

Predicates

Reading: EC 1.4

Peter J. Haas

INFO 150
Fall Semester 2019

Predicates

Simple Predicates and Their Negations

Predicates and Sets

Quantified Predicates

Negating Quantified Predicates

Multiple Quantifiers and Their Negation

Simple Predicates

Definition

A **predicate** $P(x)$ is a statement having a variable x such that whenever x is replaced by a value, the resulting proposition is unambiguously true or false. For multiple variables, we write $P(x_1, x_2, \dots)$.

Simple Predicates

Definition

A **predicate** $P(x)$ is a statement having a variable x such that whenever x is replaced by a value, the resulting proposition is unambiguously true or false. For multiple variables, we write $P(x_1, x_2, \dots)$.

Example 1: $P(n) = "n \text{ is even}"$

- ▶ $n = 2: P(2) = \text{"2 is even"} [P(2) = T]$
- ▶ $n = 17: P(17) = \text{"17 is even"} [P(17) = F]$

Simple Predicates

Definition

A **predicate** $P(x)$ is a statement having a variable x such that whenever x is replaced by a value, the resulting proposition is unambiguously true or false. For multiple variables, we write $P(x_1, x_2, \dots)$.

Example 1: $P(n) = "n \text{ is even}"$

- ▶ $n = 2: P(2) = \text{"2 is even"} [P(2) = T]$
- ▶ $n = 17: P(17) = \text{"17 is even"} [P(17) = F]$

Example 2: Evaluate the following predicate for

$$x = 2, 23, -5, 15$$

- ▶ $R(x) = "(x > 5) \wedge (x < 20)":$ $R(2) = F$ $R(23) = F$
 $R(-5) = F$ $R(15) = T$

Negation of Simple Predicates

Techniques carry over from negation of propositions

Example:

$P(x)$	$\neg P(x)$
$x > 5$	$\neg(x > 5) \equiv x \leq 5$
$(x > 0) \wedge (x < 10)$	$(x \leq 0) \vee (x \geq 10)$
$\neg(x = 8)$	$x \neq 8$

Equivalent for all values of x

DeMorgan's Law

Double negation

$\neg(\neg(x \geq 8))$

Example 2: $P(x, y) = (x \geq 0) \vee (y \geq 0)$

- Negate $P(x, y)$: $(x < 0) \wedge (y < 0)$ DeMorgan's Law again
- Evaluate $P(1, 2) = T$ $P(-1, 3) = T$ $P(-7, -2) = F$

Predicates and Sets

Informal Definition

A **set** is a collection of objects, which are called **elements** or **members**.

Example: $D = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

- ▶ For each predicate, list elements that make it true, and similarly for the negation

$P(x)$	True for ...	$\neg P(x)$	True for ...
$x \geq 8$	8, 9, 10	$x < 8$	1, 2, 3, 4, 5, 6, 7
$(x > 5) \wedge (\text{x is even})$	6, 8, 10	$(x \leq 5) \vee (\text{x is odd})$	1, 2, 3, 4, 5, 7, 9
$x^2 = x$	1	$x^2 \neq x$	2, 3, 4, 5, 6, 7, 8, 9, 10
$(x + 1)$ is divisible by 3	2, 5, 8	$(x+1)$ not div. by 3	1, 3, 4, 6, 7, 9, 10
$x > 0$	all	$x \leq 0$	none
$x > x^2$	none	$x \leq x^2$	all

We call D the **domain** of the predicate

Truth and Quantifiers

Example: $D = \{-1, 0, 1, 2\}$

$P(x)$	True for these members of D	True for at least one?	True for all?
$x < 0$	-1	Yes	No
$x^2 < x$	None	No	No
$x^2 \geq x$	All	Yes	Yes

Examples of statements with quantifiers

- ▶ For every k that is a member of the set $A = \{1, 2, 3, 4, 5\}$, it is true that $k < 20$
- ▶ There exists a member m of the set $G = \{-1, 0, 1\}$ such that $m^2 = m$

Quantifier notation

- ▶ \in : "in" or "belonging to" (set membership) ex: $-1 \in D$
- ▶ \forall : "for all" or "for every"
- ▶ \exists : "there is (at least one)" or "there exists (at least one)"

Rewrite the prior statements using mathematical notation

- ▶ $\forall k \in A, k < 20$
- ▶ $\exists m \in G, m^2 = m$

Quantified Predicates

Definitions

Quantified predicate: A predicate with one or more quantifiers

Counterexample: Example showing that a “for all” statement is false

Example 1: Translate from English to math and assess truth,
for $D = \{3, 4, 5, 10, 20, 25\}$

- ▶ For every n that is a member of D , $n < 20$:

$\forall n \in D, n < 20$ [False: 25 is a counterexample]

- ▶ For all n in the set D , $n < 5$ or n is a multiple of 5:

$\forall n \in D, (n < 5) \vee (n \text{ is a multiple of } 5)$ [True]

- ▶ There is (at least one) k in the set D such that k^2 is also in D :

$\exists k \in D, k^2 \in D$ [True, $k=5$]

