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Overview

Goal: Select best system design or parameter setting

I Performance under each alternative estimated via simulation

min
✓2⇥

f (✓)

where ⇥ = feasible set

I f is often of the form f (✓) = E✓[c(X , ✓)]
I X is estimated from the simulation
I E✓ indicates that dist’n of X depends on ✓

3 / 39



Overview, Continued

Three cases:

1. ⇥ is uncountably infinite (continuous optimization)
I Robbins-Monro Algorithm
I Metamodel-based optimization
I Sample average approximation

2. ⇥ is small and finite (ranking and selection of best system)
I E.g., Dudewicz and Dalal (HW #7)

3. ⇥ is a large discrete set (discrete optimization)

Not covered here: Markov decision processes

I Choose best policy: I.e., choose best function ⇡, where ⇡(s) =
action to take when new state equals s [Chang et al., 2007]
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Factor Screening

Goal: Identify the most important drivers of model response

I Needed for understanding

I Needed to focus modeling resources (e.g., input distributions)

I Needed to select decision variables for optimization
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Factor Screening, Continued

Based on a simulation metamodel, for example:

Y (x) = �0 + �1x1 + · · ·+ �kxk + ✏

I Y = simulation model output

I Parameters x = (x1, . . . , xk)

I ✏ = noise term (often Gaussian)

I Estimate the �i ’s
using ”low” and ”high” xi values

I Test if each |�i | is
significantly di↵erent from 0

I Will talk more about metamodels later on...
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Factor Screening, Continued

�i coe�cients indicate parameter importance
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Factor Screening, Continued

Challenge: Many Features

I Example with k = 3:

�̂1 =
Y (h, l , l) + Y (h, l , h) + Y (h, h, l) + Y (h, h, h)

4

� Y (l , l , l) + Y (l , l , h) + Y (l , h, l) + Y (l , h, h)

4

I In general, need 2k simulations (”full factorial” design)

I Can be smarter, e.g., ”fractional factorial” designs
(will talk about this soon)

I In general: interplay between metamodel complexity
(e.g., �ij terms) and computational cost
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Factor Screening, Continued

Sequential bifurcation

I For huge number of factors

I Assumes Gaussian noise, nonnegative �’s

I Test groups (sums of �i ’s)
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Continuous Stochastic Optimization

Robbins-Monro Algorithm

I Goal: min✓2[✓,✓] f (✓)

I Estimate f 0(✓) and use stochastic approximation
(also called stochastic gradient descent)

✓n+1 = ⇧
⇣
✓n �

⇣a
n

⌘
Zn

⌘

where
I a > 0 (the gain)

I E [Zn] = f 0(✓n)

I ⇧(✓) =

8
><

>:

✓ if ✓ < ✓

✓ if ✓  ✓  ✓

✓ if ✓ > ✓

(projection function)
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Continuous Stochastic Optimization, Continued

Convergence

I Suppose that ✓⇤ is true minimizer and the only local minimizer

I Under mild conditions, limn!1 ✓n = ✓⇤ a.s.

I Q: If ✓⇤ is not the only local minimizer, what can go wrong?

I For large n, ✓n has approximately a normal dist’n

Estimation Algorithm for 100(1� �)% Confidence Interval

1. Fix n � 1 and m 2 [5, 10]

2. Run the Robbins-Monro iteration for n steps to obtain ✓n

3. Repeat Step 2 a total of m times to obtain ✓n,1, . . . , ✓n,m

4. Compute point estimator ✓̄m = (1/m)
P

m

j=1 ✓n,j

5. Compute 100(1� �%) CI as [✓̄m �
smtm�1,�p

m
, ✓̄m +

smtm�1,�p
m

]

where s2m = 1
m�1

P
m

j=1(✓n,j � ✓̄)2 and tm�1,� = Student-t quantile
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Continuous Stochastic Optimization, Continued

Remarks

I Variants available for multi-parameter problems

I Drawbacks to basic algorithm are slow convergence and high
sensitivity to the gain a; current research focuses on more
sophisticated methods

I Simple improvement: return best value seen so far

Kiefer-Wolfowitz algorithm

I Replaces derivative f 0(✓n) by finite di↵erence f (✓n+�)�f (✓n��)
2�

I Spalls’ simultaneous perturbation stochastic approximation
(SPSA) method handles high dimensions

I At the kth iteration of a d-dimensional problem, run simulation
at ✓k ± c�k , where c > 0 and �k is a vector of i.i.d. random
variables I1, . . . , Id with P(Ij = 1) = P(Ij = �1) = 0.5

14 / 39



Making Decisions via Simulation
Overview
Factor Screening
Continuous Stochastic Optimization

Robbins-Monro Algorithm

Derivative Estimation

Other Continuous Optimization Methods

Ranking and Selection
Selection of the Best

Subset Selection

Discrete Optimization
Commercial Solvers

15 / 39



Estimating the Derivative f 0(✓n)
Suppose that f (✓) = E✓[c(X , ✓)]

I Ex: M/M/1 queue with interarrival rate � and service rate ✓
I X = average waiting time for first 100 customers
I c(x , ✓) = a✓ + bx (trades o↵ operating costs and delay costs)

Use likelihood ratios
I We have f (✓+ h) = E✓+h [c(X , ✓ + h)] = E✓ [c(X , ✓ + h)L(h)]

for appropriate likelihood L(h)

f 0(✓) = lim
h!0

f (✓ + h)� f (✓)

h

= lim
h!0

E✓

hc(X , ✓ + h)L(h)� c(X , ✓)L(0)

h

i

= E✓

h
lim
h!0

c(X , ✓ + h)L(h)� c(X , ✓)L(0)

h

i
under regularity cond.

