[Law, Ch. 10], [Handbook of Sim. Opt.], [Haas, Sec. 6.3.6]

Peter J. Haas

CS 590M: Simulation Spring Semester 2020

Making Decisions via Simulation

Overview

Factor Screening

Continuous Stochastic Optimization

Robbins-Monro Algorithm

Derivative Estimation

Other Continuous Optimization Methods

Ranking and Selection

Selection of the Best

Subset Selection

Discrete Optimization

Commercial Solvers

1/39

2/39

Overview

Goal: Select best system design or parameter setting

Performance under each alternative estimated via simulation

 $\min_{\theta \in \Theta} f(\theta)$

where $\Theta =$ feasible set

- f is often of the form $f(\theta) = E_{\theta}[c(X, \theta)]$
 - X is estimated from the simulation
 - $ightharpoonup E_{\theta}$ indicates that dist'n of X depends on θ

Overview, Continued

Three cases:

- 1. Θ is uncountably infinite (continuous optimization)
 - ► Robbins-Monro Algorithm
 - Metamodel-based optimization
 - Sample average approximation
- 2. Θ is small and finite (ranking and selection of best system)
 - ► E.g., Dudewicz and Dalal (HW #7)
- 3. Θ is a large discrete set (discrete optimization)

Not covered here: Markov decision processes

▶ Choose best policy: I.e., choose best function π , where $\pi(s) =$ action to take when new state equals s [Chang et al., 2007]

3/39

Overview

Factor Screening

Continuous Stochastic Optimization

Robbins-Monro Algorithm

Derivative Estimation

Other Continuous Optimization Methods

Ranking and Selection

Selection of the Best

Subset Selection

Discrete Optimization

Commercial Solvers

Factor Screening

Goal: Identify the most important drivers of model response

- ► Needed for understanding
- ▶ Needed to focus modeling resources (e.g., input distributions)
- ▶ Needed to select decision variables for optimization

6 / 39

8/39

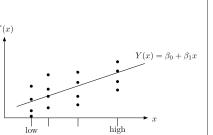
5 / 39

Factor Screening, Continued

Based on a simulation metamodel, for example:

$$Y(x) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \epsilon$$

- ightharpoonup Y = simulation model output
- ▶ Parameters $x = (x_1, ..., x_k)$
- $ightharpoonup \epsilon = \text{noise term (often Gaussian)}$
- Estimate the β_i 's using "low" and "high" x_i values
- ► Test if each |β_i| is significantly different from 0
- ▶ Will talk more about metamodels later on...



Factor Screening, Continued

Challenge: Many Features

▶ Example with k = 3:

$$\hat{\beta}_{1} = \frac{Y(h, l, l) + Y(h, l, h) + Y(h, h, l) + Y(h, h, h)}{4} - \frac{Y(l, l, l) + Y(l, h, h) + Y(l, h, l) + Y(l, h, h)}{4}$$

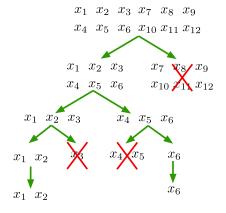
- ▶ In general, need 2^k simulations ("full factorial" design)
- ► Can be smarter, e.g., "fractional factorial" designs (will talk about this soon)
- ▶ In general: interplay between metamodel complexity (e.g., β_{ij} terms) and computational cost

9/39

Factor Screening, Continued

Sequential bifurcation

- ► For huge number of factors
- ▶ Assumes Gaussian noise, nonnegative β 's
- ▶ Test groups (sums of β_i 's)



10 / 39

Making Decisions via Simulation

Overview

Factor Screening

Continuous Stochastic Optimization Robbins-Monro Algorithm

Derivative Estimation

Other Continuous Optimization Method

Ranking and Selection

Selection of the Rest

Subset Selection

Discrete Ontimization

Commercial Solvers

Continuous Stochastic Optimization

Robbins-Monro Algorithm

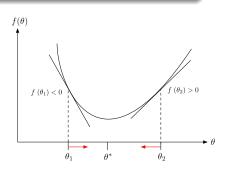
- ▶ Goal: $\min_{\theta \in [\underline{\theta}, \overline{\theta}]} f(\theta)$
- Estimate $f'(\theta)$ and use stochastic approximation (also called stochastic gradient descent)

$$\theta_{n+1} = \Pi\left(\theta_n - \left(\frac{a}{n}\right)Z_n\right)$$

where

- ► *a* > 0 (the gain)
- $ightharpoonup E[Z_n] = f'(\theta_n)$

(projection function)



