Predicates
Reading: EC 1.4

Peter J. Haas

INFO 150
Fall Semester 2019
Predicates

Simple Predicates and Their Negations
Predicates and Sets
Quantified Predicates
Negating Quantified Predicates
Multiple Quantifiers and Their Negation
Simple Predicates

Definition

A predicate $P(x)$ is a statement having a variable x such that whenever x is replaced by a value, the resulting proposition is unambiguously true or false. For multiple variables, we write $P(x_1, x_2, \ldots)$.

Example 1:

$P(n) = \text{"n is even"}$

- $P(2) = \text{"2 is even"}$ \[P(2) = T \]
- $P(17) = \text{"17 is even"}$ \[P(17) = F \]

Example 2:

Evaluate the following predicate for $x=2, 23, 5, 15$:

$I_R(x) = \text{"(x > 5)^{\land} (x < 20)"}$
Simple Predicates

Definition

A **predicate** \(P(x) \) is a statement having a variable \(x \) such that whenever \(x \) is replaced by a value, the resulting proposition is unambiguously true or false. For multiple variables, we write \(P(x_1, x_2, \ldots) \).

Example 1: \(P(n) = \text{“} n \text{ is even} \text{”} \)
- \(n = 2: \ P(2) = \text{“} 2 \text{ is even} \text{”} \ [P(2) = T] \)
- \(n = 17: \ P(17) = \text{“} 17 \text{ is even} \text{”} \ [P(17) = F] \)
Simple Predicates

Definition

A predicate $P(x)$ is a statement having a variable x such that whenever x is replaced by a value, the resulting proposition is unambiguously true or false. For multiple variables, we write $P(x_1, x_2, \ldots)$.

Example 1: $P(n) = \text{“}n \text{ is even}\text{”}$

- $n = 2$: $P(2) = \text{“}2 \text{ is even}\text{”}$ [$P(2) = T$]
- $n = 17$: $P(17) = \text{“}17 \text{ is even}\text{”}$ [$P(17) = F$]

Example 2: Evaluate the following predicate for $x = 2, 23, -5, 15$

- $R(x) = \text{“}(x > 5) \land (x < 20)\text{”}$: $R(2) = F$ $R(23) = T$ $R(-5) = F$ $R(15) = T$
Negation of Simple Predicates

Techniques carry over from negation of propositions

Example:

<table>
<thead>
<tr>
<th>$P(x)$</th>
<th>$\neg P(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x > 5$</td>
<td>$\neg(x > 5) \equiv x \leq 5$</td>
</tr>
<tr>
<td>$(x > 0) \land (x < 10)$</td>
<td>$(x \leq 0) \lor (x \geq 10)$</td>
</tr>
<tr>
<td>$\neg(x = 8)$</td>
<td>$x = 8$</td>
</tr>
</tbody>
</table>

Equivalent for all values of x

Example 2: $P(x, y) = (x \geq 0) \lor (y \geq 0)$

- Negate $P(x, y)$: $(x < 0) \land (y < 0)$
- Evaluate $P(1, 2) = T$ $P(-1, 3) = \overline{T}$ $P(-7, -2) = F$
Informal Definition

A set is a collection of objects, which are called elements or members.

Example: \(D = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \)

- For each predicate, list elements that make it true, and similarly for the negation.

<table>
<thead>
<tr>
<th>(P(x))</th>
<th>True for ...</th>
<th>(\neg P(x))</th>
<th>True for ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \geq 8)</td>
<td>8, 9, 10</td>
<td>(x < 8)</td>
<td>1, 2, 3, 4, 5, 6, 7</td>
</tr>
<tr>
<td>((x > 5) \land (x \text{ is even}))</td>
<td>6, 8, 10</td>
<td>((x \leq 5) \lor (x \text{ is odd}))</td>
<td>1, 2, 3, 4, 5, 7, 9</td>
</tr>
<tr>
<td>(x^2 = x)</td>
<td>1</td>
<td>(x \neq x)</td>
<td>2, 3, 4, 5, 6, 7, 8, 9, 10</td>
</tr>
<tr>
<td>((x + 1) \text{ is divisible by 3})</td>
<td>2, 5, 8</td>
<td>((x+1) \text{ not div. by 3})</td>
<td>1, 3, 4, 6, 7, 9, 10</td>
</tr>
<tr>
<td>(x > 0)</td>
<td>all</td>
<td>(x \leq 0)</td>
<td>none</td>
</tr>
<tr>
<td>(x > x^2)</td>
<td>none</td>
<td>(x \leq x^2)</td>
<td>all</td>
</tr>
</tbody>
</table>