- ▶ There exists m a member of the set D such that $m \geq 3$:

$\exists m \in D, m \geq 3$ [True, $k=3$]

Quantified Predicates

Definitions

Quantified predicate: A predicate with one or more quantifiers

Counterexample: Example showing that a "for all" statement is false

Example 2: Translate from math to English and assess truth, for $D = \{-2, -1, 0, 1, 2\}$

- ▶ $\forall n \in D, n > -2$:

For all n in the set D , $n > -2$ [False: $n = -2$ is a counterexample]

- ▶ $\exists n \in D, n > -2$:

For at least one n in the set D , $n > -2$ [True]

- ▶ $\forall n \in D, (n > -3) \wedge (n < 3)$:

For all n in the set D , $n > -3$ and $n < 3$ (i.e., $-3 < n < 3$) [True]

- ▶ $\exists m \in D, m > 10$:

There exists at least one $m \in D$ such that $m > 10$ [False]

Specify the Domain!

For each quantified statement, determine the domain D and rewrite formally. If the domain is ambiguous, give examples of how different domains can change the truth of the statement.

- ▶ $\mathbb{R} =$ the real numbers ($\mathbb{R}_{>0} =$ positive real numbers)
- ▶ $\mathbb{Z} =$ the integers, i.e., $\{0, \pm 1, \pm 2, \pm 3, \dots\}$

1. For all x , $x^2 \geq x$
 - ▶ If $D = \mathbb{R}$: $\forall x \in \mathbb{R}, x^2 \geq x$ [false since $x = 0.5$ is a counterexample]
 - ▶ If $D = \mathbb{Z}$: $\forall x \in \mathbb{Z}, x^2 \geq x$ [true]
2. \forall even integer m , m ends in the digit 0, 2, 4, 6, or 8
 - ▶ $D =$ set of even integers: $\forall m \in D, m$ ends in the digit 0, 2, 4, 6, or 8
3. There is an integer n whose square root is also an integer
 - ▶ $D = \mathbb{Z}$: $\exists k \in \mathbb{Z}, \sqrt{k} \in \mathbb{Z}$
4. Every real number greater than 0 has a square that is greater than 0
 - ▶ $D = \mathbb{R}_{>0}$: $\forall n \in \mathbb{R}_{>0}, n^2 > 0$

Negating Quantified Statements: Example

Example: For $D = \{-2, -1, 0, 1, 2\}$, explain why each predicate is false. Write the negation in English and formally.

1. $\forall d \in D, d < -2$:

There exists $d \in D$ such that $d \geq -2$

$$\exists d \in D, d \geq -2$$

2. $\exists m \in D, m > 10$:

Every element of D is ≤ 10

$$\forall m \in D, m \leq 10$$

Negating Quantified Statements in General

Proposition

1. The negation of $\forall x \in D, P(x)$ is $\exists x \in D, \neg P(x)$
2. The negation of $\exists x \in D, Q(x)$ is $\forall x \in D, \neg Q(x)$

Negating Quantified Statements in General

Proposition

1. The negation of $\forall x \in D, P(x)$ is $\exists x \in D, \neg P(x)$
2. The negation of $\exists x \in D, Q(x)$ is $\forall x \in D, \neg Q(x)$

Example: For $D = \{-1, 0, 1, 2\}$, write the negation & determine which version is true

(T)

1. $\forall x \in D, (x \leq 0) \vee (x \geq 2)$: $\exists x \in D, \neg(x \leq 0) \wedge \neg(x \geq 2) \equiv \exists x \in D, (x > 0) \wedge (x < 2)$
2. $\exists x \in D, (x < 0) \vee (x^2 > 0)$: $\forall x \in D, (x \geq 0) \wedge (x^2 \leq 0)$ (F)
3. $\forall x \in D, x^2 < x$: $\exists x \in D, \neg(x^2 < x) \equiv \exists x \in D, x^2 \geq x$ (T)
4. There exists $x \in D$ such that $x^2 < x$:

$\forall x \in D, x^2 \geq x$ (T)

Multiple Quantifiers

Reminder: Predicates can have multiple arguments

Example: $P(x, y) = (x \in \mathbb{Z}) \wedge (y \in \mathbb{Z}) \wedge (x \cdot y = 36)$

- ▶ Evaluate: $P(9, 4) = T$ $P(-6, -6) = T$ $P(4, -1) = F$
- ▶ If we replace \mathbb{Z} by \mathbb{R} , then $P(x, y) = T$ for infinitely many (x, y) pairs (e.g., $x = 72$, $y = 0.5$)

Multiple Quantifiers

Reminder: Predicates can have multiple arguments

Example: $P(x, y) = (x \in \mathbb{Z}) \wedge (y \in \mathbb{Z}) \wedge (x \cdot y = 36)$

- ▶ Evaluate: $P(9, 4) = \textcolor{red}{T}$ $P(-6, -6) = \textcolor{red}{T}$ $P(4, -1) = \textcolor{red}{F}$
- ▶ If we replace \mathbb{Z} by \mathbb{R} , then $P(x, y) = T$ for infinitely many (x, y) pairs (e.g., $x = 72$, $y = 0.5$)

