Functions and Relations
Reading: EC 4.1–4.5

Peter J. Haas

INFO 150
Fall Semester 2018
Functions and Relations

- Function Notation and Terminology
- Binary Relations
- Inverse Relations and Functions
- Composition of Functions
- Properties of Functions
- Ordering Relations
- Equivalence Relations
Notation and Terminology of Functions

Definition
A function \(f : A \rightarrow B \) associates with each input from the domain \(A \) one and only one output in the codomain \(B \) according to some rule.

Terminology
- We say that “\(f \) is a function from \(A \) to \(B \)”
- If the rule associates to element \(a \in A \) the element \(b \in B \), then we write \(f(a) = b \) and say that “\(f \) maps \(a \) to \(b \)” or “that value of \(f \) at \(a \) is \(b \)” or “\(f \) of \(a \) equals \(b \)”

Example: Define \(f : \mathbb{N} \rightarrow \mathbb{N} \) by the rule \(f(x) = 2x + 1 \)
- Q: is every element of the codomain an output of one and only one input to \(f \)?
 - \(\text{NO! } f(\frac{1}{2}) = 0 \quad 2 \cdot \frac{1}{2} + 1 = 0 \quad \Rightarrow \quad \frac{1}{2} \notin \mathbb{Z} \) (not an integer)

Example: Define \(f : \mathbb{Z} \rightarrow \mathbb{Z} \) by the rule \(f(x) = x^2 \)
- Q: is every element of the codomain an output of one and only one input to \(f \)?
 - \(\text{NO! } f(-2) = f(2) = 4 \)

Functions come in many guises
- Phone directories
- Word-processing software
- Addition: \(f(3, 4) = 7 \)
- Truth tables: \(f : \{T, F\}^2 \rightarrow \{T, F\} \), e.g., \(f(p, q) = p \land q \)
- Cutting the top card: \(\kappa(HCDS) = SHCD \)

Lecture 13
Representing a Function

An example function

- **Name**: \(f \)
- **Domain**: \(\{1, 2, 3, 4, 5\} \)
- **Codomain**: \(\mathbb{N} \)
- **Rule**: To each number in the domain, associate the square of the number

Representations of the rule

1. The above sentence
2. Algebraic formula: \(f(x) = x^2 \)
3. **Set-based description**: \(f = \{(1, 1), (2, 4), (3, 9), (4, 16), (5, 25)\} \)
4. Table:

<table>
<thead>
<tr>
<th>Input</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
</tr>
</tbody>
</table>

5. Arrow diagram:
Binary Relations

Definition

A binary relation consists of a **domain** A, a **codomain** B, and a subset of $A \times B$ called the **rule** for the relation.

Example: Relation E

- **Domain**: The set S of all UMass students this semester
- **Codomain**: The set C of classes offered at UMass this semester
- **Rule**: (x, y) is in E if student x is enrolled in class y this semester

Example: Relation L

- **Domain**: $A = \{1, 2, 3, 4\}$
- **Codomain**: $B = \{2, 3, 5\}$
- **Rule**: $L = \{(1, 2), (1, 3), (1, 5), (2, 3), (2, 5), (3, 5), (4, 5)\}$
- **Succinct representation**: $L = \{(x, y) \in A \times B : x < y\}$
- **Infix notation**: $1 \ L \ 2, \ 1 \ L \ 3, \ 2 \ L \ 5, \ 4 \ L \ 5, \ \ldots$

Observation

A function $F : A \rightarrow B$ is a **special case** of a relation such that for every $x \in A$, there exists exactly one element $y \in B$ for which $(x, y) \in F$.
Inverse Relations

Definition

Given a relation R with domain A and codomain B, the inverse R^{-1} of R is the relation with domain B and codomain A such that

$$(x, y) \in R \quad \text{if and only if} \quad (y, x) \in R^{-1}.$$

Example

- Relation R: domain \mathbb{N} and codomain \mathbb{Z} with rule $R = \{(x, y) \in \mathbb{N} \times \mathbb{Z} : x = y^2\}$
 or equivalently $R = \{(y^2, y) : y \in \mathbb{Z}\}$

- Relation S: domain \mathbb{Z} and codomain \mathbb{N} with rule $S = \{(x, y) \in \mathbb{Z} \times \mathbb{N} : y = x^2\}$
 or equivalently $S = \{(x, x^2) : x \in \mathbb{Z}\}$

