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Overview

Goal: Select best system design or parameter setting

I Performance under each alternative estimated via simulation

min
θ∈Θ

f (θ)

where Θ = feasible set

I f is often of the form f (θ) = Eθ[c(X , θ)]
I X is estimated from the simulation
I Eθ indicates that dist’n of X depends on θ
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Overview, Continued

Three cases:

1. Θ is uncountably infinite (continuous optimization)
I Robbins-Monro Algorithm
I Metamodel-based optimization
I Sample average approximation

2. Θ is small and finite (ranking and selection of best system)
I E.g., Dudewicz and Dalal (HW #7)

3. Θ is a large discrete set (discrete optimization)

Not covered here: Markov decision processes

I Choose best policy: I.e., choose best function π, where π(s) =
action to take when new state equals s [Chang et al., 2007]
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Factor Screening

Goal: Identify the most important drivers of model response

I Needed for understanding

I Needed to focus modeling resources (e.g., input distributions)

I Needed to select decision variables for optimization
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Factor Screening, Continued

Based on a simulation metamodel, for example:

Y (x) = β0 + β1x1 + · · ·+ βkxk + ε

I Y = simulation model output

I Parameters x = (x1, . . . , xk)

I ε = noise term (often Gaussian)

I Estimate the βi ’s
using ”low” and ”high” xi values

I Test if each |βi | is
significantly different from 0

I Will talk more about metamodels later on...
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Factor Screening, Continued

βi coefficients indicate parameter importance
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Factor Screening, Continued

Challenge: Many Features

I Example with k = 3:

β̂1 =
Y (h, l , l) + Y (h, l , h) + Y (h, h, l) + Y (h, h, h)

4

− Y (l , l , l) + Y (l , l , h) + Y (l , h, l) + Y (l , h, h)

4

I In general, need 2k simulations (”full factorial” design)

I Can be smarter, e.g., ”fractional factorial” designs
(will talk about this soon)

I In general: interplay between metamodel complexity
(e.g., βij terms) and computational cost
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Factor Screening, Continued

Sequential bifurcation

I For huge number of factors

I Assumes Gaussian noise, nonnegative β’s

I Test groups (sums of βi ’s)
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Continuous Stochastic Optimization

Robbins-Monro Algorithm

I Goal: minθ∈[θ,θ] f (θ)

I Estimate f ′(θ) and use stochastic approximation
(also called stochastic gradient descent)

θn+1 = Π
(
θn −

(a
n

)
Zn

)
where

I a > 0 (the gain)

I E [Zn] = f ′(θn)

I Π(θ) =


θ if θ < θ

θ if θ ≤ θ ≤ θ
θ if θ > θ

(projection function)
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Continuous Stochastic Optimization, Continued

Convergence

I Suppose that θ∗ is true minimizer and the only local minimizer

I Under mild conditions, limn→∞ θn = θ∗ a.s.

I Q: If θ∗ is not the only local minimizer, what can go wrong?

I For large n, θn has approximately a normal dist’n

Estimation Algorithm for 100(1− δ)% Confidence Interval

1. Fix n ≥ 1 and m ∈ [5, 10]

2. Run the Robbins-Monro iteration for n steps to obtain θn

3. Repeat Step 2 a total of m times to obtain θn,1, . . . , θn,m

4. Compute point estimator θ̄m = (1/m)
∑m

j=1 θn,j

5. Compute 100(1− δ%) CI as [θ̄m −
smtm−1,δ√

m
, θ̄m +

smtm−1,δ√
m

]

where s2
m = 1

m−1

∑m
j=1(θn,j − θ̄)2 and tm−1,δ = Student-t quantile
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Continuous Stochastic Optimization, Continued

Remarks

I Variants available for multi-parameter problems

I Drawbacks to basic algorithm are slow convergence and high
sensitivity to the gain a; current research focuses on more
sophisticated methods

I Simple improvement: return best value seen so far

Kiefer-Wolfowitz algorithm

I Replaces derivative f ′(θn) by finite difference f (θn+∆)−f (θn−∆)
2∆

I Spalls’ simultaneous perturbation stochastic approximation
(SPSA) method handles high dimensions

I At the kth iteration of a d-dimensional problem, run simulation
at θk ± c∆k , where c > 0 and ∆k is a vector of i.i.d. random
variables I1, . . . , Id with P(Ij = 1) = P(Ij = −1) = 0.5
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Estimating the Derivative f ′(θn)
Suppose that f (θ) = Eθ[c(X , θ)]

I Ex: M/M/1 queue with interarrival rate λ and service rate θ
I X = average waiting time for first 100 customers
I c(x , θ) = aθ + bx (trades off operating costs and delay costs)

Use likelihood ratios
I We have f (θ+ h) = Eθ+h [c(X , θ + h)] = Eθ [c(X , θ + h)L(h)]

for appropriate likelihood L(h)

f ′(θ) = lim
h→0

f (θ + h)− f (θ)

h

= lim
h→0

Eθ
[c(X , θ + h)L(h)− c(X , θ)L(0)

h

]
= Eθ

[
lim
h→0

c(X , θ + h)L(h)− c(X , θ)L(0)

h

]
under regularity cond.