Continuous Stochastic Optimization, Continued

Convergence

- ▶ Suppose that θ^* is true minimizer and the only local minimizer
- ▶ Under mild conditions, $\lim_{n\to\infty} \theta_n = \theta^*$ a.s.
- ightharpoonup Q: If θ^* is not the only local minimizer, what can go wrong?
- ▶ For large n, θ_n has approximately a normal dist'n

Estimation Algorithm for $100(1-\delta)\%$ Confidence Interval

- 1. Fix $n \ge 1$ and $m \in [5, 10]$
- 2. Run the Robbins-Monro iteration for n steps to obtain θ_n
- 3. Repeat Step 2 a total of m times to obtain $\theta_{n,1},\ldots,\theta_{n,m}$
- 4. Compute point estimator $\bar{\theta}_m = (1/m) \sum_{j=1}^m \theta_{n,j}$
- 5. Compute $100(1-\delta\%)$ CI as $[\bar{\theta}_m \frac{s_m t_{m-1,\delta}}{\sqrt{m}}, \bar{\theta}_m + \frac{s_m t_{m-1,\delta}}{\sqrt{m}}]$

where $s_m^2 = \frac{1}{m-1} \sum_{i=1}^m (\theta_{n,j} - \bar{\theta})^2$ and $t_{m-1,\delta} = \text{Student-t quantile}$

13/39

Continuous Stochastic Optimization, Continued

Remarks

- ▶ Variants available for multi-parameter problems
- ▶ Drawbacks to basic algorithm are slow convergence and high sensitivity to the gain *a*; current research focuses on more sophisticated methods
- ▶ Simple improvement: return best value seen so far

Kiefer-Wolfowitz algorithm

- ▶ Replaces derivative $f'(\theta_n)$ by finite difference $\frac{f(\theta_n + \Delta) f(\theta_n \Delta)}{2\Delta}$
- ► Spalls' simultaneous perturbation stochastic approximation (SPSA) method handles high dimensions
 - At the kth iteration of a d-dimensional problem, run simulation at $\theta_k \pm c\Delta_k$, where c > 0 and Δ_k is a vector of i.i.d. random variables I_1, \ldots, I_d with $P(I_i = 1) = P(I_i = -1) = 0.5$

14 / 39

Making Decisions via Simulation

Overview

Factor Screening

Continuous Stochastic Optimization

Robbins-Monro Algorithm

Derivative Estimation

Other Continuous Optimization Method

Ranking and Selection

iking and ocicetion

Selection of the Bes

Subset Selection

Discrete Optimization

Commercial Solvers

Estimating the Derivative $f'(\theta_n)$

Suppose that $f(\theta) = E_{\theta}[c(X, \theta)]$

- **E**x: M/M/1 queue with interarrival rate λ and service rate θ
- ightharpoonup X = average waiting time for first 100 customers
- $c(x, \theta) = a\theta + bx$ (trades off operating costs and delay costs)

Use likelihood ratios

▶ We have $f(\theta + h) = E_{\theta+h} [c(X, \theta + h)] = E_{\theta} [c(X, \theta + h)L(h)]$ for appropriate likelihood L(h)

$$f'(\theta) = \lim_{h \to 0} \frac{f(\theta + h) - f(\theta)}{h}$$

$$= \lim_{h \to 0} E_{\theta} \left[\frac{c(X, \theta + h)L(h) - c(X, \theta)L(0)}{h} \right]$$

$$= E_{\theta} \left[\lim_{h \to 0} \frac{c(X, \theta + h)L(h) - c(X, \theta)L(0)}{h} \right] \quad \text{under regularity cond.}$$

$$= E_{\theta} \left[\frac{d}{dh} \left(c(X, \theta + h)L(h) \right) \Big|_{h=0} \right]$$

$$= E_{\theta} \left[c'(X, \theta) + c(X, \theta)L'(0) \right] \quad c' = \partial c/\partial \theta \quad L' = \partial L/\partial h$$

15 / 39

Derivative Estimation, Continued

To estimate $g(\theta) \stackrel{\Delta}{=} f'(\theta) = E_{\theta} [c'(X, \theta) + c(X, \theta)L'(0)]$

