

Making Decisions via Simulation

[Law, Ch. 10], [Handbook of Sim. Opt.], [Haas, Sec. 6.3.6]

Peter J. Haas

CS 590M: Simulation
Spring Semester 2020

1 / 39

Making Decisions via Simulation

Overview

Factor Screening

Continuous Stochastic Optimization

Robbins-Monro Algorithm

Derivative Estimation

Other Continuous Optimization Methods

Ranking and Selection

Selection of the Best

Subset Selection

Discrete Optimization

Commercial Solvers

2 / 39

Overview

Goal: Select best system design or parameter setting

- ▶ Performance under each alternative estimated via simulation

$$\min_{\theta \in \Theta} f(\theta)$$

where Θ = feasible set

- ▶ f is often of the form $f(\theta) = E_{\theta}[c(X, \theta)]$
 - ▶ X is estimated from the simulation
 - ▶ E_{θ} indicates that dist'n of X depends on θ

3 / 39

Overview, Continued

Three cases:

1. Θ is **uncountably infinite** (continuous optimization)
 - ▶ Robbins-Monro Algorithm
 - ▶ Metamodel-based optimization
 - ▶ Sample average approximation
2. Θ is **small and finite** (ranking and selection of best system)
 - ▶ E.g., Dudewicz and Dalal (HW #7)
3. Θ is a **large discrete** set (discrete optimization)

Not covered here: Markov decision processes

- ▶ Choose best **policy**: I.e., choose best **function** π , where $\pi(s)$ = action to take when new state equals s [Chang et al., 2007]

4 / 39

Making Decisions via Simulation

Overview

Factor Screening

Continuous Stochastic Optimization

Robbins-Monro Algorithm

Derivative Estimation

Other Continuous Optimization Methods

Ranking and Selection

Selection of the Best

Subset Selection

Discrete Optimization

Commercial Solvers

5 / 39

Factor Screening

Goal: Identify the most important drivers of model response

- ▶ Needed for understanding
- ▶ Needed to focus modeling resources (e.g., input distributions)
- ▶ Needed to select decision variables for optimization

6 / 39

Factor Screening, Continued

Based on a simulation **metamodel**, for example:

$$Y(x) = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k + \epsilon$$

- ▶ Y = simulation model output
- ▶ Parameters $x = (x_1, \dots, x_k)$
- ▶ ϵ = noise term (often Gaussian)
- ▶ Estimate the β_i 's using "low" and "high" x_i values
- ▶ Test if each $|\beta_i|$ is significantly different from 0
- ▶ Will talk more about metamodels later on...

7 / 39

Factor Screening, Continued

β_i coefficients indicate parameter importance

8 / 39

Factor Screening, Continued

Challenge: Many Features

- ▶ Example with $k = 3$:

$$\hat{\beta}_1 = \frac{Y(\text{h}, \text{l}, \text{l}) + Y(\text{h}, \text{l}, \text{h}) + Y(\text{h}, \text{h}, \text{l}) + Y(\text{h}, \text{h}, \text{h})}{4} - \frac{Y(\text{l}, \text{l}, \text{l}) + Y(\text{l}, \text{l}, \text{h}) + Y(\text{l}, \text{h}, \text{l}) + Y(\text{l}, \text{h}, \text{h})}{4}$$

- ▶ In general, need 2^k simulations ("full factorial" design)
- ▶ Can be smarter, e.g., "fractional factorial" designs (will talk about this soon)
- ▶ In general: interplay between metamodel complexity (e.g., β_{ij} terms) and computational cost

9 / 39

Factor Screening, Continued

Sequential bifurcation

- ▶ For huge number of factors
- ▶ Assumes Gaussian noise, nonnegative β 's
- ▶ Test **groups** (sums of β_i 's)

