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Simple Predicates

Definition
A predicate P(x) is a statement having a variable x such that
whenever x is replaced by a value, the resulting proposition is

unambiguously true or false. For multiple variables, we write
P(x1,x2,...).
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Simple Predicates

Definition

A predicate P(x) is a statement having a variable x such that
whenever x is replaced by a value, the resulting proposition is
unambiguously true or false. For multiple variables, we write

P(x1,x2,...).

Example 1: P(n) = "n is even”
» n=2: P(2) = “2iseven” [P(2) = T]
» n=17: P(17) = “17 is even” [P(17) = F]
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Simple Predicates

Definition

A predicate P(x) is a statement having a variable x such that
whenever x is replaced by a value, the resulting proposition is
unambiguously true or false. For multiple variables, we write
P(x1,x2,...).

Example 1: P(n) = "n is even”
» n=2: P(2) = “2iseven” [P(2) = T]
» n=17: P(17) = “17 is even” [P(17) = F]

Example 2: Evaluate the following predicate for

X =2,23,-5,15 :R()’):f p03)= |

» R(x) = "“(x >5)A(x <20)"

R(5): F o RO5)T
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Negation of Simple Predicates

Techniques carry over from negation of propositions

Example:

P(x) | ~P(x)

x>b —(x > 5) = x <5 Equivalent for all values of x
(x >0)A(x<10) | (x<0)V(x>10) )F/‘/\a\/74"} LaW

—(x =8) %f’% Deoublt neya H’J’V\

&)
Example 2: P(x,y) = (x> 0)V (y > 0) '
» Negate P(x,y): /}[40) A (/3,2_0 DC//lar“f/%f( law 499)Y)
» Evaluate P(1,2) = 7~ P(— -7 P(-7,-2) = F
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Predicates and Sets

Informal Definition
A set is a collection of objects, which are called elements or
members.

Example: D = {1,2,3,4,5,6,7,8,9,10}
» For each predicate, list elements that make it true, and
similarly for the negation

P(x) | True for ... | =P(x) | True for ...

x>38 8,9,10 x <38 1,2,3,4,5,6,7

(x > 5) A (x is even) 6,8,10 (x <5)V(xisodd) | 1,2,3,4,5,7,9

X% =x 1 K= X L}/L.;;jg}‘#/%?} )0
(x+1) is divisible by 3 | 2,5 ¢ (1) aod div. by3s |3 ueq 9,10
x>0 af] A zo none’

x> x? None Y all

We call D the domain of the predicate
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Truth and Quantifiers

Example: D = {-1,0,1,2}

P(x) | True for these members of D | True for at least one? | True for all?
x<0 -1 Yos o
x? < x AJane Mo Nb
x2 > x A I Ves fes

Examples of statements with quantifiers
> For every k that is a member of the set A= {1,2,3,4,5}, it is true that k < 20
> There exists a member m of the set G = {—1,0,1} such that m*> = m

Quantifier notation
> c: “in” or “belonging to” (set membership) ex: —[ € D
> : “for all" or “for every”
> 3: “there is (at least one)” or “there exists (at least one)”
Rewrite the prior statements using mathematical notation
> Vke A k<20
» Ime G m=m
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Quantified Predicates

Definitions

Quantified predicate: A predicate with one or more quantifiers
Counterexample: Example showing that a “for all” statement is false

Example 1: Translate from English to math and assess truth,
for D = {3,4,5,10,20,25}

» For every n that is a member of D, n < 20: / j

Uned, nro [ﬁ[se: r5ois o Caumfeve)cmm/ﬂ

» For all nin the set D, n < 5 or n is a multiple of 5:

Vnel, (nzs)v(nis a wulfple #5) [77""@.:)
> There is (at least one) k in the set D such that k2 is also in D:
dkeD, k€D [ Trve, =57
» There exists m a member of the set D such that m > 3:
ﬂme/)/ m=3 Cfmg u:?]
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Quantified Predicates