- Claim: R and S are inverses of each other
 1. If $(x, y) \in R$, then $x = y^2$, which means that $(y, x) = (y, y^2) \in S$
 2. If $(x, y) \in S$, then $x^2 = y$, which means that $(y, x) = (x^2, x) \in R$
Inverse Relations: More Examples

Example 1: Relation E

- Domain is $A = \{1, 2, 3\}$ and codomain is $\mathcal{P}(A)$
- $(x, y) \in E$ (or equivalently $x \in E \; y$) if and only if $x \in y$
- $(y, x) \in E^{-1}$ (or equivalently $y \in E^{-1} \; x$) if and only if $x \in y$ (also written $y \ni x$)

![Diagram showing E and E^{-1}]

Example: Arrow diagram when domain and codomain are the same

$R = \{(A, A), (A, B), (A, C), (A, E), (C, B), (C, D), (E, A), (E, B), (E, C), (E, D)\}$

$R^{-1} = \{(A, A), (B, A), (C, A), (E, A), (B, C), (D, C), (A, E), (B, E), (C, E), (D, E)\}$

![Diagram showing R and R^{-1}]
Inverse Functions

Definition

Functions $f: A \rightarrow B$ and $g: B \rightarrow A$ are **inverses** of each other if

$$f(a) = b$$

if and only if

$$g(b) = a$$

for all $a \in A$ and $b \in B$. We often write f^{-1} for the inverse of f.

Example: Prove that $f: \mathbb{Z} \rightarrow \mathbb{Z}$ with rule $f(x) = x + 3$ and $g: \mathbb{Z} \rightarrow \mathbb{Z}$ with rule $g(y) = y - 3$ are inverses of each other

- **Claim 1:** For all $a \in A$ and $b \in B$, if $f(a) = b$ then $g(b) = a$
 - Let $a, b \in \mathbb{Z}$ be given such that $f(a) = b$, i.e., $a + 3 = b$
 - Then $a = b - 3$, i.e., $g(b) = a$. ✓

- **Claim 2:** For all $a \in A$ and $b \in B$, if $g(b) = a$ then $f(a) = b$
 - Let $a, b \in \mathbb{Z}$ be given such that $g(b) = a$, i.e., $b - 3 = a$
 - Then $a + 3 = b$, i.e., $f(a) = b$. ✓

Example: for $f: \mathbb{Q} \rightarrow \mathbb{Q}$ with rule $f(x) = \frac{2}{5}x - 2$, find f^{-1}

- Let $a, b \in \mathbb{Q}$ be given such that $f(a) = b$, i.e., $\frac{2}{5}a - 2 = b$
- Solving for a, we have $a = \frac{5}{2}b + 5$
- So take $f^{-1}(y) = g(y) = \frac{5}{2}y + 5$
Inverses and Arrow Diagrams

An inverse is obtained by reversing the arrows

Example: Why is there is no function whose inverse \(g : \{a, b, c, d\} \rightarrow \{1, 2, 3, 4\} \) is given below?

what is \(g^{-1}(3) \)?
what is \(g^{-1}(4) \)?
Composition of Functions

Definition

Given \(f : A \to B \) and \(g : B \to C \), the composition \(g \circ f \) of \(g \) and \(f \) has domain \(A \), codomain \(C \) and rule \((g \circ f)(x) = g(f(x)) \).

Example:

- \(f : \mathbb{R}^\geq 0 \to \mathbb{R} \) with rule \(f(x) = \sqrt{x} \)
- \(g : \mathbb{R} \to \mathbb{R} \) with rule \(g(x) = 2x \)
- Then \((g \circ f)(x) = g(f(x)) = g(\sqrt{x}) = 2\sqrt{x} \)
- Then \((f \circ g)(x) = f(g(x)) = f(2x) = \sqrt{2x} \) (what is the problem here?)

Composition via arrow diagrams

\[g \circ f \]

\[f \circ g \]
Inverse Functions Revisited

Definition

For a given set \(A \), the **identity function on** \(A \) is the function \(\iota_A : A \to A \) with the rule \(\iota_A(x) = x \) for all \(x \in A \). We’ll often simply write \(\iota \) when \(A \) is clear from context. We can also write \(\iota_A = \{(x, x) : x \in A\} \) when we wish to view \(\iota_A \) as a binary relation.

Theorem

Functions \(f : A \to B \) and \(g : B \to A \) are inverses of each other if and only if \(f \circ g = \iota_B \) and \(g \circ f = \iota_A \).