10 / 39

Making Decisions via Simulation

Overview

Factor Screening

Continuous Stochastic Optimization

Robbins-Monro Algorithm

Derivative Estimation

Other Continuous Optimization Methods

Ranking and Selection

Selection of the Best

Subset Selection

Discrete Optimization

Commercial Solvers

11 / 39

Continuous Stochastic Optimization

Robbins-Monro Algorithm

- ▶ Goal: $\min_{\theta \in [\underline{\theta}, \bar{\theta}]} f(\theta)$
- ▶ Estimate $f'(\theta)$ and use **stochastic approximation** (also called stochastic gradient descent)

$$\theta_{n+1} = \Pi\left(\theta_n - \left(\frac{a}{n}\right) Z_n\right)$$

where

- ▶ $a > 0$ (the **gain**)

$$E[Z_n] = f'(\theta_n)$$

$$\Pi(\theta) = \begin{cases} \frac{\theta}{\bar{\theta}} & \text{if } \theta < \underline{\theta} \\ \theta & \text{if } \underline{\theta} \leq \theta \leq \bar{\theta} \\ \frac{\bar{\theta}}{\theta} & \text{if } \theta > \bar{\theta} \end{cases}$$

(projection function)

12 / 39

Continuous Stochastic Optimization, Continued

Convergence

- ▶ Suppose that θ^* is true minimizer and the only local minimizer
- ▶ Under mild conditions, $\lim_{n \rightarrow \infty} \theta_n = \theta^*$ a.s.
- ▶ Q: If θ^* is not the only local minimizer, what can go wrong?
- ▶ For large n , θ_n has approximately a normal dist'n

Estimation Algorithm for $100(1 - \delta)\%$ Confidence Interval

1. Fix $n \geq 1$ and $m \in [5, 10]$
2. Run the Robbins-Monro iteration for n steps to obtain θ_n
3. Repeat Step 2 a total of m times to obtain $\theta_{n,1}, \dots, \theta_{n,m}$
4. Compute point estimator $\bar{\theta}_m = (1/m) \sum_{j=1}^m \theta_{n,j}$
5. Compute $100(1 - \delta)\%$ CI as $[\bar{\theta}_m - \frac{s_m t_{m-1,\delta}}{\sqrt{m}}, \bar{\theta}_m + \frac{s_m t_{m-1,\delta}}{\sqrt{m}}]$

where $s_m^2 = \frac{1}{m-1} \sum_{j=1}^m (\theta_{n,j} - \bar{\theta}_m)^2$ and $t_{m-1,\delta}$ = Student-t quantile

13 / 39

Continuous Stochastic Optimization, Continued

Remarks

- ▶ Variants available for multi-parameter problems
- ▶ Drawbacks to basic algorithm are slow convergence and high sensitivity to the gain a ; current research focuses on more sophisticated methods
- ▶ Simple improvement: return best value seen so far

Kiefer-Wolfowitz algorithm

- ▶ Replaces derivative $f'(\theta_n)$ by finite difference $\frac{f(\theta_n + \Delta) - f(\theta_n - \Delta)}{2\Delta}$
- ▶ Spalls' simultaneous perturbation stochastic approximation (SPSA) method handles high dimensions
 - ▶ At the k th iteration of a d -dimensional problem, run simulation at $\theta_k \pm c\Delta_k$, where $c > 0$ and Δ_k is a vector of i.i.d. random variables I_1, \dots, I_d with $P(I_j = 1) = P(I_j = -1) = 0.5$

14 / 39

Making Decisions via Simulation

Overview

Factor Screening

Continuous Stochastic Optimization

Robbins-Monro Algorithm

Derivative Estimation

Other Continuous Optimization Methods

Ranking and Selection

Selection of the Best

Subset Selection

Discrete Optimization

Commercial Solvers

Estimating the Derivative $f'(\theta_n)$

Suppose that $f(\theta) = E_\theta[c(X, \theta)]$

- ▶ Ex: M/M/1 queue with interarrival rate λ and service rate θ
- ▶ X = average waiting time for first 100 customers
- ▶ $c(x, \theta) = a\theta + bx$ (trades off operating costs and delay costs)

