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Overview

Goal: Understand the behavior of your simulation model

I Gain general understanding (today’s focus)

I What factors are important?

I What choices of controllable factors are robust to
uncontrollable factors?

I Which choice of controllable factors optimizes some
performance measure?
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Overview, Continued

Challenge: Exploring the parameter space

I Ex: 100 parameters, each “high” or “low”

I Number of combinations to simulate: 2100 ⇡ 1030

I Say each simulation consists of one floating point operation(!)

I Use world’s fastest computer: Summit (148.6 petaflops)

I Required time for simulation: approximately 271,000 years
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Basic Concepts: Factors

Factors (simulation inputs)

I Have impact on responses (simulation outputs)

I Levels: Values of a factor used in experiments
I Factor taxonomy:

I Quantitative vs qualitative (can encode qualitative)
I Discrete vs continuous
I Binary or not
I Controllable vs uncontrollable

I Factors must be carefully defined
I Ex: (s, S)-inventory model
I Use (s, S) or (s, S � s)

as the factors?
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Factor type Example

quantitative (cont.) Poisson arrival rate
quantitative (discr.) # of machines
qualitative service policy (FIFO, LIFO, . . .)
binary (open,closed), (high,low),. . .
controllable # of servers
uncontrollable weather (sun, rain, fog)

"
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try all combinations
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Basic Concepts: Designs

Design matrix

I One column per factor
I Each row is a design point

I Contains a level for each factor
I Level values determined by a domain expert
I Natural or coded design levels

I Can have multiple replications of the design
I Especially in simulation!
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Design Factor settings
point x1 x2 x3

1 �1 �1 �1
2 +1 �1 �1
3 �1 +1 �1
4 +1 +1 �1
5 �1 �1 +1
6 +1 �1 +1
7 �1 +1 +1
8 +1 +1 +1

23 factorial design
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Some Bad Designs: Capture the Flag

Confounded e↵ects

I Claim: Speed is the most important

I Claim: Stealth is the most important

I Claim: Both are equally important

I There is no way to determine who is right without more data

I Moral: haphazardly choosing design points can use up a lot of
time while not providing insight

One-factor-at-a-time (OFAT) sampling

I Claim: Neither speed nor stealth is important

I Problem: an interaction between two factors is being missed
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Understanding Simulation Behavior: Metamodels

Simulation metamodels approximate true response

I Simplified representation for greater insight

I Allows ”simulation on demand”

I Allows factor screening and optimization

Main-e↵ects metamodel (quantitative factors)

R(x) = �0 + �1x1 + · · ·+ �kxk + ✏

Metamodel with second-order interaction e↵ects

R(x) = �0 + �1x1 + · · ·+ �kxk +
P

i

P
j �ijxixj + ✏

I R = simulation model output (i.e., response)

I Factors x = (x1, . . . , xk)

I ✏ = mean-zero noise term, often assumed to be N(0,�2)
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A Classical Design: 2
k
Factorial Design

Basic setup: k factors with two levels each (�1, +1)

I Metamodel for k = 2: R(x) = �1x1 + �2x2 + �12x1x2 + ✏

I So r(x) = E [R(x)] = �1x1 + �2x2 + �12x1x2

Estimating “main e↵ects”
I Avg. change in r when x1 goes from �1 to +1 (x2 fixed):

I (r3�r1)+(r4�r2)
2 = �r1�r2+r3+r4

2 = r·x1
2 = 2�1

I Similarly, r·x2
2 = 2�2

I Method-of-moments estimators: 2�̂1 =
R·x1
2 and 2�̂2 =

R·x2
2

Design Factor settings Observed Predicted
point x1 x2 x1x2 response (R) expected value (r)

1 �1 �1 +1 R1 r1 = ��1 � �2 + �12
2 �1 +1 �1 R2 r2 = ��1 + �2 � �12
3 +1 �1 �1 R3 r3 = �1 � �2 � �12
4 +1 +1 +1 R4 r4 = �1 + �2 + �12
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2
k
Factorial Design, Continued

Estimating “interaction e↵ect”
I (E↵ect of " x1 with x2 high minus e↵ect with x2 low) / 2

