Functions and Relations
Reading: EC 4.1–4.5

Peter J. Haas

INFO 150
Fall Semester 2018
Functions and Relations
 Function Notation and Terminology
 Binary Relations
 Inverse Relations and Functions
 Composition of Functions
 Properties of Functions
 Ordering Relations
 Equivalence Relations
Notation and Terminology of Functions

Definition

A function \(f : A \rightarrow B \) associates with each input from the domain \(A \) one and only one output in the codomain \(B \) according to some rule.

Terminology

- We say that “\(f \) is a function from \(A \) to \(B \)”
- If the rule associates to element \(a \in A \) the element \(b \in B \), then we write \(f(a) = b \) and say that “\(f \) maps \(a \) to \(b \)” or “that value of \(f \) at \(a \) is \(b \)” or “\(f \) of \(a \) equals \(b \)”

Example: Define \(f : \mathbb{N} \rightarrow \mathbb{N} \) by the rule \(f(x) = 2x + 1 \)

- Q: is every element of the codomain an output of one and only one input to \(f \)?

 \[\text{NO! } f(3) = 7, \quad 2x+1=0 \quad \Rightarrow \quad x = -\frac{1}{2} \quad (\text{not an integer}) \]

Example: Define \(f : \mathbb{Z} \rightarrow \mathbb{Z} \) by the rule \(f(x) = x^2 \)

- Q: is every element of the codomain an output of one and only one input to \(f \)?

 \[\text{NO! } f(-2) = f(2) = 4 \]

Functions come in many guises

- Phone directories
- Word-processing software
- Addition: \(f(3, 4) = 7 \)
- Truth tables: \(f : \{T, F\}^2 \rightarrow \{T, F\} \), e.g., \(f(p, q) = p \land q \)
- Cutting the top card: \(\kappa(\text{HCDS}) = \text{SHCD} \)
Representing a Function

An example function

- **Name:** \(f \)
- **Domain:** \(\{1, 2, 3, 4, 5\} \)
- **Codomain:** \(\mathbb{N} \)
- **Rule:** To each number in the domain, associate the square of the number

Representations of the rule

1. The above sentence
2. Algebraic formula: \(f(x) = x^2 \)
3. **Set-based description:** \(f = \{(1, 1), (2, 4), (3, 9), (4, 16), (5, 25)\} \)
4. **Table:**

<table>
<thead>
<tr>
<th>Input</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
</tr>
</tbody>
</table>

5. **Arrow diagram:**

Another function example:

\(S = \{a, b, c\} \)

\(f: \mathcal{P}(S) \to \{0, 1, 2, 3\} \)

\(f(A) = n(A) \)
Binary Relations

Definition

A binary relation consists of a domain A, a codomain B, and a subset of $A \times B$ called the rule for the relation.

Example: Relation E

- **Domain**: The set S of all UMass students this semester
- **Codomain**: The set C of classes offered at UMass this semester
- **Rule**: (x, y) is in E if student x is enrolled in class y this semester

Example: Relation L

- **Domain**: $A = \{1, 2, 3, 4\}$
- **Codomain**: $B = \{2, 3, 5\}$
- **Rule**: $L = \{(1, 2), (1, 3), (1, 5), (2, 3), (2, 5), (3, 5), (4, 5)\}$
- **Succinct representation**: $L = \{(x, y) \in A \times B : x < y\}$
- **Infix notation**: $1 \ L 2, 1 \ L 3, 2 \ L 5, 4 \ L 5, \ldots$

Observation

A function $F : A \rightarrow B$ is a special case of a relation such that for every $x \in A$, there exists exactly one element $y \in B$ for which $(x, y) \in F$
Inverse Relations

Definition

Given a relation R with domain A and codomain B, the inverse R^{-1} of R is the relation with domain B and codomain A such that

$$(x, y) \in R \text{ if and only if } (y, x) \in R^{-1}.$$

Example

- Relation R: domain \mathbb{N} and codomain \mathbb{Z} with rule $R = \{(x, y) \in \mathbb{N} \times \mathbb{Z} : x = y^2\}$ or equivalently $R = \{(y^2, y) : y \in \mathbb{Z}\}$
- Relation S: domain \mathbb{Z} and codomain \mathbb{N} with rule $S = \{(x, y) \in \mathbb{Z} \times \mathbb{N} : y = x^2\}$ or equivalently $S = \{(x, x^2) : x \in \mathbb{Z}\}$
- Claim: R and S are inverses of each other
 1. If $(x, y) \in R$, then $x = y^2$, which means that $(y, x) = (y, y^2) \in S$ √
 2. If $(x, y) \in S$, then $x^2 = y$, which means that $(y, x) = (x^2, x) \in R$ √
Inverse Relations: More Examples

Example 1: Relation \(E \)

- Domain is \(A = \{1, 2, 3\} \) and codomain is \(\mathcal{P}(A) \)
- \((x, y) \in E \) (or equivalently \(x \ E \ y \)) if and only if \(x \in y \)
- \((y, x) \in E^{-1} \) (or equivalently \(y \ E^{-1} \ x \)) if and only if \(x \in y \) (also written \(y \ni x \))

![Diagram of Relation E and its inverse]

Example: Arrow diagram when domain and codomain are the same

\[
R = \{(A, A), (A, B), (A, C), (A, E), (C, B), (C, D), (E, A), (E, B), (E, C), (E, D)\}
\]

\[
R^{-1} = \{(A, A), (B, A), (C, A), (E, A), (B, C), (D, C), (A, E), (B, E), (C, E), (D, E)\}
\]
Inverse Functions

Definition

Functions $f : A \to B$ and $g : B \to A$ are inverses of each other if

$$f(a) = b \text{ if and only if } g(b) = a$$

for all $a \in A$ and $b \in B$. We often write f^{-1} for the inverse of f.

