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Overview

Goal: Understand the behavior of your simulation model

» Gain general understanding (today’s focus)
» What factors are important?

» What choices of controllable factors are robust to
uncontrollable factors?

» Which choice of controllable factors optimizes some
performance measure?
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Overview, Continued

Challenge: Exploring the parameter space

>
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v
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Ex: 100 parameters, each “high” or “low'
Number of combinations to simulate: 2190 ~ 1030

Say each simulation consists of one floating point operation(!)
Use world's fastest computer: Summit (148.6 petaflops)
Required time for simulation: approximately 271,000 years

23



Experimental Design for Simulation

Basic Concepts and Terminology
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Basic Concepts: Factors

Factors (simulation inputs)
» Have impact on responses (simulation outputs)
» Levels: Values of a factor used in experiments

> Factor taxonomy:

» Quantitative vs qualitative (can encode qualitative)
» Discrete vs continuous

. 9
» Binary or not /4;‘4},,,‘/6% Sweey?
» Controllable vs uncontrollable ¥'\/ J
» Factors must be carefully defined 2 4"“"5/):47/)»75
» Ex: (s, S)-inventory model
> Use (57 5) or (57 5 — 5) Factor type Example
6 as the factors? quantitative (cont.) Poisson arrival rate
¢ quantitative (discr.) # of machines
g ¢ { qualitative service policy (FIFO, LIFO, . ..)
binary (open,closed), (high,low),...
f"‘ f / L) J) I7l,5; ) 7 ‘2 controllable # of servers
- uncontrollable weather (sun, rain, fog)

S f39,50147])



Basic Concepts: Designs

Design matrix

» One column per factor
» Each row is a design point

» Contains a level for each factor
> Level values determined by a domain expert
» Natural or coded design levels

» Can have multiple replications of the design
> Especially in simulation!

Design Factor settings

point X1 X2 X3
1 -1 -1 -1
2 +1 -1 -1
3 -1 +1 —1
4 +1 +1 -1
5 -1 -1 +1
6 +1 -1 +1
7 -1 +1 +1
8 +1 +1 +1

23 factorial design



Experimental Design for Simulation

Pitfalls
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Some Bad Designs: Capture the Flag

Confounded effects

Speed  Stealth Success?
Low Low No

» Claim: Speed is the most important High Tigh  Yes

» Claim: Stealth is the most important =

» Claim: Both are equally important

> There is no way to determine who is right without more data

v

Moral: haphazardly choosing design points can use up a lot of
time while not providing insight
One-factor-at-a-time (OFAT) sampling

» Claim: Neither speed nor stealth is important

» Problem: an interaction between two factors is being missed

Speed  Stealth Success?

Low Low No
High Low No
Low High No



Experimental Design for Simulation

Regression Metamodels and Classical Designs
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Understanding Simulation Behavior: Metamodels

Simulation metamodels approximate true response
» Simplified representation for greater insight
» Allows "simulation on demand”

» Allows factor screening and optimization

Main-effects metamodel (quantitative factors)

R(x) = fo+ Brxi + -+ - + Bix + €

Metamodel with second-order interaction effects
R(X) = fo+ Bixi + -+ Brxk + ZiZj ﬂinin +e€

» R = simulation model output (i.e., response)
» Factors x = (x1,...,xk)

> ¢ = mean-zero noise term, often assumed to be N(0, o?)
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A Classical Design: 2% Factorial Design

Basic setup: k factors with two levels each (-1, +1)
» Metamodel for kK = 2: R(X) = P1x1 + Boxo + Lroxixo + €
> So r(x) = E[R(x)] = Brx1 + B2xz + Praxixe

Estimating “main effects”

» Avg. change in r when x; goes from —1 to +1 (x; fixed):
> (r3*r1)12L(r4*r2) _ —r1—r22+r3+r4 _ rx1 o 2/3)1

> Similarly, 32 =20,

> Method—of—moments estimators: 23; = R‘2X1 and 2, = B

2
Design Factor settings Observed Predicted
point X1 X2 X1 X0 response (R) expected value (r)
1 -1 -1 +1 R n=—=p31— B2+ P12
2 -1 +1 -1 Ry = —=pB1+p2— P12
3 +1 -1 -1 R3 r3=p1— B2 — P12
4 +1 +1 +1 Ry rg = B1 + B2 + P12
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2k Factorial Design, Continued

Estimating “interaction effect”

> (Effect of 1 x1 with x2 high minus effect with x> low) / 2
> (mfrz);(rgfrl) _ r<(x21x2) _ 2‘312

