Experimental Design for Simulation [Law, Ch. 12][Sanchez et al.¹]

Peter J. Haas

CS 590M: Simulation Spring Semester 2020

¹S. M. Sanchez, P. J. Sanchez, and H. Wan. "Work smarter, not harder: a tutorial on designing and conducting simulation experiments". *Proc. Winter Simulation Conf.*, 2018, p. 237–251.⊕ + (=) + (

Overview Basic Concepts and Terminology Pitfalls Regression Metamodels and Classical Designs Other Metamodels Data Farming

Overview

Goal: Understand the behavior of your simulation model

- Gain general understanding (today's focus)
- What factors are important?
- What choices of controllable factors are robust to uncontrollable factors?
- Which choice of controllable factors optimizes some performance measure?

Overview, Continued

Challenge: Exploring the parameter space

- ► Ex: 100 parameters, each "high" or "low"
- Number of combinations to simulate: $2^{100} \approx 10^{30}$
- Say each simulation consists of one floating point operation(!)
- Use world's fastest computer: Summit (148.6 petaflops)
- Required time for simulation: approximately 271,000 years

Overview

Basic Concepts and Terminology

Pitfalls Regression Metamodels and Classical Designs Other Metamodels Data Farming

Basic Concepts: Factors

Factors (simulation inputs)

- Have impact on responses (simulation outputs)
- Levels: Values of a factor used in experiments
- Factor taxonomy:
 - Quantitative vs qualitative (can encode qualitative)
 - Discrete vs continuous
 - Binary or not
 - Controllable vs uncontrollable
- Factors must be carefully defined
 - Ex: (s, S)-inventory model
 - Use (s, S) or (s, S s)

5 6 X as the res. 5 3 X 5 1 L, 3, 4, 5, 6, 7 } 5= { 3, 4, 5, 6, 7, 4, 9}

Factor type	Example
quantitative (cont.)	Poisson arrival rate
quantitative (discr.)	# of machines
qualitative	service policy (FIFO, LIFO,)
binary	(open,closed), (high,low),
controllable	# of servers
uncontrollable	weather (sun, rain, fog)

parameter sweep" try all combinations

Basic Concepts: Designs

Design matrix

- One column per factor
- Each row is a design point
 - Contains a level for each factor
 - Level values determined by a domain expert
 - Natural or coded design levels
- Can have multiple replications of the design
 - Especially in simulation!

Design	Fact	or settin	gs
point	×1	×2	<i>x</i> 3
1	-1	$^{-1}$	$^{-1}$
2	$^{+1}$	$^{-1}$	$^{-1}$
3	$^{-1}$	$^{+1}$	-1
4	$^{+1}$	$^{+1}$	-1
5	$^{-1}$	$^{-1}$	$^{+1}$
6	$^{+1}$	$^{-1}$	$^{+1}$
7	$^{-1}$	$^{+1}$	$^{+1}$
8	$^{+1}$	$^{+1}$	$^{+1}$
2 ³	factoria	l design	

イロト イポト イヨト イヨト

Overview Basic Concepts and Terminology **Pitfalls** Regression Metamodels and Classical Designs Other Metamodels Data Farming

Some Bad Designs: Capture the Flag

Confounded effects

- Claim: Speed is the most important
- Claim: Stealth is the most important
- Claim: Both are equally important
- There is no way to determine who is right without more data
- Moral: haphazardly choosing design points can use up a lot of time while not providing insight

One-factor-at-a-time (OFAT) sampling

- Claim: Neither speed nor stealth is important
- Problem: an interaction between two factors is being missed

Speed	Stealth	Success?
Low	Low	No
High	Low	No
Low	High	No

Speed	Stealth	Success?
Low	Low	No
High	High	Yes

4 D N 4 B N 4 B N 4 B N

Overview Basic Concepts and Terminology Pitfalls

Regression Metamodels and Classical Designs

Other Metamodels Data Farming

Understanding Simulation Behavior: Metamodels

Simulation metamodels approximate true response

- Simplified representation for greater insight
- Allows "simulation on demand"
- Allows factor screening and optimization