Use likelihood ratios

- ▶ We have $f(\theta + h) = E_{\theta+h}[c(X, \theta + h)] = E_\theta[c(X, \theta + h)L(h)]$ for appropriate likelihood $L(h)$

$$\begin{aligned}
 f'(\theta) &= \lim_{h \rightarrow 0} \frac{f(\theta + h) - f(\theta)}{h} \\
 &= \lim_{h \rightarrow 0} E_\theta \left[\frac{c(X, \theta + h)L(h) - c(X, \theta)L(0)}{h} \right] \\
 &= E_\theta \left[\lim_{h \rightarrow 0} \frac{c(X, \theta + h)L(h) - c(X, \theta)L(0)}{h} \right] \quad \text{under regularity cond.} \\
 &= E_\theta \left[\frac{d}{dh} (c(X, \theta + h)L(h)) \Big|_{h=0} \right] \\
 &= E_\theta [c'(X, \theta) + c(X, \theta)L'(0)] \quad c' = \partial c / \partial \theta \quad L' = \partial L / \partial h
 \end{aligned}$$

15 / 39

16 / 39

Derivative Estimation, Continued

To estimate $g(\theta) \triangleq f'(\theta) = E_\theta[c'(X, \theta) + c(X, \theta)L'(0)]$

- ▶ Simulate system to generate i.i.d. replicates X_1, \dots, X_m
- ▶ At the same time, compute $L'_1(0), \dots, L'_m(0)$
- ▶ Compute the estimate $g_m(\theta) = \frac{1}{m} \sum_{i=1}^m [c'(X_i, \theta) + c(X_i, \theta)L'_i(0)]$
- ▶ Robbins and Monro showed that taking $m = 1$ is optimal (many approximate steps vs few precise steps)

n th step of R-M algorithm

1. Generate a single sample X of the performance measure and compute $L'(0)$
2. Set $Z_n = g_1(\theta_n) = c'(X, \theta_n) + c(X, \theta_n)L'(0)$
3. Set $\theta_{n+1} = \Pi\left(\theta_n - \left(\frac{a}{n}\right)Z_n\right)$

17 / 39

Derivative Estimation, Continued

A trick for computing $L'(0)$

- ▶ Likelihood ratio often has form: $L(h) = r_1(h)r_2(h) \cdots r_k(h)$
- ▶ E.g., for a GSMP, $r_i(h) = \frac{f_{\theta+h}(X; s', e', s, e^*)}{f_\theta(X; s', e', s, e^*)}$ or $\frac{P_{\theta+h}(S_{j+1}; S_j, e_j^*)}{P_\theta(S_{j+1}; S_j, e_j^*)}$
- ▶ Using the product rule and the fact that $r_i(0) = 1$ for all i

$$\begin{aligned} \frac{d}{dh} L(h) \Big|_{h=0} &= \frac{d}{dh} (r_1(h)r_2(h) \cdots r_k(h)) \Big|_{h=0} \\ &= [r_1(h) \frac{d}{dh} (r_2(h) \cdots r_k(h))]_{h=0} + [r'_1(h)r_2(h) \cdots r_k(h)]_{h=0} \\ &= \frac{d}{dh} [r_2(h) \cdots r_k(h)]_{h=0} + r'_1(0) \end{aligned}$$

- ▶ By induction: $L'(0) = r'_1(0) + \cdots + r'_k(0)$ (compute incrementally)
- ▶ For GSMP example (with $f'_\theta = \partial f_\theta / \partial \theta$):

$$r'_i(0) = \frac{\frac{d}{dh} f_{\theta+h}(X; s', e', s, e^*)|_{h=0}}{f_\theta(X; s', e', s, e^*)} = \frac{f'_\theta(X; s', e', s, e^*)}{f_\theta(X; s', e', s, e^*)}$$