» Method of moments estimator: 2312 = w

Observations:
» Can replicate design to get (Student-t) Cl's for coefficients
» Estimating effects < estimating regression coefficients
» Above analysis generalizes to more factors, e.g.,
R(x) = Bix1 + Boxo + B3xz + Braxixe + Piaxixs + Pazxexs + Prazxixexs + €

Design Factor settings Observed Predicted

point X1 X X1 X0 response (R) expected value (r)

1 -1 -1 +1 Ry n=—p1— B2+ P12
2 -1 +1 -1 Ry rp=—p1+ B2 — P12
3 +1 -1 -1 R3 r3=p1— B2 — P12
4 +1 +1 +1 Ry rg = B1 + B2 + P12
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m* Designs
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Using more than two levels gives more detail
» E.g., capture the flag with 22 versus 112 designs

» After achieving a minimal level of stealth, speed is more
important

> Only possible for very small number of factors
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2k=P Fractional Factorial and Central Composite Designs

2371 frac. factorial 23 factorial
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Z1
Fractional Factorial or Factorial + Star Points = Central Composite Design

2k=P fractional factorial designs
» Fewer design points, carefully chosen (see Law, Table 12.17)
» E.g., 2°7! design with 4 design points
> Left/right faces: 1 val. of x» at each level, 1 val. of x3 at each level
(can isolate x; effect)
> Similarly for other face pairs

» The degree of confounding is specified by the resolution

» No m-way and n-way effect are confounded if m + n < resolution
> So for Resolution V design, no main effect or 2-way interaction are
confounded
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Space-Filling Designs

DP Speed Stealth| DP Speed Stealth v
1 1 11 7 10 1 °
2 3 5 8 4 2 < o o
3 7 7 9 11 8 S| v
4 2 3 10 8 9 ) v
5 5 10 11 9 6 |
6 6 4 u
Speed

Random Latin Hypercube design

» Based on random permutations of levels for each factor

» Good coverage of param. space w. relatively few design points

» Carefully crafted LH designs are needed in practice

16
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Experimental Design for Simulation

Other Metamodels
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Gaussian Metamodeling (Kriging)
Ordinary kriging (deterministic simulations)

> Z(x)is a Gaussian process Y Y(2) = p+ Z(z)

> (Z(w), Z(w), ..., Z(va)) ~ N(0,R(8))

—0(vi—vj)?

extrinsic
uncertainty

> r(vi,vj) =e

> V(x0) = i+ 1 (o)R(B) (Y - 17)

» [ and 0 are MLE estimates
» Y=(Yy,...,Yn)and 1 =(1,1,...,1)
> r= (r(xo,xl), r(x0,x2), -« r(X0, Xm)

Stochastic kriging (stochastic simulations)

> cis N(0,0%) (“the nugget") v
» Captures simulation variability Yiw)=pn+2(@)+e

extrinsic + intrinsic
uncertainty

» Many other variants

> Fitted derivatives
. 2

> Varylng g ) T x2 xo T3 s

» Non-constant mean function
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Kriging + Trees

{speed:4, stealth:5, outcome:good}

Idea: Build multiple models on subsets of homogeneous data
» Recursively split data to
» Maximize heterogeneity (e.g., Gini index)
» Maximize goodness of fit statistic (e.g., R?)

» Build model on each subset
19/23



Experimental Design for Simulation

Data Farming
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Data Farming
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Figure 4: Scatterplot matrices for selected factorial and nearly orthogonal Latin hypercube (NOLH) designs:
(a) 2* factorial with 16 design points, (b) 4* factorial with 256 design points, (c) NOLH with 17 design
points, and (d) NOLH with 257 design points.

Modern “big data” approach
» Unlike real-world experiments, easier to generate a lot of
simulation data
» Most effort usually spent building model, so work it hard!
» Use analytical, graphical, and data mining techniques on

generated data
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Graphical Methods

@ ® © () (e)

Figure 7: Capture-the-flag contour plots. (a) displays the actual response based on an 11x11 grid. The

remaining contours are metamodels following a 65-dp NOLH: (b) 2nd-order regression metamodel, (c)
partition tree with five splits, (d) Gaussian process metamodel, and (e) regression/partition metamodel.

Gaining insight through visualizations

» More sophisticated methods than simple regression
» Analyze flat areas (robustness)

» Other characteristics of interest




Data Mining and Visual Analytics
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Visual analytics
» Experiments are clustered based on system performance

» Parallel-coordinate plot relates performance to factor levels
» Ex: Manufacturing model with parameters P1, P2, P3, P4

N. Feldkamp, S. Bergmann, and S. Strassburger. Visual analytics of manufacturing
simulation data. Proc. Winter Simulation Conference, 2015, pp. 779-790.
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