Example 1:

- Let \(f : \mathbb{Q} \to \mathbb{Q} \) be the function with rule \(f(x) = \frac{2}{5}x - 2 \)
- Let \(g : \mathbb{Q} \to \mathbb{Q} \) be the function with rule \(g(x) = \frac{5}{2}x + 5 \)
- Then \((g \circ f)(x) = g(f(x)) = g(\frac{2}{5}x - 2) = \frac{5}{2}(\frac{2}{5}x - 2) + 5 = (x - 5) + 5 = x \)
- Also, \((f \circ g)(x) = f(g(x)) = f(\frac{5}{2}x + 5) = \frac{2}{5}(\frac{5}{2}x + 5) - 2 = (x + 2) - 2 = x \)

Example 2: \(f : A \to A \times A \) with \(f(a) = (a, a) \) and \(g : A \times A \to A \) with \(g(x, y) = x \)

- Given \(a \in A \): \((g \circ f)(a) = g(f(a)) = g(a, a) = a \), so \(g \circ f = \iota_A \)
- Given \((1, 2) \in A \times A\): \((f \circ g)(1, 2) = f(1) = (1, 1) \neq (1, 2) \), so \(f \circ g \neq \iota_{A \times A} \)
Properties of Functions

Definition

The function \(f : A \to B \) is invertible if there is a function \(f^{-1} : B \to A \) such that \(f(x) = y \) if and only if \(f^{-1}(y) = x \). By symmetry of the definition, \((f^{-1})^{-1} = f\).