19 / 39

Derivative Estimation, Continued

Ex: M/M/1 queue

- ▶ Let V_1, \dots, V_{100} be the 100 generated service times
- ▶ Let $X = \text{avg}$ of the 100 waiting times (the perf. measure)

$$L(h) = \prod_{i=1}^{100} \frac{(\theta + h)e^{-(\theta+h)V_i}}{\theta e^{-\theta V_i}} = \prod_{i=1}^{100} \left(\frac{\theta + h}{\theta} \right) e^{-hV_i}$$

$$\Rightarrow L'(0) = \sum_{i=1}^{100} \left(\frac{1}{\theta} - V_i \right) \quad (\text{can be computed incrementally})$$

$$c(x, \theta) = a\theta + bx \quad \Rightarrow \quad c'(x, \theta) = a$$

$$Z_n = c'(X_n, \theta_n) + c(X_n, \theta_n)L'_n(0) = a + (a\theta_n + bX_n) \sum_{i=1}^{100} \left(\frac{1}{\theta_n} - V_{n,i} \right)$$

18 / 39

Derivative Estimation, Continued

Trick continued: M/M/1 queue

$$L(h) = \prod_{i=1}^{100} r_i(h) = \prod_{i=1}^{100} \frac{f_{\theta+h}(V_i)}{f_\theta(V_i)}$$

$$f_\theta(v) = \theta e^{-\theta v} \quad \text{and} \quad f'_\theta(v) = (1 - \theta v)e^{-\theta v}$$

$$L'(0) = \sum_{i=1}^{100} \frac{f'_\theta(V_i)}{f_\theta(V_i)} = \sum_{i=1}^{100} \frac{(1 - \theta V_i)e^{-\theta V_i}}{\theta e^{-\theta V_i}} = \sum_{i=1}^{100} \left(\frac{1}{\theta} - V_i \right)$$

20 / 39

Derivative Estimation, Continued

Remarks

- ▶ Derivative estimation is interesting outside of optimization for sensitivity analysis
- ▶ Drawback of likelihood-ratio derivative estimator: variance of likelihood ratio increases with length of simulation
- ▶ Alternative gradient estimation methods:
 - ▶ Infinitesimal perturbation analysis (IPA)
 - ▶ Smoothed perturbation analysis (SPA)
 - ▶ Measure-valued differentiation (MVD)
 - ▶ ...

21 / 39

Making Decisions via Simulation

Overview

Factor Screening

Continuous Stochastic Optimization

Robbins-Monro Algorithm

Derivative Estimation

Other Continuous Optimization Methods

Ranking and Selection

Selection of the Best

Subset Selection

Discrete Optimization

Commercial Solvers

22 / 39

Other Continuous Optimization Methods

Metamodel-based optimization

- ▶ Run simulation at selected “design points” and fit (fuzzy) response surface
- ▶ Then optimize over surface
- ▶ Surface can be fit locally or globally
- ▶ Surface models include:
 - ▶ Polynomials (“response surface methodology”)
 - ▶ Gaussian field models (stochastic kriging, moving least squares)

23 / 39

Other Continuous Optimization Methods

Sample Average Approximation (discussed previously)

- ▶ Goal: $\min_{\theta \in \Theta} f(\theta)$, where $f(\theta) = E[c(X, \theta)]$
 - ▶ c is a deterministic function
 - ▶ X is a random variable whose dist'n is independent of θ
- ▶ Generate X_1, \dots, X_n i.i.d. and set $f_n(\theta) = (1/n) \sum_{i=1}^n c(X_i, \theta)$
- ▶ Use deterministic optimization methods to solve $\min_{\theta \in \Theta} f_n(\theta)$
- ▶ f_n and f need some structure (convexity, smoothness)
- ▶ Can use delta method to get confidence intervals
- ▶ Can combine with likelihood ratios
 - ▶ Use LR to convert cost from $E_\theta[c(X, \theta)]$ to $E[c(X, \theta)L]$
 - ▶ Then use SAA as described above