I (r4�r2)�(r3�r1)
2 = r·(x1x2)

2 = 2�12

I Method of moments estimator: 2�̂12 =
R·(x1x2)

2

Observations:

I Can replicate design to get (Student-t) CI’s for coe�cients

I Estimating e↵ects , estimating regression coe�cients

I Above analysis generalizes to more factors, e.g.,

R(x) = �1x1 + �2x2 + �3x3 + �12x1x2 + �13x1x3 + �23x2x3 + �123x1x2x3 + ✏

Design Factor settings Observed Predicted
point x1 x2 x1x2 response (R) expected value (r)

1 �1 �1 +1 R1 r1 = ��1 � �2 + �12
2 �1 +1 �1 R2 r2 = ��1 + �2 � �12
3 +1 �1 �1 R3 r3 = �1 � �2 � �12
4 +1 +1 +1 R4 r4 = �1 + �2 + �12
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mk
Designs

Using more than two levels gives more detail
I E.g., capture the flag with 22 versus 112 designs

I After achieving a minimal level of stealth, speed is more
important

I Only possible for very small number of factors
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2
k�p

Fractional Factorial and Central Composite Designs

2k�p fractional factorial designs
I Fewer design points, carefully chosen (see Law, Table 12.17)

I E.g., 23�1 design with 4 design points
I Left/right faces: 1 val. of x2 at each level, 1 val. of x3 at each level

(can isolate x1 e↵ect)
I Similarly for other face pairs

I The degree of confounding is specified by the resolution
I No m-way and n-way e↵ect are confounded if m + n < resolution
I So for Resolution V design, no main e↵ect or 2-way interaction are

confounded
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Space-Filling Designs

Random Latin Hypercube design

I Based on random permutations of levels for each factor

I Good coverage of param. space w. relatively few design points

I Carefully crafted LH designs are needed in practice
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Gaussian Metamodeling (Kriging)

Ordinary kriging (deterministic simulations)

I Z(x) is a Gaussian process

I �
Z(v1),Z(v2), . . . ,Z(vn)

�
⇠ N(0,R(✓))

I r(vi , vj) = e�✓(vi�vj )
2

I Ŷ (x0) = µ̂+ r>(x0)R(✓̂)�1(Y � 1µ̂)

I µ̂ and ✓̂ are MLE estimates
I Y = (Y1, . . . ,Ym) and 1 = (1, 1, . . . , 1)
I r =

�
r(x0, x1), r(x0, x2), . . . , r(x0, xm)

Stochastic kriging (stochastic simulations)

I ✏ is N(0,�2) (“the nugget”)

I Captures simulation variability

I Many other variants

I Fitted derivatives
I Varying �2

I Non-constant mean function
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extrinsic
uncertainty

extrinsic + intrinsic
uncertainty



Kriging + Trees

stealth < 8

stealth > 4

speed < 3

Kriging Model #1 Kriging Model #2 Kriging Model #3 Kriging Model #4

yes

yes

yes

no

no

no

{speed:4, stealth:5, outcome:good}

Idea: Build multiple models on subsets of homogeneous data
I Recursively split data to

I Maximize heterogeneity (e.g., Gini index)
I Maximize goodness of fit statistic (e.g., R2)

I Build model on each subset
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Data Farming

Modern “big data” approach
I Unlike real-world experiments, easier to generate a lot of

simulation data
I Most e↵ort usually spent building model, so work it hard!
I Use analytical, graphical, and data mining techniques on

generated data
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Graphical Methods

Gaining insight through visualizations

I More sophisticated methods than simple regression

I Analyze flat areas (robustness)

I Other characteristics of interest
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Data Mining and Visual Analytics

Visual analytics

I Experiments are clustered based on system performance

I Parallel-coordinate plot relates performance to factor levels

I Ex: Manufacturing model with parameters P1, P2, P3, P4
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N. Feldkamp, S. Bergmann, and S. Strassburger. Visual analytics of manufacturing
simulation data. Proc. Winter Simulation Conference, 2015, pp. 779–790.


