

Truth Tellers, Liars, and Propositional Logic

Reading: EC 1.3

Peter J. Haas

INFO 150
Fall Semester 2019

Truth Tellers, Liars, and Propositional Logic

Smullyan's Island

Propositional Logic

Truth Tables for Formal Propositions

Logical Equivalence

The Big Honking Theorem

Smullyan's Island

You meet two inhabitants of Smullyan's Island. *A* says "exactly one of us is lying". *B* says "at least one of us is telling the truth". Who (if anyone) is telling the truth?

Strategy: Focus on the statements, not on who said them

Truth Table Analysis

Notation

- ▶ p = “ A is truthful”
- ▶ q = “ B is truthful”

		Statement 1:	Statement 2:
p	q	Exactly one is lying	At least one is truthful
T	T	F	T
T	F	T	T
F	T	T	T
*F	F	F	F

Answer: Both A and B are liars

Another Smullyan's Island Example

The statements

- ▶ *A*: “Exactly one of us is telling the truth”
- ▶ *B*: “We are all lying”
- ▶ *C*: “The other two are lying”

<i>p</i>	<i>q</i>	<i>r</i>	Statement 1: Exactly one truthful	Statement 2: All lying	Statement 3: <i>A & B</i> lying
T	T	T	F	F	F
T	T	F	F	F	F
T	F	T	F	F	F
*T	F	F	T	F	F
F	T	T	F	F	F
F	T	F	T	F	F
F	F	T	T	F	T
F	F	F	F	T	T

Answer: *A* is truthful; *B* and *C* are liars

Inconclusive or a Paradox

Statement 1: I am telling the truth	
p	
*T	T
*F	F

Inconclusive

Statement 1: I am lying	
p	
T	F
F	T

A paradox

Propositional Logic Notation

Definitions

Proposition: A sentence that is unambiguously true or false

Propositional variable: Represents a proposition (= T or F)

Formal proposition: Proposition written in **formal logic notation**

Propositional Logic Notation

Definitions

Proposition: A sentence that is unambiguously true or false

Propositional variable: Represents a proposition (= T or F)

Formal proposition: Proposition written in **formal logic notation**

Rules of formal propositions (FPs)

1. Any propositional variable is an FP
2. p and q are FPs $\Rightarrow p \wedge q$ is an FP (p and q are true)
3. p and q are FPs $\Rightarrow p \vee q$ is an FP (p or q or both are true)
4. p is an FP $\Rightarrow \neg p$ is an FP (not p)

Example: $(p \vee q) \wedge \neg(p \vee q)$ is a **formal proposition**

Propositional Logic Notation

Definitions

Proposition: A sentence that is unambiguously true or false

Propositional variable: Represents a proposition (= T or F)

Formal proposition: Proposition written in **formal logic notation**

Rules of formal propositions (FPs)

1. Any propositional variable is an FP
2. p and q are FPs $\Rightarrow p \wedge q$ is an FP (p and q are true)
3. p and q are FPs $\Rightarrow p \vee q$ is an FP (p or q or both are true)
4. p is an FP $\Rightarrow \neg p$ is an FP (not p)

Example: $(p \vee q) \wedge \neg(p \vee q)$ is a **formal proposition**

Precedence: \neg **highest, then** \wedge , **then** \vee (like $-$, \times , **and** $+$)

► Ex: $\neg p \wedge \neg q \vee p = ((\neg p) \wedge (\neg q)) \vee p$

Logic Notation: Examples

Example 1: p = “*A* is truthful” and q = “*B* is truthful”

- ▶ *A* is lying: $\neg p$
- ▶ At least one of us is truthful: $p \vee q$
- ▶ Either *B* is lying or *A* is: $\neg p \vee \neg q$
- ▶ Exactly one of us is lying (exclusive or): $(\neg p \wedge q) \vee (p \wedge \neg q)$

Example 2: e = “*Sue* is an English major” and j = “*Sue* is a Junior”

- ▶ *Sue* is a Junior English major: $e \wedge j$
- ▶ *Sue* is either an English major or she is a Junior: $e \vee j$
- ▶ *Sue* is a Junior, but she is not an English major: $j \wedge \neg e$
- ▶ *Sue* is exactly one of the following: an English major or a Junior:

$$(e \wedge \neg j) \vee (j \wedge \neg e)$$

Truth Tables for Formal Propositions

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

p	$\neg p$
T	F
F	T

Truth Table Examples: Complex Formulas

Example 1: $p \wedge \neg q$

p	q	$\neg q$	$p \wedge \neg q$
T	T	F	F
T	F	T	T
F	T	F	F
F	F	T	F

Example 2: $(p \vee q) \wedge \neg(p \wedge q)$

p	q	$p \wedge q$	$\neg(p \wedge q)$	$p \vee q$	$(p \vee q) \wedge \neg(p \wedge q)$
T	T	T	F	T	F
T	F	F	T	T	F
F	T	F	T	T	T
F	F	F	T	F	F