Example

- With \(A = B = \mathbb{R}^\geq_{0} \), if \(f \) has rule \(f(x) = x^2 \), then \(f^{-1}(x) = \sqrt{x} \).
- Arrow diagram:

```plaintext
\[ \begin{array}{cccc}
a & f & 1 \\
b & 2 \\
c & 3 \\
d & 4 \\
\end{array} \]

\[ \begin{array}{cccc}
1 & f^{-1} & a \\
2 & b \\
3 & c \\
4 & d \\
\end{array} \]

\( (f^{-1} \circ f)(x) = x \)

**A non-invertible function \( g \)**

- Problem 1: no arrow points to 4 (\( g \) is not onto)
- Problem 2: two arrows point to 3 (\( g \) is not one-to-one)

**Example:** Which functions are invertible?

- \( f : \mathbb{Z} \to \mathbb{Z} \) with \( f(x) = 2x + 3 \) **Not onto.** There exists no \( x \in \mathbb{Z} \) st. \( f(x) = 0 \).
- \( g : \mathbb{Z} \to \mathbb{N} \) with \( g(x) = \begin{cases} -2z & \text{if } z \leq 0 \\ 2z - 1 & \text{if } z > 0 \end{cases} \) **Invertible, one-to-one and onto**
  
  \( \text{Even: } g(-\frac{x}{2}) = y \), \( \text{Odd: } g(\frac{x+1}{2}) = y \)

- \( h : \mathbb{N} \to \mathbb{N} \) with \( h(n) = \text{sum of digits in the numeral } n \) **not 1-to-1**, \( f(31) = f(13) \)

Lecture 13
Proofs About Functions, Continued

Proposition 1

If \( f : A \to B \) is one-to-one and \( g : B \to C \) is one-to-one, then \( (g \circ f) : A \to C \) is one-to-one.

Proof (prove the contrapositive)

1. Write \( h = g \circ f \) and let \( x_1, x_2 \in A \) be given such that \( h(x_1) = h(x_2) \)
2. This means that \( g(f(x_1)) = g(f(x_2)) \)
3. Since \( g \) is one-to-one, this means that \( f(x_1) = f(x_2) \)
4. Since \( f \) is one-to-one, this means that \( x_1 = x_2 \)

Example: \( f : \mathbb{N} \to \mathbb{N} \) with \( f(x) = 5x + 7 \) and \( g : \mathbb{N} \to \mathbb{Q} \) with \( g(n) = \frac{5}{n+2} \)

1. Write \( h = g \circ f \) and let \( x_1, x_2 \in A \) be given such that \( h(x_1) = h(x_2) \)
2. This means that \( g(f(x_1)) = g(f(x_2)) \) or \( \frac{5}{f(x_1)+2} = \frac{5}{f(x_2)+2} \) or \( \frac{f(x_1)+2}{5} = \frac{f(x_2)+2}{5} \)
3. Multiply by 5 and subtract 2 on both sides: \( f(x_1) = f(x_2) \) or \( 5x_1 + 7 = 5x_2 + 7 \)
4. Subtract 7 and divide by 5 on both sides to get \( x_1 = x_2 \)
Proofs About Functions, Continued

Example: Prove that \( f : \mathbb{R}^+ \to (1, \infty) \) with \( f(x) = \frac{x+1}{x} \) is onto

- Strategy: pick an arbitrary \( y \) in the codomain and find an \( x \) in the domain such that \( f(x) = y \) [Use \( x = f^{-1}(y) \) if \( f^{-1} \) exists, else any \( x \) with an arrow to \( y \)]

- Proof:
  1. Let \( y \in (1, \infty) \) and set \( x = \frac{1}{y-1} \)
  2. Since \( y > 1 \), we see that \( x \in \mathbb{R}^+ \)
  3. Also, \( f(x) = f\left(\frac{1}{y-1}\right) = \frac{\frac{1}{y-1}+1}{\frac{1}{y-1}} = \frac{\frac{y-1+1}{y-1}}{\frac{1}{y-1}} = y \)

Proposition 2  \( \text{Similar proof to Proposition 1} \)

If \( f : A \to B \) is onto and \( g : B \to C \) is onto, then \( (g \circ f) : A \to C \) is onto.

Theorem

If \( f : A \to B \) is invertible and \( g : B \to C \) is invertible, then \( (g \circ f) : A \to C \) is invertible.

Proof

1. Since \( f \) and \( g \) are invertible, they are each one-to-one and onto
2. By Propositions 1 and 2, \( g \circ f \) is one-to-one and onto
3. Hence \( g \circ f \) is invertible
Properties of Relations

Definition

Let $R$ be a binary relation on a set $A$

1. $R$ is reflexive if $(a, a) \in R$ for all $a \in R$ (must have loops)
2. $R$ is antisymmetric if $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$ (no double arrows)
3. $R$ is transitive if $(a, b), (b, c) \in R$ implies $(a, c) \in R$ (if you can get from $a$ to $c$ following two arrows, you can also get there following one arrow)

Definition

A relation $R$ on a set $A$ is partial order if it is antisymmetric, transitive, and reflexive

Examples

1. $A = \{1, 2, 3, 4\}$: $a R_1 b$ means $a \leq b$
2. $A = \mathcal{P}(\{1, 2, 3\})$: $a R_2 b$ means $a \subseteq b$
3. $A = \{1, 2, 3, 6\}$: $a R_3 b$ means $a$ divides $b$

$R_1 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\}$
Proofs About Properties

**Example:** Prove the reflexive property for \( R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a - b \text{ is even}\}\)

1. Let \( a \in \mathbb{Z} \) be given
2. Since \( a - a = 0 \), which is even, we have that \((a, a) \in R\)

**Example:** Prove the transitive property for \( R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a - b \text{ is even}\}\)

1. Let \((a, b), (b, c) \in R\) be given [We’ll prove that \((a, c) \in R\)]