Example: Prove that $f : \mathbb{Z} \to \mathbb{Z}$ with rule $f(x) = x + 3$ and $g : \mathbb{Z} \to \mathbb{Z}$ with rule $g(y) = y - 3$ are inverses of each other

- **Claim 1:** For all $a \in A$ and $b \in B$, if $f(a) = b$ then $g(b) = a$
 - Let $a, b \in \mathbb{Z}$ be given such that $f(a) = b$, i.e., $a + 3 = b$
 - Then $a = b - 3$, i.e., $g(b) = a$. ✓

- **Claim 2:** For all $a \in A$ and $b \in B$, if $g(b) = a$ then $f(a) = b$
 - Let $a, b \in \mathbb{Z}$ be given such that $g(b) = a$, i.e., $b - 3 = a$
 - Then $a + 3 = b$, i.e., $f(a) = b$. ✓

Example: for $f : \mathbb{Q} \to \mathbb{Q}$ with rule $f(x) = \frac{2}{5}x - 2$, find f^{-1}

- Let $a, b \in \mathbb{Q}$ be given such that $f(a) = b$, i.e., $\frac{2}{5}a - 2 = b$
- Solving for a, we have $a = \frac{5}{2}b + 5$
- So take $f^{-1}(y) = g(y) = \frac{5}{2}y + 5$ (can prove that g is the inverse of f)
Inverses and Arrow Diagrams

An inverse is obtained by reversing the arrows

Example: Why is there is no function whose inverse \(g : \{a, b, c, d\} \rightarrow \{1, 2, 3, 4\} \) is given below?
Composition of Functions

Definition

Given \(f : A \rightarrow B \) and \(g : B \rightarrow C \), the composition \(g \circ f \) of \(g \) and \(f \) has domain \(A \), codomain \(C \) and rule \((g \circ f)(x) = g(f(x)) \).

Example:

- \(f : \mathbb{R}^{\geq 0} \rightarrow \mathbb{R} \) with rule \(f(x) = \sqrt{x} \)
- \(g : \mathbb{R} \rightarrow \mathbb{R} \) with rule \(g(x) = 2x \)
- Then \((g \circ f)(x) = g(f(x)) = g(\sqrt{x}) = 2\sqrt{x} \)
- Then \((f \circ g)(x) = f(g(x)) = f(2x) = \sqrt{2x} \) (what is the problem here?)

Composition via arrow diagrams

- Set \(\tilde{g}(x) = 2x \) with domain \(\mathbb{R}^{\geq 0} \) then \(f \circ \tilde{g} \) is well-defined
Inverse Functions Revisited

Definition

For a given set A, the identity function on A is the function $\iota_A : A \rightarrow A$ with the rule $\iota_A(x) = x$ for all $x \in A$. We’ll often simply write ι when A is clear from context. We can also write $\iota_A = \{(x, x) : x \in A\}$ when we wish to view ι_A as a binary relation.

Theorem

Functions $f : A \rightarrow B$ and $g : B \rightarrow A$ are inverses of each other if and only if $f \circ g = \iota_B$ and $g \circ f = \iota_A$.

Example 1:

- Let $f : \mathbb{Q} \rightarrow \mathbb{Q}$ be the function with rule $f(x) = \frac{2}{5}x - 2$
- Let $g : \mathbb{Q} \rightarrow \mathbb{Q}$ be the function with rule $g(x) = \frac{5}{2}x + 5$
- Then $(g \circ f)(x) = g(f(x)) = g\left(\frac{2}{5}x - 2\right) = \frac{5}{2}\left(\frac{2}{5}x - 2\right) + 5 = (x - 5) + 5 = x$
- Also, $(f \circ g)(x) = f(g(x)) = f\left(\frac{5}{2}x + 5\right) = \frac{2}{5}\left(\frac{5}{2}x + 5\right) - 2 = (x + 2) - 2 = x$

Example 2: $f : A \rightarrow A \times A$ with $f(a) = (a, a)$ and $g : A \times A \rightarrow A$ with $g(x, y) = x$

- Given $a \in A$: $(g \circ f)(a) = g(f(a)) = g(a, a) = a$, so $g \circ f = \iota_A$
- Given $(1, 2) \in A \times A$: $(f \circ g)(1, 2) = f(1) = (1, 1) \neq (1, 2)$, so $f \circ g \neq \iota_{A \times A}$