Negation and Inequalities

Example

- ▶ p = “Tammy has more than two children”
- ▶ $\neg p$ =: *Tammy has two or fewer children*
- ▶ If c = number of children, then, mathematically, $p = c > 2$

Negation and Logical Equivalence

Definition

Two statements are **logically equivalent** if they have the same truth value for every row of the truth table

Example: Sue is neither an English major nor a Junior

j	e	$j \vee e$	$\neg(j \vee e)$
T	T	T	F
T	F	T	F
F	T	T	F
F	F	F	T

j	e	$\neg j$	$\neg e$	$\neg j \wedge \neg e$
T	T	F	F	F
T	F	F	T	F
F	T	T	F	F
F	F	T	T	T

↑ *the same* *↑*

DeMorgan's Laws and Negation

Proposition (DeMorgan's Laws)

Let p and q be any propositions. Then

1. $\neg(p \vee q)$ is logically equivalent to $\neg p \wedge \neg q$
2. $\neg(p \wedge q)$ is logically equivalent to $\neg p \vee \neg q$

Proof: Via truth tables

Example 1:

- ▶ "Sue is not both a Junior and an English major": $\neg(j \wedge e)$
- ▶ Use DeMorgan's laws to give an equivalent statement: $\neg j \vee \neg e$

Sue is not a Junior or Sue is not an English major

Example 2: "John got a B' on the test" = $(g \geq 80) \wedge (g < 90)$ [where g = John's score]

- ▶ Write the negation in math and English: $\neg((g \geq 80) \wedge (g < 90))$
 $\equiv \neg(g \geq 80) \vee \neg(g < 90) = (g < 80) \vee (g \geq 90)$
John got less than B or greater than B

Tautology and Contradiction

Definition

1. A **tautology** is a proposition where every row of the truth table is **true**
2. A **contradiction** is a proposition where every row of the truth table is **false**

\neg	$\neg\neg$	\neg	$\neg\neg$	\neg	$\neg\neg$	\neg
p	q	$\neg p$	$\neg q$	$p \vee \neg q$	$\neg p \vee q$	$(p \vee \neg q) \vee (\neg p \vee q)$
T	T	F	F	T	T	T
T	F	F	T	T	F	T
F	T	T	F	F	T	T
F	F	T	T	T	F	F

p	$\neg p$	$p \wedge \neg p$
T	F	F
T	F	F
F	T	F
F	T	F

The Big Honking Theorem (BHT) of Propositions

Theorem

Let p , q and r stand for any propositions. Let t indicate a tautology and c indicate a contradiction. Then:

(a) Commutative	$p \wedge q \equiv q \wedge p$	$p \vee q \equiv q \vee p$
(b) Associative	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$(p \vee q) \vee r \equiv p \vee (q \vee r)$
(c) Distributive	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$
(d) Identity	$p \wedge t \equiv p$	$p \vee c \equiv p$
(e) Negation	$p \vee \neg p \equiv t$	$p \wedge \neg p \equiv c$
(f) Double negative	$\neg(\neg p) \equiv p$	
(g) Idempotent	$p \wedge p \equiv p$	$p \vee p \equiv p$
(h) DeMorgan's laws	$\neg(p \wedge q) \equiv \neg p \vee \neg q$	$\neg(p \vee q) \equiv \neg p \wedge \neg q$
(i) Universal bound	$p \vee t \equiv t$	$p \wedge c \equiv c$
(j) Absorption	$p \wedge (p \vee q) \equiv p$	$p \vee (p \wedge q) \equiv p$
(k) Negations of t and c	$\neg t \equiv c$	$\neg c \equiv t$

Does this look familiar?

Similar to algebra, with $\wedge \equiv x$, $\vee \equiv +$, $t \equiv 1$, $c \equiv 0$

(Not identical, e.g., 2nd version of distributive law)

Substitution Rule: You can replace a formula with a logically equivalent one

Proving Logical Equivalences

Ex: Use BHT plus substitution to prove that $p \vee (\neg p \wedge q) \equiv p \vee q$

$$\begin{aligned} p \vee (\neg p \wedge q) &= (p \vee \neg p) \wedge (p \vee q) && \text{(c) Distributive} \\ &= t \wedge (p \vee q) && \text{(e) Negation} \\ &= (p \vee q) \wedge t && \text{(a) Commutative} \\ &= p \vee q && \text{(d) Identity} \end{aligned}$$