- ▶ Simulate system to generate i.i.d. replicates $X_1, ..., X_m$
- ▶ At the same time, compute $L'_1(0), \ldots, L'_m(0)$
- ► Compute the estimate $g_m(\theta) = \frac{1}{m} \sum_{i=1}^m [c'(X_i, \theta) + c(X_i, \theta) L'_i(0)]$
- ▶ Robbins and Monro showed that taking m = 1 is optimal (many approximate steps vs few precise steps)

nth step of R-M algorithm

- 1. Generate a single sample X of the performance measure and compute L'(0)
- 2. Set $Z_n = g_1(\theta_n) = c'(X, \theta_n) + c(X, \theta_n)L'(0)$
- 3. Set $\theta_{n+1} = \Pi \left(\theta_n \left(\frac{a}{n} \right) Z_n \right)$

17/39

Derivative Estimation, Continued

Ex: M/M/1 queue

- ▶ Let $V_1, ..., V_{100}$ be the 100 generated service times
- Let X = avg of the 100 waiting times (the perf. measure)

$$L(h) = \prod_{i=1}^{100} \frac{(\theta + h)e^{-(\theta + h)V_i}}{\theta e^{-\theta V_i}} = \prod_{i=1}^{100} \left(\frac{\theta + h}{\theta}\right) e^{-hV_i}$$

$$\Rightarrow$$
 $L'(0) = \sum_{i=1}^{100} \left(\frac{1}{\theta} - V_i\right)$ (can be computed incrementally)

$$c(x,\theta) = a\theta + bx$$
 \Rightarrow $c'(x,\theta) = a$

$$Z_n = c'(X_n, \theta_n) + c(X_n, \theta_n)L'_n(0) = a + (a\theta_n + bX_n)\sum_{i=1}^{100} \left(\frac{1}{\theta_n} - V_{n,i}\right)$$

18 / 39

Derivative Estimation, Continued

A trick for computing L'(0)

- ▶ Likelihood ratio often has form: $L(h) = r_1(h)r_2(h) \cdots r_k(h)$
- ▶ E.g., for a GSMP, $r_i(h) = \frac{f_{\theta+h}(X;s',e',s,e^*)}{f_{\theta}(X;s',e',s,e^*)}$ or $\frac{P_{\theta+h}(S_{j+1};S_j,e_j^*)}{P_{\theta}(S_{j+1};S_j,e_i^*)}$
- Using the product rule and the fact that $r_i(0) = 1$ for all i

$$\frac{d}{dh}L(h)\Big|_{h=0} = \frac{d}{dh}(r_1(h)r_2(h)\cdots r_k(h))\Big|_{h=0}
= [r_1(h)\frac{d}{dh}(r_2(h)\cdots r_k(h))]_{h=0} + [r'_1(h)r_2(h)\cdots r_k(h)]_{h=0}
= \frac{d}{dh}[r_2(h)\cdots r_k(h)]_{h=0} + r'_1(0)$$

- By induction: $L'(0) = r'_1(0) + \cdots + r'_k(0)$ (compute incrementally)
- ▶ For GSMP example (with $f'_{\theta} = \partial f_{\theta} / \partial \theta$):

$$r_i'(0) = \frac{\frac{d}{dh} f_{\theta+h}(X; s', e', s, e^*)|_{h=0}}{f_{\theta}(X; s', e', s, e^*)} = \frac{f_{\theta}'(X; s', e', s, e^*)}{f_{\theta}(X; s', e', s, e^*)}$$

Derivative Estimation, Continued

Trick continued: M/M/1 queue

$$L(h) = \prod_{i=1}^{100} r_i(h) = \prod_{i=1}^{100} \frac{f_{\theta+h}(V_i)}{f_{\theta}(V_i)}$$

$$f_{ heta}(v) = \theta e^{-\theta v}$$
 and $f'_{ heta}(v) = (1 - \theta v)e^{-\theta v}$

$$L'(0) = \sum_{i=1}^{100} \frac{f'_{\theta}(V_i)}{f_{\theta}(V_i)} = \sum_{i=1}^{100} \frac{(1 - \theta V_i)e^{-\theta V_i}}{\theta e^{-\theta V_i}} = \sum_{i=1}^{100} \left(\frac{1}{\theta} - V_i\right)$$

19/39

Derivative Estimation, Continued

Remarks

- Derivative estimation is interesting outside of optimization for sensitivity analysis
- ► Drawback of likelihood-ratio derivative estimator: variance of likelihood ratio increases with length of simulation
- ▶ Alternative gradient estimation methods:
 - ▶ Infinitesimal perturbation analysis (IPA)
 - Smoothed perturbation analysis (SPA)
 - ► Measure-valued differentiation (MVD)

. . . .

