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Overview

Goal: Select best system design or parameter setting

» Performance under each alternative estimated via simulation

g1€i8 f(6) J

where © = feasible set

» f is often of the form 7(0) = Ey[c(X. )]

» X is estimated from the simulation
» Ey indicates that dist'n of X depends on 6

Overview, Continued

Three cases:
1. © is uncountably infinite (continuous optimization)

» Robbins-Monro Algorithm
» Metamodel-based optimization
» Sample average approximation

2. © is small and finite (ranking and selection of best system)
» E.g., Dudewicz and Dalal (HW #7)

3. © is a large discrete set (discrete optimization)

Not covered here: Markov decision processes

» Choose best policy: l.e., choose best function 7, where (s) =
action to take when new state equals s [Chang et al., 2007]




Making Decisions via Simulation

Factor Screening

Factor Screening

Goal: Identify the most important drivers of model response
» Needed for understanding
» Needed to focus modeling resources (e.g., input distributions)

> Needed to select decision variables for optimization
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Factor Screening, Continued
Based on a simulation metamodel, for example:
Y(x)=Bo+Bixi 4+ Bixk +e ]

» Y = simulation model output ()

» Parameters x = (xi,...,Xxk) Y@=t
» ¢ = noise term (often Gaussian) ..
» Estimate the §;'s T .
using "low" and "high” x; values . : i
» Test if each |5;] is o high

significantly different from 0

» Will talk more about metamodels later on...

Factor Screening, Continued

B; coefficients indicate parameter importance

Main-Effects Plot (PHI Profit x 10*5)

CapAmt | PayMod Tage HRred DRred | EIRdrftx.01 | HIRdrftx.01
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Factor Screening, Continued

Challenge: Many Features
» Example with kK = 3:

_Y(h 1, 1)+ Y(h k) + Y(h,h 1)+ Y(h, h,h)
B 4
YLD A Y LR+ Y (L 1) + Y (], b, h)
4

b

» In general, need 2% simulations (" full factorial” design)

» Can be smarter, e.g., "fractional factorial” designs
(will talk about this soon)

> In general: interplay between metamodel complexity
(e.g., Bjj terms) and computational cost

Factor Screening, Continued

Sequential bifurcation
» For huge number of factors
» Assumes Gaussian noise, nonnegative 3's
» Test groups (sums of 3;'s) T 9 Ty Ty Ty To
T4 Ts Te T10 T11 T12

xr1 T2 T3 T7 g/ L9
y5\xi 10 N\ T12
Tr1 T2 I3 T4 T5 T

A
X = v

Te

T1 T2

}

Ty T2
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Making Decisions via Simulation

Continuous Stochastic Optimization
Robbins-Monro Algorithm
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Continuous Stochastic Optimization
Robbins-Monro Algorithm
> Goal: miny_, 7 ()

» Estimate f/(#) and use stochastic approximation
(also called stochastic gradient descent)

o =n(o,- (2)2)

where 10)
» 2> 0 (the gain)

> E[Za] = f'(6h)

6 ifo<6
» N0)=<0 ifo<6<0d
0 ifo>0

(projection function)
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Continuous Stochastic Optimization, Continued

Convergence

» Suppose that 6 is true minimizer and the only local minimizer

v

Under mild conditions, lim, ., 0, = 0" a.s.

v

Q: If 6* is not the only local minimizer, what can go wrong?

v

For large n, 6, has approximately a normal dist'n

Estimation Algorithm for 100(1 — §)% Confidence Interval
1. Fix n>1 and m € [5,10]

. Run the Robbins-Monro iteration for n steps to obtain 6,

,On,m

. Compute point estimator 0, = (1/m) > L1 Ony

. Compute 100(1 — 6%) Cl as [0, — Smim=ts § 4 Smim_Ls

2
3. Repeat Step 2 a total of m times to obtain 0,1, . ..
4
5
vm Vm

v

1 m

g 21 (0n) — 0)? and t,, 15 = Student-t quantile

where 52, =
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Continuous Stochastic Optimization, Continued

Remarks
» Variants available for multi-parameter problems

» Drawbacks to basic algorithm are slow convergence and high
sensitivity to the gain a; current research focuses on more
sophisticated methods