2. Since \( a - b \) and \( b - c \) are even, we can write \( a - b = 2K \) and \( b - c = 2L \) for some integers \( K \) and \( L \)
3. Therefore \( a - c = (a - b) + (b - c) = 2K + 2L = 2(K + L) \)
4. Thus \((a - c)\) is even and hence \((a, c) \in R\)

**Example:** Prove the antisymmetric property for \( R = \{(s, t) \in \mathcal{P}({1, 2, 3, 4})^2 : s \subseteq t\}\)

Show: for all \( s, t \in \mathcal{P}({1, 2, 3, 4})\), if \((s, t) \in R\) and \((t, s) \in R\), then \(s = t\)

1. Let \( s, t \in \mathcal{P}({1, 2, 3, 4})\) be given
2. Since \((s, t) \in R\) and \((t, s) \in R\), we have that \(s \subseteq t\) and \(t \subseteq s\)
3. It follows that \(s = t\) by definition of set equality

\[
\text{Contrapositive} \quad (a \neq b) \rightarrow \neg \left( (a, b) \in R \land (b, a) \in R \right) \\

L(a, b) \in R \land (b, a) \in R) \rightarrow (a = b)
\]
Other Types of Orders

Definition

A relation $R$ over a set $A$ is **irreflexive** if $(a, a) \not\in R$ for all $a \in R$. A **strict partial ordering** on $A$ is a relation $R$ on $A$ that is transitive, antisymmetric, and irreflexive.

Notes

- Irreflexive means **no loops** in an arrow diagram
- A relation $R$ can be neither reflexive or irreflexive if some (but not all) nodes in the arrow diagram have loops

Example:

- Strict subset relation: write $A \subset B$ if $A \subseteq B$ and $B - A \neq \emptyset$
- Then $R = \{(A, B) \in \mathcal{P}({1, 2, 3, 4})^2 : A \subset B\}$ is a strict partial ordering

Definition

A relation $R$ on $A$ is a **total ordering** if it is a partial ordering and also satisfies the property:
For all $a, b \in A$, if $a \neq b$, then either $(a, b) \in R$ or $(b, a) \in R$. A **strict total ordering** has the same properties except that it is irreflexive.
Types of Orderings: Examples

Notation:
- $A = \{1, 2, 4, 8\}$, $B = \mathcal{P}(\{1, 2, 3\})$, $C = \{0, 1\}^4$
- $V(\alpha) =$ value of binary numeral $\alpha$, e.g., $V(0101) = 5$

Example 1: $R_1 = \{(x, y) \in A^2 : x \leq y\}$ total ordering

Example 2: $R_2 = \{(x, y) \in B^2 : x \subseteq y\}$ partial ordering (incomparable subsets)

Example 3: $R_2 = \{(S, T) \in B^2 : \text{every element in } S \text{ is } \leq \text{ every element in } T\}$ partial ordering: $\{1, 3\}$ and $\{2, 3\}$ are incomparable

Example 4: $R_2 = \{(S, T) \in B^2 : n(S) < n(T)\}$ strict partial ordering: $\{1, 3\}$, $\{1, 3\}$ incomparable

Example 5: $R_2 = \{(S, T) \in B^2 : \text{sum of elements in } S \text{ is } \leq \text{ sum of elements in } T\}$ ordering: $\{1, 2\}$, $\{1, 3\}$ incomparable

Example 6: $R_2 = \{(\alpha, \beta) \in C^2 : \alpha \text{ has fewer 1's than } \beta \text{ has}\}$ strict partial order $1100$, $0101$ incomparable

Example 7: $R_2 = \{(\alpha, \beta) \in C^2 : V(\alpha) \leq V(\beta)\}$ total order $1010$, $0101$ incomparable
Equivalence Relations

Definition

A partition of a set $A$ is a set $S = \{S_1, S_2, S_3, \ldots\}$ such that

1. For all $i$, $S_i \neq \emptyset$
2. For all $i, j$: if $S_i \neq S_j$, then $S_i \cap S_j = \emptyset$
3. $S_1 \cup S_2 \cup S_3 \cup \ldots = A$

Example 1: $A = \{1, 2, 3, 4, 5, 6\}$

- $R = \{(a, b) \in A \times A : a - b \text{ is even}\}$
- $S = \{\{1, 3, 5\}, \{2, 4, 6\}\}$

Example 2:

- $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a - b \text{ is divisible by 4}\}$
- $S = \{P_0, P_1, P_2, P_3\}$ where $P_i = \{a \in \mathbb{Z} : a = 4k + i \text{ for some } k \in \mathbb{Z}\}$
Formal Properties of an Equivalence Relation

Definition

A relation \( R \) on \( A \) is **symmetric** if for all \( a, b \in A \), if \( (a, b) \in A \) then \( (b, a) \in A \).

Theorem

A relation \( R \) on \( A \) is an equivalence relation if and only if it is **reflexive**, **symmetric**, and **transitive**.

Example: For each relation, determine whether it is an equivalence relation

- \( T_1 = \{(a, b) \in \mathbb{Z}^2 : b - a \text{ is divisible by } 5\} \): Yes (similar to slide 16 for transitive)
- \( T_2 = \{(a, b) \in \mathbb{Z}^2 : a^2 - b^2 \text{ is divisible by } 5\} \): Yes (same argument)
- \( T_3 = \{(a, b) \in \mathbb{Z}^2 : |a - b| \leq 2\} \): No. Not transitive

\[
\begin{align*}
(1, 2) : & \quad |1 - 2| \leq 2 \\
(2, 4) : & \quad |2 - 4| \leq 2 \\
\text{but } (1, 4) \notin T_3 : & \quad |1 - 4| > 2
\end{align*}
\]