21 / 39

23 / 39

Making Decisions via Simulation

Overviev

-actor Screening

Continuous Stochastic Optimization

Robbins-Monro Algorithm

Derivative Estimatio

Other Continuous Optimization Methods

Ranking and Selectior

Selection of the Bes

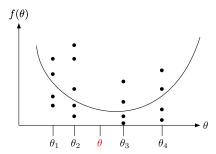
Subset Selection

Discrete Optimization

Commercial Solvers

22 / 39

Other Continuous Optimization Methods



Metamodel-based optimization

- ► Run simulation at selected "design points" and fit (fuzzy) response surface
- ► Then optimize over surface
- ► Surface can be fit locally or globally
- Surface models include:
 - ► Polynomials ("response surface methdology")
 - ► Gaussian field models (stochastic kriging, moving least squares)

Other Continuous Optimization Methods

Sample Average Approximation (discussed previously)

- ▶ Goal: $\min_{\theta \in \Theta} f(\theta)$, where $f(\theta) = E[c(X, \theta)]$
 - c is a deterministic function
 - ightharpoonup X is a random variable whose dist'n is independent of θ
- ▶ Generate X_1, \ldots, X_n i.i.d. and set $f_n(\theta) = (1/n) \sum_{i=1}^n c(X_i, \theta)$
- ▶ Use deterministic optimization methods to solve $\min_{\theta \in \Theta} f_n(\theta)$
- $ightharpoonup f_n$ and f need some structure (convexity, smoothness)
- ► Can use delta method to get confidence intervals
- ► Cn combine with likelihood ratios
 - ▶ Use LR to convert cost from $E_{\theta}[c(X,\theta)]$ to $E[c(X,\theta)L]$
 - ▶ Then use SAA as described above

Overview

Factor Screening

Continuous Stochastic Optimization

Robbins-Monro Algorithm

Derivative Estimation

Other Continuous Optimization Methods

Ranking and Selection Selection of the Best

Subset Selection

Discrete Optimization

Commercial Solvers

25 / 39

Selection of the Best

Goal

- Systems 1 through k have expected perf. measures $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_k$
- ► Choose system with smallest expected value

Dudewicz and Dalal (HW #7)

- ▶ With probability $\geq p$, will return system i^* s.t. $\mu_{i^*} \leq \mu_1 + \delta$
- \blacktriangleright δ is indifference zone: max. diff. that you care about
- ▶ 2-stage procedure tries to minimize overall simulation effort

Many variants

- Adaptive (multistage) R&S
- ► Confidence intervals (comparison with the best)
- ▶ Pre-screening, common random numbers, ...

26 / 39

Dudewicz and Dalal Procedure

Assumes normally distributed observations (e.g., by CLT)

D&D algorithm

- 1. Simulate n_0 replications for each of systems $1, 2, \ldots, k$
- 2. $\bar{X}_{i}^{(1)} = \text{avg}(X_{i,1}, \dots, X_{i,n_0})$ and $S_{i}^{2} = \text{svar}(X_{i,1}, \dots, X_{i,n_0})$
- 3. $N_i = \max(n_0 + 1, \lceil h^2 S_i^2 / \delta^2 \rceil) = \text{final } \# \text{ of reps for sys. i}$
- 4. Simulate $N_i n_0$ reps of system i for i = 1, 2, ..., k
- 5. $\bar{X}_i^{(2)} = \text{avg}(X_{i,n_0+1}, X_{i,n_0+2}, \dots, X_{i,N_i})$
- 6. $W_i = \frac{n_0}{N_i} \left\{ 1 + \sqrt{1 \frac{N_i}{n_0} \left[1 \frac{(N_i n_0)\delta^2}{h^2 S_i^2} \right]} \right\}$
- 7. $\tilde{X}_i = W_i \bar{X}_i^{(1)} + (1 W_i) \bar{X}_i^{(2)}$
- 8. Return system with smallest value of \tilde{X}_i

h is a constant that depends on k, p, and n_0 (Law Table 10.11)