Main-effects metamodel (quantitative factors) $R(x) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \epsilon$

Metamodel with second-order interaction effects $R(x) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \sum_i \sum_i \beta_{ij} x_i x_j + \epsilon$

R = simulation model output (i.e., response)

Factors
$$x = (x_1, \ldots, x_k)$$

• ϵ = mean-zero noise term, often assumed to be $N(0, \sigma^2)$

A Classical Design: 2^k Factorial Design

Basic setup: k factors with two levels each (-1, +1)

- Metamodel for k = 2: $R(x) = \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \epsilon$
- So $r(x) = E[R(x)] = \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2$

Estimating "main effects"

• Avg. change in r when x_1 goes from -1 to +1 (x_2 fixed): • $\frac{(r_3-r_1)+(r_4-r_2)}{2} = \frac{-r_1-r_2+r_3+r_4}{2} = \frac{\mathbf{r}\cdot\mathbf{x}_1}{2} = 2\beta_1$

• Similarly,
$$\frac{\mathbf{r} \cdot \mathbf{x}_2}{2} = 2\beta_2$$

• Method-of-moments estimators: $2\hat{\beta}_1 = \frac{\mathbf{R} \cdot \mathbf{x}_1}{2}$ and $2\hat{\beta}_2 = \frac{\mathbf{R} \cdot \mathbf{x}_2}{2}$

Design	Factor settings			Observed	Predicted	
point	<i>x</i> ₁	×2	<i>x</i> ₁ <i>x</i> ₂	response (R)	expected value (r)	
1	-1	-1	+1	<i>R</i> ₁	$r_1 = -\beta_1 - \beta_2 + \beta_{12}$	
2	-1	$^{+1}$	$^{-1}$	R_2	$r_2 = -\beta_1 + \beta_2 - \beta_{12}$	
3	$^{+1}$	-1	-1	R_3	$r_3 = \beta_1 - \beta_2 - \beta_{12}$	
4	$^{+1}$	$^{+1}$	$^{+1}$	R ₄	$\mathbf{r}_4 = \beta_1 + \beta_2 + \beta_{12}$	

2^k Factorial Design, Continued

Estimating "interaction effect"

• (Effect of $\uparrow x_1$ with x_2 high minus effect with x_2 low) / 2 • $\frac{(r_4 - r_2) - (r_3 - r_1)}{2} = \frac{\mathbf{r} \cdot (\mathbf{x}_1 \mathbf{x}_2)}{2} = 2\beta_{12}$

• Method of moments estimator: $2\hat{\beta}_{12} = \frac{\mathbf{R} \cdot (\mathbf{x}_1 \mathbf{x}_2)}{2}$

Observations:

- Can replicate design to get (Student-t) Cl's for coefficients
- ► Estimating effects ⇔ estimating regression coefficients
- Above analysis generalizes to more factors, e.g.,

 $R(x) = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_2 x_3 + \beta_{123} x_1 x_2 x_3 + \epsilon$

Design	Factor settings			Observed	Predicted	
point	<i>x</i> 1	<i>x</i> ₂	<i>x</i> ₁ <i>x</i> ₂	response (R)	expected value (r)	
1	-1	-1	+1	<i>R</i> 1	$r_1 = -\beta_1 - \beta_2 + \beta_{12}$	
2	$^{-1}$	+1	$^{-1}$	R_2	$r_2 = -\beta_1 + \beta_2 - \beta_{12}$	
3	$^{+1}$	-1	$^{-1}$	R_3	$r_3 = \beta_1 - \beta_2 - \beta_{12}$	
4	$^{+1}$	+1	$^{+1}$	R_4	$r_4 = \beta_1 + \beta_2 + \beta_{12}$	

13/23

m^k Designs

Using more than two levels gives more detail

- E.g., capture the flag with 2^2 versus 11^2 designs
 - After achieving a minimal level of stealth, speed is more important
- Only possible for very small number of factors