We call \(D \) the domain of the predicate.
Truth and Quantifiers

Example: \(D = \{-1, 0, 1, 2\} \)

<table>
<thead>
<tr>
<th>(P(x))</th>
<th>True for these members of (D)</th>
<th>True for at least one?</th>
<th>True for all?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x < 0)</td>
<td>-1</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>(x^2 < x)</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>(x^2 \geq x)</td>
<td>All</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Examples of statements with quantifiers

- For every \(k \) that is a member of the set \(A = \{1, 2, 3, 4, 5\} \), it is true that \(k < 20 \)
- There exists a member \(m \) of the set \(G = \{-1, 0, 1\} \) such that \(m^2 = m \)

Quantifier notation

- \(\in \): “in” or “belonging to” (set membership)
- \(\forall \): “for all” or “for every”
- \(\exists \): “there is (at least one)” or “there exists (at least one)”

Rewrite the prior statements using mathematical notation

- \(\forall k \in A, \ k < 20 \)
- \(\exists m \in G, \ m^2 = m \)
Quantified Predicates

Definitions

Quantified predicate: A predicate with one or more quantifiers
Counterexample: Example showing that a “for all” statement is false

Example 1: Translate from English to math and assess truth, for \(D = \{3, 4, 5, 10, 20, 25\}\)

- For every \(n \) that is a member of \(D \), \(n < 20 \):
 \[
 \forall n \in D, \ n < 20 \quad \text{[False: 25 is a counterexample]}
 \]

- For all \(n \) in the set \(D \), \(n < 5 \) or \(n \) is a multiple of 5:
 \[
 \forall n \in D, \ (n < 5) \lor (n \text{ is a multiple of 5}) \quad \text{[True]}
 \]

- There is (at least one) \(k \) in the set \(D \) such that \(k^2 \) is also in \(D \):
 \[
 \exists k \in D, \ k^2 \in D \quad \text{[True, } k = 5]\]

- There exists \(m \) a member of the set \(D \) such that \(m \geq 3 \):
 \[
 \exists m \in D, \ m \geq 3 \quad \text{[True, } k = 3]\]
Quantified Predicates

Definitions

Quantified predicate: A predicate with one or more quantifiers
Counterexample: Example showing that a “for all” statement is false

Example 2: Translate from math to English and assess truth, for \(D = \{-2, -1, 0, 1, 2\} \)

\[\forall n \in D, \ n > -2: \Rightarrow \text{For all } n \text{ in the set } D, \ n > -2 \ [\text{False: } n = -2 \text{ is a counterexample}] \]

\[\exists n \in D, \ n > -2: \Rightarrow \text{For at least one } n \text{ in the set } D, \ n > -2 \ [\text{True}] \]

\[\forall n \in D, \ (n > -3) \land (n < 3): \Rightarrow \text{For all } n \text{ in the set } D, \ n > -3 \text{ and } n < 3 \ (\text{i.e., } -3 < n < 3) \ [\text{True}] \]

\[\exists m \in D, \ m > 10: \Rightarrow \text{There exists at least one } m \text{ in } D \text{ such that } m > 10 \ [\text{False}] \]
Specify the Domain!

For each quantified statement, determine the domain D and rewrite formally. If the domain is ambiguous, give examples of how different domains can change the truth of the statement.

- \mathbb{R} = the real numbers ($\mathbb{R}_{>0}$ = positive real numbers)
- \mathbb{Z} = the integers, i.e., \{0, ±1, ±2, ±3, ...\}

1. For all x, $x^2 \geq x$
 - If $D = \mathbb{R}$: $\forall x \in \mathbb{R}, x^2 \geq x$ [false since $x = 0.5$ is a counterexample]
 - If $D = \mathbb{Z}$: $\forall x \in \mathbb{Z}, x^2 \geq x$ [true]

2. \forall even integer m, m ends in the digit 0, 2, 4, 6, or 8
 - $D =$ set of even integers: $\forall m \in D$, m ends in the digit 0, 2, 4, 6, or 8

3. There is an integer n whose square root is also an integer
 - $D = \mathbb{Z}$: $\exists k \in \mathbb{Z}, \sqrt{k} \in \mathbb{Z}$

4. Every real number greater than 0 has a square that is greater than 0
 - $D = \mathbb{R}_{>0}$: $\forall n \in \mathbb{R}_{>0}, n^2 > 0$