Dudewicz and Dalal: Proof Sketch

- ▶ Definition of W_i and N_i ensures that $T_i = \frac{\tilde{X}_i \mu_i}{\delta/h}$ has t_{n_0-1} dist'n and T_i 's are independent
- Assume that $\mu_2 \mu_1 \ge \delta$ (hence $\mu_j \mu_1 \ge \delta$ for $j \ge 2$)

$$\begin{split} P(CS) &= P\{\tilde{X}_1 < \tilde{X}_j \text{ for } j \geq 2\} \\ &= P\bigg\{\frac{\tilde{X}_1 - \mu_1}{\delta/h} + \frac{\mu_1}{\delta/h} \leq \frac{\tilde{X}_j - \mu_j}{\delta/h} + \frac{\mu_j}{\delta/h} \text{ for } j \geq 2\bigg\} \\ &= P\bigg\{ -T_j \leq \frac{\mu_j - \mu_1}{\delta/h} - T_1 \text{ for } j \geq 2\bigg\} \\ &= \int_{-\infty}^{\infty} \prod_{j=2}^k F_{n_0} \bigg(\frac{\mu_j - \mu_1}{\delta/h} - t\bigg) f_{n_0}(t) \, dt \quad \begin{array}{l} F_{n_0} \text{ is cdf of } t_{n_0 - 1} \\ f_{n_0} \text{ is pdf of } t_{n_0 - 1} \end{array} \\ &\geq \int_{-\infty}^{\infty} [F_{n_0}(h - t)]^{k-1} f_{n_0}(t) \, dt \triangleq g_{n_0,k}(h) \end{split}$$

▶ Set $g_{n_0,k}(h) = p$ and solve for h

27 / 39

Overview

Factor Screening

Continuous Stochastic Optimization

Robbins-Monro Algorithm

Derivative Estimation

Other Continuous Optimization Methods

Ranking and Selection

Selection of the Best

Subset Selection

Discrete Optimization

29 / 39

31/39

Subset Selection

Overview

 $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_k$

- ► Goal: With probability $\geq p$, return a set l of size m that contains a system i^* s.t. $\mu_{i^*} \leq \mu_1 + \delta$
- ► Usually requires many fewer rep's than selection of best (good for screening solution candidates)

Extended D&D Algorithm (next slide)

- ▶ Reduces to D&D algorithm when m = 1
- ▶ Proof is very similar to D&D

Many variants

- ▶ Ex: BNK algorithm where size of I is not specified
 - ▶ If size = 1 then you have the best
 - ▶ See Boesel et al. 2003 reference in Law bibliography
- ► Common random numbers, Bayesian procedures, ...

30 / 39

Subset Selection, Continued

Extended D&D algorithm

- 1. Simulate n_0 replications for each of systems $1, 2, \ldots, k$
- 2. $\bar{X}_i^{(1)} = \text{avg}(X_{i,1}, \dots, X_{i,n_0})$ and $S_i^2 = \text{svar}(X_{i,1}, \dots, X_{i,n_0})$
- 3. $N_i = \max(n_0 + 1, \lceil g^2 S_i^2 / \delta^2 \rceil) = \text{final } \# \text{ of reps for sys. i}$
- 4. Simulate $N_i n_0$ reps of system i for i = 1, 2, ..., k
- 5. $\bar{X}_i^{(2)} = \text{avg}(X_{i,n_0+1}, X_{i,n_0+2}, \dots, X_{i,N_i})$
- 6. $W_i = \frac{n_0}{N_i} \left\{ 1 + \sqrt{1 \frac{N_i}{n_0} \left[1 \frac{(N_i n_0)\delta^2}{\mathbf{g}^2 S_i^2} \right]} \right\}$
- 7. $\tilde{X}_i = W_i \bar{X}_i^{(1)} + (1 W_i) \bar{X}_i^{(2)}$
- 8. Return set I of systems with m smallest values of \tilde{X}_i

g is a constant that depends on k, p, n_0 , and m (Law Table 10.12)

Making Decisions via Simulation

Overviev

Factor Screening

Continuous Stochastic Optimization

Robbins-Monro Algorithm

Derivative Estimation

Other Continuous Optimization Methods

Ranking and Salaction

Selection of the Rest

Subset Selection

Discrete Optimization

Commercial Solvers

Discrete Optimization

Setting: Large but finite set of alternatives Θ

- ▶ Global procedures: Simulate all $\theta \in \Theta$ to find global optimum
 - ▶ No finite stopping rule
 - Asymptotically simulates all $\theta \in \Theta$ infinitely many times
 - Asymptotic guarantee of finding the optimal solution wp1
 - Ex: stochastic ruler, stochastic branch and bound, R-BEESE, SMRAS
- ► Local procedures: Only finds local optimum
 - \blacktriangleright Only searches "promising" elements of Θ
 - ▶ Often searches in neighborhood of current optimal solution
 - Stopping rule, preferably followed by "cleanup" phase
 - ▶ Goal: Minimum additional simulations for statistical guarantee
 - ► Subset selection + R&S
 - Ex: COMPASS, AHA¹