Multiple quantifiers of the same type (the easier case)

- ▶ There exist integers x and y such that $x \cdot y = 36$
 - ▶ $\exists x \in \mathbb{Z}, \exists y \in \mathbb{Z}, x \cdot y = 36$ or $\exists x, y \in \mathbb{Z}, x \cdot y = 36$
- ▶ For all integers x and y , it is true that $x \cdot y = 36$
 - ▶ $\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x \cdot y = 36$ or $\forall x, y \in \mathbb{Z}, x \cdot y = 36$

Mixed Quantifiers

For two variables: Two basic kinds (the truth game)

- ▶ $\forall x, \exists y, P(x, y)$: Opponent gives you x , you need to find y
- ▶ $\exists y, \forall x, P(x, y)$: You need to find y that can handle any opponent's x

Mixed Quantifiers

For two variables: Two basic kinds (the truth game)

- ▶ $\forall x, \exists y, P(x, y)$: Opponent gives you x , you need to find y
- ▶ $\exists y, \forall x, P(x, y)$: You need to find y that can handle any opponent's x

Versus ambiguous English sentences

- ▶ “For every problem there is a solution” vs “There is a solution for every problem” *same meaning*
- ▶ Let $P(x, y) = “x \text{ is a solution for problem } y”$
- ▶ $\forall y, \exists x, P(x, y)$ vs $\exists x, \forall y, P(x, y)$

For every problem, there exists a solution
There exist a solution that solves all problems

Playing the Truth Game

Which of the following are true?

1. $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, x + 2y = 3$

\textcircled{F} take $x=2$:
 $2+2y=3$ implies $2y=1$ implies $y \notin \mathbb{Z}$

2. $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, x + y = 15$

\textcircled{T} choose $y=15-x$

3. $\exists y \in \mathbb{Z}, \forall x \in \mathbb{Z}, x + y = 15$

\textcircled{F}

you can't possibly win because
you go first

Negating Multiple Quantifiers

Apply our proposition from left to right:

- ▶ The negation of $\forall x \in D, P(x)$ is $\exists x \in D, \neg P(x)$
- ▶ The negation of $\exists x \in D, Q(x)$ is $\forall x \in D, \neg Q(x)$

Example 1

$$\begin{array}{ll} \neg(\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, x + 2y = 3) & \text{initial negation} \\ \exists x \in \mathbb{Z}, \neg(\exists y \in \mathbb{Z}, x + 2y = 3) & \text{by proposition} \\ \exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}, \neg(x + 2y = 3) & \text{by proposition} \\ \exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}, (x + 2y \neq 3) & \text{equivalent form of "not equal"} \end{array}$$

Negating Multiple Quantifiers

Apply our proposition from left to right:

- The negation of $\forall x \in D, P(x)$ is $\exists x \in D, \neg P(x)$
- The negation of $\exists x \in D, Q(x)$ is $\forall x \in D, \neg Q(x)$

Example 1

$$\begin{aligned} \neg(\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, x + 2y = 3) & \quad \text{initial negation} \\ \exists x \in \mathbb{Z}, \neg(\exists y \in \mathbb{Z}, x + 2y = 3) & \quad \text{by proposition} \\ \exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}, \neg(x + 2y = 3) & \quad \text{by proposition} \\ \exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}, (x + 2y \neq 3) & \quad \text{equivalent form of "not equal"} \end{aligned}$$

Example 2

$$\begin{aligned} \neg(\exists x \in \mathbb{Z}, \exists y \in \mathbb{Z}, (x + y = 13) \wedge (x \cdot y = 36)) & \quad \text{initial negation} \\ \forall x \in \mathbb{Z}, \neg(\exists y \in \mathbb{Z}, (x + y = 13) \wedge (x \cdot y = 36)) & \quad \text{by proposition} \\ \forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, \neg((x + y = 13) \wedge (x \cdot y = 36)) & \quad \text{by proposition} \\ \forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, \neg(x + y = 13) \vee \neg(x \cdot y = 36) & \quad \text{DeMorgan's laws} \\ \forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, (x + y \neq 13) \vee (x \cdot y \neq 36) & \quad \text{equivalent form of "not equal"} \end{aligned}$$

Negating Multiple Quantifiers: Examples

Negate each quantified predicate. Which is true, the predicate or its negation?

- $\forall x \in \mathbb{R}_{>0}, \exists y \in \mathbb{R}, (y > x) \wedge (x + y = 2x)$:

$$\exists x \in \mathbb{R}_{>0}, \forall y \in \mathbb{R}, (y \leq x) \vee (x + y \neq 2x)$$

if true $y = x$ but then
 $(y > x)$ is false
so \wedge is false

mis take in text

- $\exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x \cdot y \leq 0$: ① Take $x=0$

$$\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, x \cdot y > 0$$

- $\forall x, y, z \in \mathbb{Z}, x^2 + y^2 + z^2 \geq 0$ ②

$$\exists x, y, z \in \mathbb{Z}, x^2 + y^2 + z^2 \leq 0$$