» Simple improvement: return best value seen so far

Kiefer-Wolfowitz algorithm

» Replaces derivative 7'(6,) by finite difference f(9”+A)2_Af(9”_A)

» Spalls' simultaneous perturbation stochastic approximation
(SPSA) method handles high dimensions
» At the kth iteration of a d-dimensional problem, run simulation

at 0, + cAy, where ¢ > 0 and Ay is a vector of i.i.d. random
variables /..., Iy with P(l =1) = P(l; = —-1) = 0.5
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Making Decisions via Simulation

Continuous Stochastic Optimization

Derivative Estimation
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Estimating the Derivative f'(6,)
Suppose that 1(0) = Ey[c(X.0)]
» Ex: M/M/1 queue with interarrival rate A and service rate 0
» X = average waiting time for first 100 customers
» c(x,0) = ab + bx (trades off operating costs and delay costs)
Use likelihood ratios
> We have (0 + h) = Egyp[c(X,0 + h)] = Eg [c(X, 0 + h)L(h)]
for appropriate likelihood L(h)

:imw

/
F6) = fim, h
— lim E, [c(X, 6+ h)L(h) — c(X,H)L(O)}
h—0 h
=E {hm c(X,6 + hL(h) — (X, Q)L(O)} under regularity cond.
h—0 h

—F [%(c(x,e + h)L(h)) ’hzo}

= Ey[c(X,0) + c(X,0)L'(0)] ¢’ =0c/o8 L' =0L/oh
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Derivative Estimation, Continued

To estimate g(0) 2 /() = Eo[c'(X,0) + c(X,0)L'(0)]
» Simulate system to generate i.i.d. replicates Xy, ..., X,
» At the same time, compute L(0),..., L] (0)

» Compute the estimate g,,(0) = L 37 [c/(X;, 0) + c(X;, 0)L:(0)]

» Robbins and Monro showed that taking m = 1 is optimal
(many approximate steps vs few precise steps)

nth step of R-M algorithm

1. Generate a single sample X of the performance measure
and compute L'(0)

2. Set Z, = g1(0,) = (X, 0,) + c(X, 6,)L'(0)
3. Set 41 = n(an - (%)z)

Derivative Estimation, Continued
Ex: M/M/1 queue

> Let Vq,...,

» Let X = avg of the 100 waiting times (the perf. measure)

V100 be the 100 generated service times

100 100
(9_|_ —(6+h)V; 9—|—h _hvi
L) = H ge—ev _H 2 €

i=1
100

= L'(0) = Z(% -

i=1

V,-) (can be computed incrementally)

c(x,0) = af + bx = c(x,0)=a ]
100
. ’ _ - .
Zy = (X, 0n) + (X, 0,)L,(0) = a + (a6, + bX,) ;(9 v)
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Derivative Estimation, Continued
A trick for computing L'(0)
» Likelihood ratio often has form: L(h) = ri(h)ra(h) - - ri(h)
) _ farn(X;s' e s,e*) Pon(Sj+1:5).€")
» E.g., for a GSMP, r;(h) = (’g?X;S,,e,@e*) or Pe(Sjil;Sj,JejJ)
» Using the product rule and the fact that r;(0) =1 for all i
d d
LB = Z () n(®)|
d /
= [fl(h)%(fz(h) ()] o+ [r()ra(h) - ri(h)],
d
= L k) 1)),y + H(0)
» By induction: L'(0) = r{(0) +--- + r,(0)
(compute incrementally)
» For GSMP example (with f; = 0fy/06):
0) = fon(Xis' € s e)], o f(X;s, €, e)
i\t = fo(X;s',e,s,e¥) (X8, €, s, e¥)
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Derivative Estimation, Continued

Trick continued: M/M/1 queue

100 100 fg h
L +
(i =1]nm =11 i)

fo(v) = e~ and fj(v) = (1 —6v)e

100 "

-3 4

- E=3 6 v)
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Derivative Estimation, Continued

Remarks

> Derivative estimation is interesting outside of optimization
for sensitivity analysis

» Drawback of likelihood-ratio derivative estimator:
variance of likelihood ratio increases with length of simulation

> Alternative gradient estimation methods:
Infinitesimal perturbation analysis (IPA)
» Smoothed perturbation analysis (SPA)