= Eθ
[ d
dh

(
c(X , θ + h)L(h)

) ∣∣∣
h=0

]
= Eθ

[
c ′(X , θ) + c(X , θ)L′(0)

]
c ′ = ∂c/∂θ L′ = ∂L/∂h
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Derivative Estimation, Continued

To estimate g(θ)
∆
= f ′(θ) = Eθ

[
c ′(X , θ) + c(X , θ)L′(0)

]
I Simulate system to generate i.i.d. replicates X1, . . . ,Xm

I At the same time, compute L′1(0), . . . , L′m(0)

I Compute the estimate gm(θ) = 1
m

∑m
i=1[c ′(Xi , θ) + c(Xi , θ)L′i (0)]

I Robbins and Monro showed that taking m = 1 is optimal
(many approximate steps vs few precise steps)

nth step of R-M algorithm

1. Generate a single sample X of the performance measure
and compute L′(0)

2. Set Zn = g1(θn) = c ′(X , θn) + c(X , θn)L′(0)

3. Set θn+1 = Π
(
θn −

(a
n

)
Zn

)
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Derivative Estimation, Continued

Ex: M/M/1 queue

I Let V1, . . . ,V100 be the 100 generated service times

I Let X = avg of the 100 waiting times (the perf. measure)

L(h) =
100∏
i=1

(θ + h)e−(θ+h)Vi

θe−θVi
=

100∏
i=1

(
θ + h

θ

)
e−hVi

⇒ L′(0) =
100∑
i=1

(1

θ
− Vi

)
(can be computed incrementally)

c(x , θ) = aθ + bx ⇒ c ′(x , θ) = a

Zn = c ′(Xn, θn) + c(Xn, θn)L′n(0) = a + (aθn + bXn)
100∑
i=1

( 1

θn
− Vn,i

)
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Derivative Estimation, Continued
A trick for computing L′(0)

I Likelihood ratio often has form: L(h) = r1(h)r2(h) · · · rk(h)

I E.g., for a GSMP, ri (h) = fθ+h(X ;s′,e′,s,e∗)
fθ(X ;s′,e′,s,e∗) or

Pθ+h(Sj+1;Sj ,e
∗
j )

Pθ(Sj+1;Sj ,e
∗
j )

I Using the product rule and the fact that ri (0) = 1 for all i

d

dh
L(h)

∣∣∣
h=0

=
d

dh

(
r1(h)r2(h) · · · rk(h)

)∣∣∣
h=0

=
[
r1(h)

d

dh

(
r2(h) · · · rk(h)

)]
h=0

+
[
r ′1(h)r2(h) · · · rk(h)

]
h=0

=
d

dh

[
r2(h) · · · rk(h)

]
h=0

+ r ′1(0)

I By induction: L′(0) = r ′1(0) + · · ·+ r ′k(0)
(compute incrementally)

I For GSMP example (with f ′θ = ∂fθ/∂θ):

r ′i (0) =
d
dh fθ+h(X ; s ′, e′, s, e∗)

∣∣
h=0

fθ(X ; s ′, e′, s, e∗)
=

f ′θ (X ; s ′, e′, s, e∗)

fθ(X ; s ′, e′, s, e∗)
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Derivative Estimation, Continued

Trick continued: M/M/1 queue

L(h) =
100∏
i=1

ri (h) =
100∏
i=1

fθ+h(Vi )

fθ(Vi )

fθ(v) = θe−θv and f ′θ (v) = (1− θv)e−θv

L′(0) =
100∑
i=1

f ′θ (Vi )

fθ(Vi )
=

100∑
i=1

(1− θVi )e
−θVi

θe−θVi
=

100∑
i=1

(1

θ
− Vi

)
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Derivative Estimation, Continued

Remarks

I Derivative estimation is interesting outside of optimization
for sensitivity analysis

I Drawback of likelihood-ratio derivative estimator:
variance of likelihood ratio increases with length of simulation

I Alternative gradient estimation methods:
I Infinitesimal perturbation analysis (IPA)
I Smoothed perturbation analysis (SPA)
I Measure-valued differentiation (MVD)
I · · ·

