Practice Midterm

1. Define the following terms
 a) A **proposition**
 b) A **recurrence relation** defining a sequence of numbers
 c) The **converse** of an implication
 d) An **irrational** number
 e) Proving a theorem by cases

2. For each predicate, translate or negate as instructed. Let D = the set of all classes, $I(x)$ = “x is required”, $H(x,y)$ = “x is harder than y”, and $M(x,y)$ = “x has more students than y”.
 a) (To symbols) There is a class that is harder than any other. **[Hint: a class cannot be harder than itself.]**
 b) (To English) $\exists x \in D$, $\forall y \in D$, $H(x,y) \rightarrow M(y,x) \land I(y)$
 c) Negate part (b) in symbols
 d) Negate part (b) in English

3. Persons A, B, and C approach you. A says “At least one of us is lying”. B says “A and C are both lying”, and C says “If B is lying, then A is telling the truth”. Who (if anybody) is telling the truth?

4. Consider the sequence given by $a_1 = 1$ and $a_n = a_{n-1} + 9$
 a) Write a recursive formula for the $2k-1$st term.
 b) Write a recursive formula for a_{2^j+1}
 c) Write a closed-form formula for a_n. **[Hint: Recall the technique of comparing to a simpler sequence]**

5. Prove the following theorem: if n is an integer, then $\frac{n(n+1)}{2}$ is an integer. **[Hint: Consider the two cases where n is even and n is odd.]**