Definitions
Quantified predicate: A predicate with one or more quantifiers
Counterexample: Example showing that a “for all” statement is false

Example 2: Translate from math to English and assess truth, for D = {—-2,-1,0, 1,2}

» Yne D, n> —-2:

Foy\ q‘l] n rh ‘{’hc 4(»/1[ b} h>—L [F;,/f(’,.‘ n<-L,5a éawn‘#efe)éamp/g/j

» dne D, n>-2:

Fov at /eaé-,l owe N in {Lﬂ f@,‘lz Dj n=-r [_/ﬁu(/j

» VneD, (n>-3)A(n<3): \
o ol n e ot D, nm 3 and n43 (16,730 3) [ True|
> 3me D, m> 10: e m6l sl ;L,;z; M0 [ﬁ,/gej

fl\cra é,)(p'g-\[S a“ (@aS'% on
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Specify the Domain!

For each quantified statement, determine the domain D and rewrite formally. If the
domain is ambiguous, give examples of how different domains can change the truth
of the statement.

»> R = the real numbers (R = positive real numbers)

»> 7 = the integers, i.e., {0,£1,+2,+3,...}

1. For all x, x2 > x
> If D=TR:Vx € R, x> > x [false since x = 0.5 is a counterexample]
> If D=7:VYx € Z, x> > x [true]

2. V even integer m, m ends in the digit O, 2, 4, 6, or 8
> D = set of even integers: Vm € D, m ends in the digit 0, 2, 4, 6, or 8

3. There is an integer n whose square root is also an integer
» D=7:3kcZ Vkel

4. Every real number greater than O has a square that is greater than 0
> D=Rsg:VnE€Rxp, 1> >0
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Negating Quantified Statements: Example

Example: For D = {-2,—1,0, 1,2}, explain why each predicate is
false. Write the negation in English and formally.

1.Vde D, d< -2 )
TZ)WC 4)412715 f(éf) SMoZ\ 'IMM‘/ JE o

sl d =3

2. dme D, m > 10: .
Lvery e/gmeﬂvé O]D D < 40

b/mépj m £ 10
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Negating Quantified Statements in General

Proposition
1. The negation of Vx € D, P(x) is 3x € D, =P(x)
2. The negation of 3x € D, Q(x) is Vx € D, =Q(x)
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Negating Quantified Statements in General

Proposition
1. The negation of Vx € D, P(x) is 3x € D, =P(x)
2. The negation of Ix € D, Q(x) is Vx € D, =Q(x)

Example: For D = {—1,0, 1,2}, write the negation & determine which version is true
L Vxe D, (e <0)v (x> 2) /:J’Xéﬁ AN T T 517/6/) (4>0) A (#20)
2. 3x €D, (x <0)V (x2 > 0): VX!‘/’A (4(>0) /\[Q/lz-d)
3. Vx €D, x2 < x: __:]%D 7(41’“49/) \]ffé.b A/l;%@

4. There exists x € D such that x2 < x:

foeﬂ) aY >y @
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Multiple Quantifiers

Reminder: Predicates can have multiple arguments

Example: P(x,y) = (x € Z) AN (y € Z) N (x -y = 36)
> Bvaluate: P(9,4) = P(-6,-6)="]" P(4,-1)= F
» If we replace Z by R, then P(x,y) = T for infinitely many
(x,y) pairs (e.g., x =72, y = 0.5)
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Multiple Quantifiers

Reminder: Predicates can have multiple arguments

Example: P(x,y) = (x € Z) AN (y € Z) N (x -y = 36)
> Evaluate: P(9,4) = T P(—6,—-6)=T P(4,—1)=F
» If we replace Z by R, then P(x,y) = T for infinitely many
(x,y) pairs (e.g., x =72, y = 0.5)

