $x = 2 \cdot A + 1$.
3. By the definition of “even”, there exists an integer B such that $y = 2 \cdot B$.
4. This means that

$$x + y = (2 \cdot A + 1) + 2 \cdot B = 2 \cdot A + 2 \cdot B + 1 = 2 \cdot (A + B) + 1.$$

5. Since $A + B$ is an integer (by the closure property), $x + y$ can be written as 2 times an integer plus 1, so by the definition of “odd”, $x + y$ is odd.
Tracing the Proof

Proof for \(x = 17 \) and \(y = 12 \)

1. By the definition of “odd”, there exists an integer \(A (A = 8) \) such that \(x = 2 \cdot A + 1 \) \((17 = 2 \cdot 8 + 1)\).

2. By the definition of “even”, there exists an integer \(B (B = 6) \) such that \(y = 2 \cdot B \) \((12 = 2 \cdot 6)\).

3. This means that

\[
17 + 12 = (2 \cdot 8 + 1) + 2 \cdot 6 = 2 \cdot 8 + 2 \cdot 6 + 1 = 2 \cdot (8 + 6) + 1.
\]

4. So \(17 + 12 = 29 \) can be written as 2 times an integer (14) plus 1, so by the definition of “odd”, \(17 + 12 \) is odd.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(A)</th>
<th>(B)</th>
<th>(x + y)</th>
<th>(2 \cdot (A + B) + 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>29</td>
<td>(2 \cdot (14) + 1)</td>
</tr>
<tr>
<td>37</td>
<td>8</td>
<td>18</td>
<td>4</td>
<td>45</td>
<td>(2 \cdot (22) + 1)</td>
</tr>
<tr>
<td>101</td>
<td>14</td>
<td>50</td>
<td>7</td>
<td>115</td>
<td>(2 \cdot (57) + 1)</td>
</tr>
<tr>
<td>-17</td>
<td>84</td>
<td>-9</td>
<td>42</td>
<td>67</td>
<td>(2 \cdot (33) + 1)</td>
</tr>
<tr>
<td>51</td>
<td>50</td>
<td>25</td>
<td>25</td>
<td>101</td>
<td>(2 \cdot (50) + 1)</td>
</tr>
</tbody>
</table>
An Error to Avoid

An incorrect proof

1. By the definition of “odd”, there exists an integer A such that $x = 2 \cdot A + 1$.
2. By the definition of “even”, there exists an integer A such that $y = 2 \cdot A$.
3. This means that

$$x + y = (2 \cdot A + 1) + 2 \cdot A = 2 \cdot A + 2 \cdot A + 1 = 2 \cdot (A + A) + 1.$$

4. So $x + y$ can be written as 2 times an integer plus 1, so by the definition of “odd”, $x + y$ is odd.

Try tracing the proof with $x = 17$ and $y = 12$

- Then $A = 8$ since $17 = 2 \cdot 8 + 1$?
 - But then proof says that $17 + 12 = 2 \cdot 16 + 1$ (false!)
 - Maybe $A = 6$, since $12 = 2 \cdot 6$?
 - But then proof says that $17 + 12 = 2 \cdot 12 + 1$ (false!)
 - Yuck.

Moral: In any proof, use different variables to represent different things

- We use A and B because the two numbers are not known to be the same
Proposition

The sum of two even integers is even.

1. Let \(x \) and \(y \) be two given, even integers.
2. By definition of even, \(x = 2 \cdot \alpha \) and \(y = 2 \cdot \beta \) for two integers \(\alpha \) and \(\beta \).
3. \(x + y = 2 \cdot \alpha + 2 \cdot \beta = 2 \cdot (\alpha + \beta) \).
4. By closure, \(\alpha + \beta \) is an integer.
5. Therefore \(x + y = 2 \cdot (\text{integer}) \).
6. By definition of "even", \(x + y \) is even.
Another Example

Proposition

If \(n \) is even, then \(n^2 \) is divisible by 4.

Proof (see textbook for a “letter to the reader” format)

1. Let an even integer \(n \) be given.
2. By the definition of “even”, there exists an integer \(k \) such that \(n = 2 \cdot k \).
3. This means that
 \[
 n^2 = (2 \cdot k)^2 = 4k^2 = 4 \cdot (k^2).
 \]
4. Since \(k \) is an integer, \(k^2 \) is an integer, so \(n^2 \) can be written as 4 times an integer, so by the definition of “divisible by 4”, \(n^2 \) is divisible by 4.
Another Pitfall

Proposition

If \(n^2 \) is even, then \(n \) is even.

Flawed proof

1. We can write \(n^2 = 2k \) for some integer \(k \).
2. Divide both sides by \(n \), getting \(n = 2 \cdot (k/n) \).
3. Since \(k/n \) is an integer, this proves the result.

What is the problem here? Try square roots?

A trick: Sometimes proving the contrapositive is easier

- Formal statement: For all integers \(n \), if \(n^2 \) is even, then \(n \) is even
- Contrapositive: For all integers \(n \), if \(n \) is odd, then \(n^2 \) is odd
The Final Theorem and Proof

Proposition

For all integers n, if n is odd, then n^2 is odd

Proof

1. Let odd integer n be given.
2. By definition of “odd”, $n = 2k + 1$ for some integer k
3. Then

\[n^2 = (2k + 1)^2 \]
\[= 4k^2 + 4k + 1 \]
\[= 2 \cdot (2k^2 + 2k) + 1. \]

4. Since $2k^2 + 2k$ is an integer, this proves that n^2 can be written as 2 times an integer plus 1, so n^2 is odd.