21 / 39

Making Decisions via Simulation
Overview
Factor Screening
Continuous Stochastic Optimization

Robbins-Monro Algorithm
Derivative Estimation
Other Continuous Optimization Methods

Ranking and Selection
Selection of the Best
Subset Selection

Discrete Optimization
Commercial Solvers

22 / 39

Other Continuous Optimization Methods

Metamodel-based optimization
I Run simulation at selected “design points”

and fit (fuzzy) response surface
I Then optimize over surface
I Surface can be fit locally or globally
I Surface models include:

I Polynomials (“response surface methdology”)
I Gaussian field models (stochastic kriging, moving least squares)
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Other Continuous Optimization Methods

Sample Average Approximation (discussed previously)
I Goal: minθ∈Θ f (θ), where f (θ) = E [c(X , θ)]

I c is a deterministic function
I X is a random variable whose dist’n is independent of θ

I Generate X1, . . . ,Xn i.i.d. and set fn(θ) = (1/n)
∑n

i=1 c(Xi , θ)

I Use deterministic optimization methods to solve minθ∈Θ fn(θ)

I fn and f need some structure (convexity, smoothness)

I Can use delta method to get confidence intervals
I Cn combine with likelihood ratios

I Use LR to convert cost from Eθ[c(X , θ)] to E [c(X , θ)L]
I Then use SAA as described above
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Selection of the Best

Goal

I Systems 1 through k have expected perf. measures
µ1 ≤ µ2 ≤ · · · ≤ µk

I Choose system with smallest expected value

Dudewicz and Dalal (HW #7)

I With probability ≥ p, will return system i∗ s.t. µi∗ ≤ µ1 + δ

I δ is indifference zone: max. diff. that you care about

I 2-stage procedure tries to minimize overall simulation effort

Many variants

I Adaptive (multistage) R&S

I Confidence intervals (comparison with the best)

I Pre-screening, common random numbers, . . .
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Dudewicz and Dalal Procedure

Assumes normally distributed observations (e.g., by CLT)

D&D algorithm

1. Simulate n0 replications for each of systems 1, 2, . . . , k

2. X̄
(1)
i = avg(Xi ,1, . . . ,Xi ,n0) and S2

i = svar(Xi ,1, . . . ,Xi ,n0)

3. Ni = max
(
n0 + 1, dh2S2

i /δ
2e
)

= final # of reps for sys. i

4. Simulate Ni − n0 reps of system i for i = 1, 2, . . . , k

5. X̄
(2)
i = avg(Xi ,n0+1,Xi ,n0+2, . . . ,Xi ,Ni

)

6. Wi = n0
Ni

{
1 +

√
1− Ni

n0

[
1− (Ni−n0)δ2

h2S2
i

]}
7. X̃i = Wi X̄

(1)
i + (1−Wi )X̄

(2)
i

8. Return system with smallest value of X̃i

h is a constant that depends on k , p, and n0 (Law Table 10.11)
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Dudewicz and Dalal: Proof Sketch

I Definition of Wi and Ni ensures that Ti = X̃i−µi
δ/h

has tn0−1 dist’n and Ti ’s are independent

I Assume that µ2 − µ1 ≥ δ (hence µj − µ1 ≥ δ for j ≥ 2)

P(CS) = P{X̃1 < X̃j for j ≥ 2}

= P

{
X̃1 − µ1

δ/h
+

µ1

δ/h
≤ X̃j − µj

δ/h
+

µj

δ/h
for j ≥ 2

}
= P

{
−Tj ≤

µj − µ1

δ/h
− T1 for j ≥ 2

}
=

∫ ∞
−∞

k∏
j=2

Fn0

(
µj − µ1

δ/h
− t

)
fn0 (t) dt

≥
∫ ∞
−∞

[Fn0 (h − t)]k−1fn0 (t) dt , gn0,k(h)

I Set gn0,k(h) = p and solve for h
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Fn0 is cdf of tn0−1

fn0 is pdf of tn0−1
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Subset Selection

Overview

I Goal: With probability ≥ p, return a set I of size m that
contains a system i∗ s.t. µi∗ ≤ µ1 + δ

I Usually requires many fewer rep’s than selection of best
(good for screening solution candidates)

Extended D&D Algorithm (next slide)

I Reduces to D&D algorithm when m = 1

I Proof is very similar to D&D

Many variants
I Ex: BNK algorithm where size of I is not specified

I If size = 1 then you have the best
I See Boesel et al. 2003 reference in Law bibliography

I Common random numbers, Bayesian procedures, . . .
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µ1 ≤ µ2 ≤ · · · ≤ µk