» Measure-valued differentiation (MVD)
> ...

v
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Making Decisions via Simulation

Continuous Stochastic Optimization

Other Continuous Optimization Methods

Other Continuous Optimization Methods
£(0)

Metamodel-based optimization
» Run simulation at selected “design points”
and fit (fuzzy) response surface
» Then optimize over surface

» Surface can be fit locally or globally
» Surface models include:
» Polynomials (“response surface methdology")
» Gaussian field models (stochastic kriging, moving least squares)

23 /39
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Other Continuous Optimization Methods
Sample Average Approximation (discussed previously)
» Goal: mingeg f(0), where f(0) = E[c(X,0)]
> c is a deterministic function
» X is a random variable whose dist'n is independent of 6
» Generate X1,..., X, i.id. and set 7,(0) = (1/n) > ", c(X:,0)
» Use deterministic optimization methods to solve mingcg £, ()
» f, and f need some structure (convexity, smoothness)
» Can use delta method to get confidence intervals
» Cn combine with likelihood ratios
» Use LR to convert cost from Eg[c(X, 0)] to E[c(X, 0)L]
» Then use SAA as described above
24 /39




Making Decisions via Simulation

Ranking and Selection
Selection of the Best

Selection of the Best

Goal

» Systems 1 through k have expected perf. measures
p1 S p S S

> Choose system with smallest expected value

Dudewicz and Dalal (HW #7)
» With probability > p, will return system i* s.t. pj+ < pg + 0
> J is indifference zone: max. diff. that you care about

> 2-stage procedure tries to minimize overall simulation effort

Many variants
» Adaptive (multistage) R&S
» Confidence intervals (comparison with the best)

» Pre-screening, common random numbers, ...
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Dudewicz and Dalal Procedure
Assumes normally distributed observations (e.g., by CLT)
D&D algorithm
1. Simulate ng replications for each of systems 1,2, ... k
2. )_<I.(1) = avg(Xi1,...,Xin,) and 5,-2 =svar(Xi1,..., Xing)
3. N; = max(ng + 1, [h?S?/62]) = final # of reps for sys. i
4. Simulate N; — ng reps of system j for i =1,2,... k
5, )_<I-(2) = avg(X,-,,,OH, X/,n0+2./ Ce :Xi7N,')
n g N,-—n 52
o 5 %)
7. X = wix® + (1 - wy)x®
8. Return system with smallest value of X;
h is a constant that depends on k, p, and ng (Law Table 10.11)
27/39

Dudewicz and Dalal: Proof Sketch

;(i*/li
o/h

» Definition of W; and N; ensures that T; =
has t,,—1 dist'n and T;'s are independent

» Assume that ;1o — pi1 > 0 (hence 1 — py > 6 for j > 2)
P(CS) = P{X, < X; for j > 2}

)~<1—,u1 M1 ;(j—llvj Hj .
_p Mo B forj>2
{ 5/h T 8/h= 6/h ToamodZ

Kj— 1 .
= {_Tj< J(S/h —Tlforj>2}

ook _
Hj— Fry is cdf of tn,—1
= F, —t ), (t) dt .
/oojl:‘! "O< d/h ) m(t) fog is pdf of tny—1
(o]

> / [Fou(h — O] oo (£) dit 2 g (h)

> Set gpn,.k(h) = p and solve for h
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Making Decisions via Simulation

Ranking and Selection

Subset Selection
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Subset Selection

. 1 S p2 S Sk
Overview

» Goal: With probability > p, return a set / of size m that
contains a system /" s.t. pj+ < g+ 0

» Usually requires many fewer rep’s than selection of best
(good for screening solution candidates)

Extended D&D Algorithm (next slide)
» Reduces to D&D algorithm when m =1

> Proof is very similar to D&D

Many variants
» Ex: BNK algorithm where size of | is not specified

> If size = 1 then you have the best
> See Boesel et al. 2003 reference in Law bibliography

» Common random numbers, Bayesian procedures, ...
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Subset Selection, Continued

Extended D&D algorithm

1. Simulate ng replications for each of systems 1,2,..., k
)?i(l) = avg(Xi1,...,Xin,) and 5,-2 =svar(Xi1,..., Xi no)

N; = max(ng + 1, (g25,-2/52w = final # of reps for sys. i
Simulate N; — ng reps of system i for i =1,2,... k

)_<i(2) = avg(X;,,,o+1, X,'_’n0+2. ey X,' Ni)

’ ) B

n ; N;—ng)d2
6.Wﬁ:£{1+¢1xﬂ1(ﬁéﬂ}}

7. X = wix® 4+ (1 - w)x®

I !

