Practice Midterm 2

1. Given the recursion \(a_n = a_{n-1} + 2a_{n-2} \) with \(a_1 = 6 \) and \(a_2 = 12 \), use induction to prove that \(a_n = 3\cdot 2^n \) for all positive integers \(n \).

2. Use induction to prove that \(\sum_{i=1}^{n} (n-i) = \frac{n(n-1)}{2} \) for all positive integers \(n \).

3. Use the Division Theorem to show that \(n^2 + n + 3 \) is divisible by 3 if and only if \(n \mod 3 = 0 \).

4. Consider the identity \((A \cap B)' = A' \cup B'\)

 a) Verify the identity using Venn diagrams

 a) b) Prove the identity using an element-wise proof. You may use the fact that \(A \cap B \subseteq A \) for any sets \(A \) and \(B \).

5. More functions and sets: let \(A = \{a,\{s,t\},3\} \), \(B = \{1,2,3,4\} \), \(C = \{a,b,c\} \) and answer the following questions

 a) Compute the power set \(\mathcal{P}(A) \)

 b) For the function \(f : B \to C \) given in set form by \(f = \{(1,c),(2,b),(3,b),(4,a)\} \) and the function \(g : C \to B \) given by \(\{(a,4),(b,1),(c,2)\} \), give a set representation of the function \(g \circ f \).

 c) For the function \(f \) defined in part (b), either give the inverse function \(f^{-1} \) in set form or explain why \(f^{-1} \) does not exist.