24 / 39

Making Decisions via Simulation

Overview

Factor Screening

Continuous Stochastic Optimization

Robbins-Monro Algorithm

Derivative Estimation

Other Continuous Optimization Methods

Ranking and Selection

Selection of the Best

Subset Selection

Discrete Optimization

Commercial Solvers

25 / 39

Selection of the Best

Goal

- ▶ Systems 1 through k have expected perf. measures $\mu_1 \leq \mu_2 \leq \dots \leq \mu_k$
- ▶ Choose system with smallest expected value

Dudewicz and Dalal (HW #7)

- ▶ With probability $\geq p$, will return system i^* s.t. $\mu_{i^*} \leq \mu_1 + \delta$
- ▶ δ is **indifference zone**: max. diff. that you care about
- ▶ 2-stage procedure tries to minimize overall simulation effort

Many variants

- ▶ Adaptive (multistage) R&S
- ▶ Confidence intervals (comparison with the best)
- ▶ Pre-screening, common random numbers, ...

26 / 39

Dudewicz and Dalal Procedure

Assumes normally distributed observations (e.g., by CLT)

D&D algorithm

1. Simulate n_0 replications for each of systems 1, 2, ..., k
2. $\bar{X}_i^{(1)} = \text{avg}(X_{i,1}, \dots, X_{i,n_0})$ and $S_i^2 = \text{svar}(X_{i,1}, \dots, X_{i,n_0})$
3. $N_i = \max(n_0 + 1, \lceil h^2 S_i^2 / \delta^2 \rceil)$ = final # of reps for sys. i
4. Simulate $N_i - n_0$ reps of system i for $i = 1, 2, \dots, k$
5. $\bar{X}_i^{(2)} = \text{avg}(X_{i,n_0+1}, X_{i,n_0+2}, \dots, X_{i,N_i})$
6. $W_i = \frac{n_0}{N_i} \left\{ 1 + \sqrt{1 - \frac{N_i}{n_0} \left[1 - \frac{(N_i - n_0)\delta^2}{h^2 S_i^2} \right]} \right\}$
7. $\tilde{X}_i = W_i \bar{X}_i^{(1)} + (1 - W_i) \bar{X}_i^{(2)}$
8. Return system with smallest value of \tilde{X}_i

h is a constant that depends on k , p , and n_0 (Law Table 10.11)

27 / 39

Dudewicz and Dalal: Proof Sketch

- ▶ Definition of W_i and N_i ensures that $T_i = \frac{\tilde{X}_i - \mu_i}{\delta/h}$ has t_{n_0-1} dist'n and T_i 's are independent
- ▶ Assume that $\mu_2 - \mu_1 \geq \delta$ (hence $\mu_j - \mu_1 \geq \delta$ for $j \geq 2$)

$$\begin{aligned}
 P(CS) &= P\{\tilde{X}_1 < \tilde{X}_j \text{ for } j \geq 2\} \\
 &= P\left\{ \frac{\tilde{X}_1 - \mu_1}{\delta/h} + \frac{\mu_1}{\delta/h} \leq \frac{\tilde{X}_j - \mu_j}{\delta/h} + \frac{\mu_j}{\delta/h} \text{ for } j \geq 2 \right\} \\
 &= P\left\{ -T_1 \leq \frac{\mu_j - \mu_1}{\delta/h} - T_1 \text{ for } j \geq 2 \right\} \\
 &= \int_{-\infty}^{\infty} \prod_{j=2}^k F_{n_0} \left(\frac{\mu_j - \mu_1}{\delta/h} - t \right) f_{n_0}(t) dt \quad \begin{matrix} F_{n_0} \text{ is cdf of } t_{n_0-1} \\ f_{n_0} \text{ is pdf of } t_{n_0-1} \end{matrix} \\
 &\geq \int_{-\infty}^{\infty} [F_{n_0}(h-t)]^{k-1} f_{n_0}(t) dt \triangleq g_{n_0, k}(h)
 \end{aligned}$$