Subset Selection, Continued

Extended D&D algorithm

1. Simulate n0 replications for each of systems 1, 2, . . . , k

2. X̄
(1)
i = avg(Xi ,1, . . . ,Xi ,n0) and S2

i = svar(Xi ,1, . . . ,Xi ,n0)

3. Ni = max
(
n0 + 1, dg2S2

i /δ
2e
)

= final # of reps for sys. i

4. Simulate Ni − n0 reps of system i for i = 1, 2, . . . , k

5. X̄
(2)
i = avg(Xi ,n0+1,Xi ,n0+2, . . . ,Xi ,Ni

)

6. Wi = n0
Ni

{
1 +

√
1− Ni

n0

[
1− (Ni−n0)δ2

g2S2
i

]}
7. X̃i = Wi X̄

(1)
i + (1−Wi )X̄

(2)
i

8. Return set I of systems with m smallest values of X̃i

g is a constant that depends on k , p, n0, and m
(Law Table 10.12)
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Discrete Optimization

Setting: Large but finite set of alternatives Θ

I Global procedures: Simulate all θ ∈ Θ to find global optimum
I No finite stopping rule
I Asymptotically simulates all θ ∈ Θ infinitely many times
I Asymptotic guarantee of finding the optimal solution wp1
I Ex: stochastic ruler, stochastic branch and bound, R-BEESE,

SMRAS

I Local procedures: Only finds local optimum
I Only searches “promising” elements of Θ
I Often searches in neighborhood of current optimal solution
I Stopping rule, preferably followed by ”cleanup” phase

I Goal: Minimum additional simulations for statistical guarantee
I Subset selection + R&S

I Ex: COMPASS, AHA1
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1J. Xu, B. L. Nelson, and L. J. Hong, ”An Adaptive Hyperbox Algorithm for High-Dimensional
Discrete Optimization via Simulation Problems”, INFORMS J. Comput. 24(1), 2013, 133–146.

Discrete Optimization, Continued
Key ingredients

I Estimation set En ⊆ Θ: Solutions to simulate at nth step
I Memory set Mn: Information about systems simulated so far
I Sampling distribution F ( · |Mn): Used to choose En

I Sim. allocation rule SARn(En|Mn): # reps for each θ ∈ En

I Stopping rule to decide if we are done

Generic Local Procedure

1. Initialization: M0 ← ∅, n = 0, θ∗0 = initial feasible solution

2. Sampling: Sample from Θ using F ( · |Mn) to form set En

3. Estimation: Apply SARn(En|Mn) to elements θ ∈ En

4. Iteration: Update estimator f̂ (θ) for θ ∈ En and choose θ∗n+1

as solution wth best f̂ value.

5. Stop at θ∗n+1?

6. If yes, (run cleanup phase and) return answer,
else set n← n + 1 and go to Step 2.
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Example of Local Procedure: AHA

A particular instantiation of generic local algorithm

I Memory: Mn = all
(
θ, f̂ (θ)

)
pairs though nth iteration

I Sampling: F ( · |Mn) samples m feasible points from hyperbox
around current best solution θ∗n−1 (next slide)

I Estimation set: En = best solution θ∗n−1 plus sampled points

I Allocation rule: Simulate at all points in En with cumulative
replications given by Rn(θ) = min

{
5, 5(log n)1.01

}
I Stopping rule: Test the hypothesis that f (θ∗n) is minimum in

neighborhood, if so, run cleanup1
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1J. Boesel, B.L. Nelson, and S. Kim, ”Using ranking and selection to ”clean up” after
simulation optimization”, Oper. Res. 51(5), 2003, 814–825.

AHA Scenario Sampling
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Commercial Solvers

Based on Robust metaheuristics

I Designed for deterministic problems

I Don’t impose strong structural requirements

I Somewhat tolerant of some sampling variability

I No probabilistic guarantees provided

I Ex: Genetic algorithms, simulated annealing, tabu search

Example commercial solvers

I OptQuest (for Simul8, Arena, Simio, AnyLogic, etc.)

I Witness

I ExtendSim Evolutionary Optimizer

I RiskOptimizer

I AutoStat for AutoMod
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Commercial Solvers, Continued

Increasing the effectiveness of commercial solvers

I Preliminary experiment to control sampling variability
I Usually # of replications increases close to optimum
I Some commercial packages used fixed # reps throughout
I Always use “adaptive” option if available
I Else simulate at a variety of θ values, estimate n = # reps

needed to statistically distinguish between worst and best
solutions, then use n as a minimal value

I Restart at a number of different initial θ values

I Run a cleanup phase
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