Multiple quantifiers of the same type (the easier case)
> There exist integers x and y such that x -y =36
» dxeZ dyeZ x-y=36or3Ix,yeZ, x-y =36
> For all integers x and y, it is true that x - y = 36
» Vxe€Z Vyel x-y=36orVx,y€Z, x-y =306
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Mixed Quantifiers

For two variables: Two basic kinds (the truth game)

» Vx, Jy, P(x,y): Opponent gives you x, you need to find y

» dy, Vx, P(x,y): You need to find y that can handle any
opponent’s x
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Mixed Quantifiers

For two variables: Two basic kinds (the truth game)
» Vx, Jy, P(x,y): Opponent gives you x, you need to find y

» dy, Vx, P(x,y): You need to find y that can handle any
opponent’s x

Versus ambiguous English sentences

» “For every problem there is a solution” vs “There is a solution
for every problem” s4m¢ mean

» Let P(x,y) = "x is a solution for problem y”

» Yy, dx, P(x,y) vs dx, Yy, P(x,y)
For every /de/ex’“) there z,)c/‘sjf A éﬁ/VV/i(W)/
There evst a solufign Yt solves <l prodierd
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Playing the Truth Game

Which of the following are true?

@ Jake 42).
1. VxeZ, dyeZ, x+2y=3 ‘
7\_},3\% <3 i‘MF(l‘C} 1,47,;| e

2.Vx€Z Jyel x+y=15 @ CLM(@ ya )5’0{

3.3y eZ, VxeZ x+y=15 @

o Cant /Ms;»’j/i/ LM\ Jecars€

/Qz/t ?a Prst

fes 7¢Z
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Negating Multiple Quantifiers

Apply our proposition from left to right:
» The negation of Vx € D, P(x) is 3x € D, =P(x)
> The negation of Ix € D, Q(x) is Vx € D, =Q(x)

Example 1

-(Vx € Z,3y € Z,x +2y =3
Ix€Z,~(3y € Z,x+2y =3
Ix € Z,Vy € Z,~(x+2y =3

Ix € Z,Vy € Z,(x +2y #3

) initial negation
) by proposition
) by proposition
)

equivalent form of “not equal”
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Negating Multiple Quantifiers

Apply our proposition from left to right:
» The negation of Vx € D, P(x) is 3x € D, =P(x)
> The negation of Ix € D, Q(x) is Vx € D, =Q(x)

Example 1

-(Vx € Z,3y € Z,x +2y =3
Ix€Z,~(3y € Z,x+2y =3
Ix € Z,Vy € Z,~(x+2y =3
Ix € Z,Vy € Z,(x +2y #3

) initial negation
) by proposition
) by proposition
) equivalent form of “not equal”

Example 2

-(3x € Z,3y € Z,(x +y =13) A(x -y = 36))

Vx € Z,— (HyeZ (X+y—13)/\(x y—36)) by proposition

Vx € Z,Vy € Z,~((x+y = 13) A (x - y = 36))

Vx € Z,Ny € Z,~(x+y =13)V ~(x-y =36
Vx € Z,Ny €EZ,(x+y #13)V (x-y # 36

initial negation

by proposition
) DeMorgan's laws
)

equivalent form of “not equal”
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Negating Multiple Quantifiers: Examples

Negate each quantified predicate. Which is true, the

predicate or its negation? _/—/_ﬁ\/‘
P At M2 X byt hen

Py
» Vx € Rog,dy € R, (y > x) A (x +y =2x): (y,>ﬂ/) ¢ g‘l)’f

AxeR,, e R, (2000 (2 42)

Jllkl i e
}m%)(ab EIxGZ,VyGZ,x-ySO:@ 7;;,/45 37

\docaﬂ_/ szz/ %-”at>@

¢ /l /'S 79(4@

» Vx,y,zE€Z, x> +y>+2°>0 @

z L &1 75 Lf}?ZsC)
Jnpe et 2

Lecture 3 16/ 16