- ▶ Set $g_{n_0, k}(h) = p$ and solve for h

28 / 39

Making Decisions via Simulation

Overview

Factor Screening

Continuous Stochastic Optimization

Robbins-Monro Algorithm

Derivative Estimation

Other Continuous Optimization Methods

Ranking and Selection

Selection of the Best

Subset Selection

Discrete Optimization

Commercial Solvers

29 / 39

Subset Selection

$$\mu_1 \leq \mu_2 \leq \dots \leq \mu_k$$

Overview

- ▶ Goal: With probability $\geq p$, return a set I of size m that contains a system i^* s.t. $\mu_{i^*} \leq \mu_1 + \delta$
- ▶ Usually requires many fewer rep's than selection of best (good for screening solution candidates)

Extended D&D Algorithm (next slide)

- ▶ Reduces to D&D algorithm when $m = 1$
- ▶ Proof is very similar to D&D

Many variants

- ▶ Ex: BNK algorithm where size of I is not specified
 - ▶ If size = 1 then you have the best
 - ▶ See Boesel et al. 2003 reference in Law bibliography
- ▶ Common random numbers, Bayesian procedures, ...

30 / 39

Subset Selection, Continued

Extended D&D algorithm

1. Simulate n_0 replications for each of systems $1, 2, \dots, k$
2. $\bar{X}_i^{(1)} = \text{avg}(X_{i,1}, \dots, X_{i,n_0})$ and $S_i^2 = \text{svar}(X_{i,1}, \dots, X_{i,n_0})$
3. $N_i = \max(n_0 + 1, \lceil g^2 S_i^2 / \delta^2 \rceil)$ = final # of reps for sys. i
4. Simulate $N_i - n_0$ reps of system i for $i = 1, 2, \dots, k$
5. $\bar{X}_i^{(2)} = \text{avg}(X_{i,n_0+1}, X_{i,n_0+2}, \dots, X_{i,N_i})$
6. $W_i = \frac{n_0}{N_i} \left\{ 1 + \sqrt{1 - \frac{N_i}{n_0} \left[1 - \frac{(N_i - n_0)\delta^2}{g^2 S_i^2} \right]} \right\}$
7. $\tilde{X}_i = W_i \bar{X}_i^{(1)} + (1 - W_i) \bar{X}_i^{(2)}$
8. Return set I of systems with m smallest values of \tilde{X}_i

g is a constant that depends on k , p , n_0 , and m
(Law Table 10.12)

31 / 39

Making Decisions via Simulation

Overview

Factor Screening

Continuous Stochastic Optimization

Robbins-Monro Algorithm

Derivative Estimation

Other Continuous Optimization Methods

Ranking and Selection

Selection of the Best

Subset Selection

Discrete Optimization

Commercial Solvers

32 / 39

Discrete Optimization

Setting: Large but finite set of alternatives Θ

- ▶ **Global procedures:** Simulate all $\theta \in \Theta$ to find global optimum
 - ▶ No finite stopping rule
 - ▶ Asymptotically simulates all $\theta \in \Theta$ infinitely many times
 - ▶ Asymptotic guarantee of finding the optimal solution w.p. 1
 - ▶ Ex: stochastic ruler, stochastic branch and bound, R-BESE, SMRAS
- ▶ **Local procedures:** Only finds local optimum
 - ▶ Only searches “promising” elements of Θ
 - ▶ Often searches in neighborhood of current optimal solution
 - ▶ Stopping rule, preferably followed by “cleanup” phase
 - ▶ Goal: Minimum additional simulations for statistical guarantee
 - ▶ Subset selection + R&S
 - ▶ Ex: COMPASS, AHA¹

¹J. Xu, B. L. Nelson, and L. J. Hong, “An Adaptive Hyperbox Algorithm for High-Dimensional Discrete Optimization via Simulation Problems”, *INFORMS J. Comput.* 24(1), 2013, 133–146.