Ol B CORND

8. Return set | of systems with m smallest values of X:

g is a constant that depends on k, p, ng, and m
(Law Table 10.12)
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Making Decisions via Simulation

Discrete Optimization
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Discrete Optimization

Setting: Large but finite set of alternatives ©

» Global procedures: Simulate all § € © to find global optimum
» No finite stopping rule
» Asymptotically simulates all 8 € © infinitely many times
» Asymptotic guarantee of finding the optimal solution wpl
» Ex: stochastic ruler, stochastic branch and bound, R-BEESE,
SMRAS

» Local procedures: Only finds local optimum

» Only searches “promising” elements of ©

» Often searches in neighborhood of current optimal solution

» Stopping rule, preferably followed by "cleanup” phase
» Goal: Minimum additional simulations for statistical guarantee
> Subset selection + R&S

» Ex: COMPASS, AHA!

1J. Xu, B. L. Nelson, and L. J. Hong, " An Adaptive Hyperbox Algorithm for High-Dimensional
Discrete Optimization via Simulation Problems”, INFORMS J. Comput. 24(1), 2013, 133-146.
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Discrete Optimization, Continued
Key ingredients
» Estimation set £, C ©: Solutions to simulate at nth step
» Memory set M,: Information about systems simulated so far
» Sampling distribution F(-|M,): Used to choose E,
» Sim. allocation rule SAR,(E,|M,): # reps for each 6 € E,
» Stopping rule to decide if we are done

Generic Local Procedure
1. Initialization: Mg < 0, n =0, 0y = initial feasible solution
2. Sampling: Sample from © using F(-|M,) to form set E,
3. Estimation: Apply SAR,(E,|M,) to elements 0 € E,
4. lteration: Update estimator (6) for 6 € E, and choose Opi1
as solution wth best f value.
Stop at 60}, ,7

6. If yes, (run cleanup phase and) return answer,
else set n < n+ 1 and go to Step 2.

2

Example of Local Procedure: AHA

A particular instantiation of generic local algorithm

» Memory: M, = all (6, f(6)) pairs though nth iteration

» Sampling: F(-|M,) samples m feasible points from hyperbox
around current best solution 67_; (next slide)

» Estimation set: E, = best solution 0} _; plus sampled points

» Allocation rule: Simulate at all points in E, with cumulative
replications given by R,(¢) = min{5,5(log n)*°*}

» Stopping rule: Test the hypothesis that f(#};) is minimum in
neighborhood, if so, run cleanup!
1. Boesel, B.L. Nelson, and S. Kim, " Using ranking and selection to "clean up" after
simulation optimization”, Oper. Res. 51(5), 2003, 814—825.
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AHA Scenario Sampling
® first iteration
O second iteration
r——————
second | 5«
hyperbox 2
D O
O ' Y
first hyperbox
feasible region
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Making Decisions via Simulation

Commercial Solvers
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Commercial Solvers

Based on Robust metaheuristics
» Designed for deterministic problems
» Don't impose strong structural requirements

» Somewhat tolerant of some sampling variability

v

No probabilistic guarantees provided

» Ex: Genetic algorithms, simulated annealing, tabu search

Example commercial solvers
» OptQuest (for Simul8, Arena, Simio, AnyLogic, etc.)
> Witness
» ExtendSim Evolutionary Optimizer
» RiskOptimizer
» AutoStat for AutoMod
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Commercial Solvers, Continued

Increasing the effectiveness of commercial solvers

» Preliminary experiment to control sampling variability

» Usually # of replications increases close to optimum

» Some commercial packages used fixed # reps throughout

» Always use “adaptive” option if available

» Else simulate at a variety of 0 values, estimate n = # reps
needed to statistically distinguish between worst and best
solutions, then use n as a minimal value

» Restart at a number of different initial 6 values

» Run a cleanup phase
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