33 / 39

Discrete Optimization, Continued

Key ingredients

- ▶ Estimation set $E_n \subseteq \Theta$: Solutions to simulate at *n*th step
- \blacktriangleright Memory set M_n : Information about systems simulated so far
- ▶ Sampling distribution $F(\cdot | M_n)$: Used to choose E_n
- ▶ Sim. allocation rule $SAR_n(E_n|M_n)$: # reps for each $\theta \in E_n$
- ► Stopping rule to decide if we are done

Generic Local Procedure

- 1. Initialization: $M_0 \leftarrow \emptyset$, n = 0, $\theta_0^* = \text{initial feasible solution}$
- 2. Sampling: Sample from Θ using $F(\cdot | M_n)$ to form set E_n
- 3. Estimation: Apply $SAR_n(E_n|M_n)$ to elements $\theta \in E_n$
- 4. Iteration: Update estimator $\hat{f}(\theta)$ for $\theta \in E_n$ and choose θ_{n+1}^* as solution wth best \hat{f} value.
- 5. Stop at θ_{n+1}^* ?
- 6. If yes, (run cleanup phase and) return answer, else set $n \leftarrow n+1$ and go to Step 2.

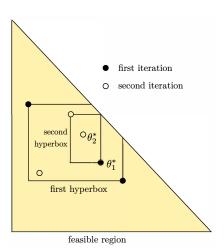
34 / 39

Example of Local Procedure: AHA

A particular instantiation of generic local algorithm

- ▶ Memory: $M_n = \text{all } (\theta, \hat{f}(\theta))$ pairs though *n*th iteration
- ▶ Sampling: $F(\cdot|M_n)$ samples m feasible points from hyperbox around current best solution θ_{n-1}^* (next slide)
- **Estimation set:** E_n = best solution θ_{n-1}^* plus sampled points
- ▶ Allocation rule: Simulate at all points in E_n with cumulative replications given by $R_n(\theta) = \min\{5, 5(\log n)^{1.01}\}$
- ▶ Stopping rule: Test the hypothesis that $f(\theta_n^*)$ is minimum in neighborhood, if so, run cleanup¹

AHA Scenario Sampling



¹J. Xu, B. L. Nelson, and L. J. Hong, "An Adaptive Hyperbox Algorithm for High-Dimensional Discrete Optimization via Simulation Problems", *INFORMS J. Comput.* 24(1), 2013, 133–146.

¹ J. Boesel, B.L. Nelson, and S. Kim, "Using ranking and selection to "clean up" after simulation optimization", *Oper. Res.* 51(5), 2003, 814–825.

Overview

Factor Screening

Continuous Stochastic Optimization

Robbins-Monro Algorithm

Derivative Estimation

Other Continuous Optimization Methods

Ranking and Selection

Selection of the Best

Subset Selection

Discrete Optimization

Commercial Solvers

Commercial Solvers

Based on Robust metaheuristics

- ▶ Designed for deterministic problems
- ▶ Don't impose strong structural requirements
- ▶ Somewhat tolerant of some sampling variability
- ▶ No probabilistic guarantees provided
- ▶ Ex: Genetic algorithms, simulated annealing, tabu search

Example commercial solvers

- OptQuest (for Simul8, Arena, Simio, AnyLogic, etc.)
- Witness
- ► ExtendSim Evolutionary Optimizer
- ► RiskOptimizer
- AutoStat for AutoMod

38 / 39

37 / 39

Commercial Solvers, Continued

Increasing the effectiveness of commercial solvers

- ▶ Preliminary experiment to control sampling variability
 - ▶ Usually # of replications increases close to optimum
 - ► Some commercial packages used fixed # reps throughout
 - ► Always use "adaptive" option if available
 - ▶ Else simulate at a variety of θ values, estimate n=# reps needed to statistically distinguish between worst and best solutions, then use n as a minimal value
- \triangleright Restart at a number of different initial θ values
- ► Run a cleanup phase