2^{k-p} Fractional Factorial and Central Composite Designs

2^{k-p} fractional factorial designs

▶ Fewer design points, carefully chosen (see Law, Table 12.17)

- E.g., 2^{3-1} design with 4 design points
- Left/right faces: 1 val. of x₂ at each level, 1 val. of x₃ at each level (can isolate x₁ effect)
- Similarly for other face pairs
- The degree of confounding is specified by the resolution
 - ▶ No *m*-way and *n*-way effect are confounded if m + n < resolution
 - So for Resolution V design, no main effect or 2-way interaction are confounded

Space-Filling Designs

•			Stealth	Speed	DP	Stealth	Speed	DP
0			1	10	7	11	1	1
0		ų	2	4	8	5	3	2
0	_	alt	8	11	9	7	7	3
•		Stealth	9	8	10	3	2	4
•			6	9	11	10	5	5
						4	6	6
Speed								

Random Latin Hypercube design

- Based on random permutations of levels for each factor
- ► Good coverage of param. space w. relatively few design points
- Carefully crafted LH designs are needed in practice

Overview Basic Concepts and Terminology Pitfalls Regression Metamodels and Classical Designs Other Metamodels

Data Farming

Gaussian Metamodeling (Kriging)

Ordinary kriging (deterministic simulations)

- ► Z(x) is a Gaussian process ► $(Z(v_1), Z(v_2), \dots, Z(v_n)) \sim N(\mathbf{0}, \mathbf{R}(\theta))$ ► $r(v_i, v_j) = e^{-\theta(v_i - v_j)^2}$ ► $\hat{Y}(x_0) = \hat{\mu} + \mathbf{r}^\top(x_0)\mathbf{R}(\hat{\theta})^{-1}(\mathbf{Y} - \mathbf{1}\hat{\mu})$
 - $\hat{\mu}$ and $\hat{ heta}$ are MLE estimates

•
$$\mathbf{Y} = (Y_1, \dots, Y_m)$$
 and $\mathbf{1} = (1, 1, \dots, 1)$

•
$$\mathbf{r} = (r(x_0, x_1), r(x_0, x_2), \dots, r(x_0, x_m))$$

Stochastic kriging (stochastic simulations)

- ϵ is $N(0, \sigma^2)$ ("the nugget")
- Captures simulation variability
- Many other variants
 - Fitted derivatives
 - Varying σ^2
 - Non-constant mean function

Kriging + Trees

Idea: Build multiple models on subsets of homogeneous data

- Recursively split data to
 - Maximize heterogeneity (e.g., Gini index)
 - Maximize goodness of fit statistic (e.g., R²)
- Build model on each subset

Overview Basic Concepts and Terminology Pitfalls Regression Metamodels and Classical Designs Other Metamodels

Data Farming

Data Farming

Figure 4: Scatterplot matrices for selected factorial and nearly orthogonal Latin hypercube (NOLH) designs: (a) 2^4 factorial with 16 design points, (b) 4^4 factorial with 256 design points, (c) NOLH with 17 design points, and (d) NOLH with 257 design points.

Modern "big data" approach

- Unlike real-world experiments, easier to generate a lot of simulation data
- Most effort usually spent building model, so work it hard!
- Use analytical, graphical, and data mining techniques on generated data

Graphical Methods

Figure 7: Capture-the-flag contour plots. (a) displays the actual response based on an 11×11 grid. The remaining contours are metamodels following a 65-dp NOLH: (b) 2nd-order regression metamodel, (c) partition tree with five splits, (d) Gaussian process metamodel, and (e) regression/partition metamodel.

Gaining insight through visualizations

- More sophisticated methods than simple regression
- Analyze flat areas (robustness)
- Other characteristics of interest

Data Mining and Visual Analytics

Visual analytics

- Experiments are clustered based on system performance
- Parallel-coordinate plot relates performance to factor levels
- Ex: Manufacturing model with parameters P1, P2, P3, P4