Example of Local Procedure: AHA

A particular instantiation of generic local algorithm

- ▶ **Memory:** $M_n = \text{all } (\theta, \hat{f}(\theta)) \text{ pairs through } n\text{th iteration}$
- ▶ **Sampling:** $F(\cdot | M_n)$ samples m feasible points from hyperbox around current best solution θ_{n-1}^* (next slide)
- ▶ **Estimation set:** $E_n = \text{best solution } \theta_{n-1}^* \text{ plus sampled points}$
- ▶ **Allocation rule:** Simulate at all points in E_n with cumulative replications given by $R_n(\theta) = \min\{5, 5(\log n)^{1.01}\}$
- ▶ **Stopping rule:** Test the hypothesis that $f(\theta_n^*)$ is minimum in neighborhood, if so, run cleanup¹

¹J. Boesel, B.L. Nelson, and S. Kim, “Using ranking and selection to “clean up” after simulation optimization”, *Oper. Res.* 51(5), 2003, 814–825.

Discrete Optimization, Continued

Key ingredients

- ▶ **Estimation set** $E_n \subseteq \Theta$: Solutions to simulate at n th step
- ▶ **Memory set** M_n : Information about systems simulated so far
- ▶ **Sampling distribution** $F(\cdot | M_n)$: Used to choose E_n
- ▶ **Sim. allocation rule** $SAR_n(E_n | M_n)$: # reps for each $\theta \in E_n$
- ▶ **Stopping rule** to decide if we are done

Generic Local Procedure

1. Initialization: $M_0 \leftarrow \emptyset$, $n = 0$, $\theta_0^* = \text{initial feasible solution}$
2. Sampling: Sample from Θ using $F(\cdot | M_n)$ to form set E_n
3. Estimation: Apply $SAR_n(E_n | M_n)$ to elements $\theta \in E_n$
4. Iteration: Update estimator $\hat{f}(\theta)$ for $\theta \in E_n$ and choose θ_{n+1}^* as solution wth best \hat{f} value.
5. Stop at θ_{n+1}^* ?
6. If yes, (run cleanup phase and) return answer, else set $n \leftarrow n + 1$ and go to Step 2.

AHA Scenario Sampling

Making Decisions via Simulation

Overview

Factor Screening

Continuous Stochastic Optimization

Robbins-Monro Algorithm

Derivative Estimation

Other Continuous Optimization Methods

Ranking and Selection

Selection of the Best

Subset Selection

Discrete Optimization

Commercial Solvers

37 / 39

Commercial Solvers

Based on Robust metaheuristics

- ▶ Designed for deterministic problems
- ▶ Don't impose strong structural requirements
- ▶ Somewhat tolerant of some sampling variability
- ▶ No probabilistic guarantees provided
- ▶ Ex: Genetic algorithms, simulated annealing, tabu search

Example commercial solvers

- ▶ OptQuest (for Simul8, Arena, Simio, AnyLogic, etc.)
- ▶ Witness
- ▶ ExtendSim Evolutionary Optimizer
- ▶ RiskOptimizer
- ▶ AutoStat for AutoMod

38 / 39

Commercial Solvers, Continued

Increasing the effectiveness of commercial solvers

- ▶ Preliminary experiment to control sampling variability
 - ▶ Usually # of replications increases close to optimum
 - ▶ Some commercial packages used fixed # reps throughout
 - ▶ Always use "adaptive" option if available
 - ▶ Else simulate at a variety of θ values, estimate $n = \#$ reps needed to statistically distinguish between worst and best solutions, then use n as a minimal value
- ▶ Restart at a number of different initial θ values
- ▶ Run a cleanup phase

39 / 39