= E✓

h d

dh

�
c(X , ✓ + h)L(h)

� ���
h=0

i

= E✓

⇥
c 0(X , ✓) + c(X , ✓)L0(0)

⇤
c 0 = @c/@✓ L0 = @L/@h
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Derivative Estimation, Continued

To estimate g(✓)
�
= f 0(✓) = E✓

⇥
c 0(X , ✓) + c(X , ✓)L0(0)

⇤

I Simulate system to generate i.i.d. replicates X1, . . . ,Xm

I At the same time, compute L01(0), . . . , L
0
m(0)

I Compute the estimate gm(✓) =
1
m

Pm

i=1[c
0(Xi , ✓) + c(Xi , ✓)L0i (0)]

I Robbins and Monro showed that taking m = 1 is optimal
(many approximate steps vs few precise steps)

nth step of R-M algorithm

1. Generate a single sample X of the performance measure
and compute L0(0)

2. Set Zn = g1(✓n) = c 0(X , ✓n) + c(X , ✓n)L0(0)

3. Set ✓n+1 = ⇧
⇣
✓n �

⇣a
n

⌘
Zn

⌘
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Derivative Estimation, Continued
Ex: M/M/1 queue

I Let V1, . . . ,V100 be the 100 generated service times

I Let X = avg of the 100 waiting times (the perf. measure)

L(h) =
100Y

i=1

(✓ + h)e�(✓+h)Vi

✓e�✓Vi

=
100Y

i=1

✓
✓ + h

✓

◆
e�hVi

) L0(0) =
100X

i=1

⇣1
✓
� Vi

⌘
(can be computed incrementally)

c(x , ✓) = a✓ + bx ) c 0(x , ✓) = a

Zn = c 0(Xn, ✓n) + c(Xn, ✓n)L
0
n(0) = a+ (a✓n + bXn)

100X

i=1

⇣ 1

✓n
� Vn,i

⌘
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Derivative Estimation, Continued
A trick for computing L0(0)

I Likelihood ratio often has form: L(h) = r1(h)r2(h) · · · rk(h)
I E.g., for a GSMP, ri (h) =

f✓+h(X ;s0,e0,s,e⇤)
f✓(X ;s0,e0,s,e⇤) or

P✓+h(Sj+1;Sj ,e⇤j )

P✓(Sj+1;Sj ,e⇤j )

I Using the product rule and the fact that ri (0) = 1 for all i

d

dh
L(h)

���
h=0

=
d

dh

�
r1(h)r2(h) · · · rk(h)

����
h=0

=
⇥
r1(h)

d

dh

�
r2(h) · · · rk(h)

�⇤
h=0

+
⇥
r 01(h)r2(h) · · · rk(h)

⇤
h=0

=
d

dh

⇥
r2(h) · · · rk(h)

⇤
h=0

+ r 01(0)

I By induction: L0(0) = r 01(0) + · · ·+ r 0
k
(0)

(compute incrementally)
I For GSMP example (with f 0✓ = @f✓/@✓):

r 0i (0) =
d

dh
f✓+h(X ; s 0, e0, s, e⇤)

��
h=0

f✓(X ; s 0, e0, s, e⇤)
=

f 0✓ (X ; s 0, e0, s, e⇤)

f✓(X ; s 0, e0, s, e⇤)
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Derivative Estimation, Continued

Trick continued: M/M/1 queue

L(h) =
100Y

i=1

ri (h) =
100Y

i=1

f✓+h(Vi )

f✓(Vi )

f✓(v) = ✓e�✓v and f 0✓ (v) = (1� ✓v)e�✓v

L0(0) =
100X

i=1

f 0✓ (Vi )

f✓(Vi )
=

100X

i=1

(1� ✓Vi )e�✓Vi

✓e�✓Vi

=
100X

i=1

⇣1
✓
� Vi

⌘
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Derivative Estimation, Continued

Remarks

I Derivative estimation is interesting outside of optimization
for sensitivity analysis

I Drawback of likelihood-ratio derivative estimator:
variance of likelihood ratio increases with length of simulation

I Alternative gradient estimation methods:
I Infinitesimal perturbation analysis (IPA)
I Smoothed perturbation analysis (SPA)
I Measure-valued di↵erentiation (MVD)
I · · ·
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Other Continuous Optimization Methods

Metamodel-based optimization
I Run simulation at selected “design points”

and fit (fuzzy) response surface
I Then optimize over surface
I Surface can be fit locally or globally
I Surface models include:

I Polynomials (“response surface methdology”)
I Gaussian field models (stochastic kriging, moving least squares)
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Other Continuous Optimization Methods

Sample Average Approximation (discussed previously)
I Goal: min✓2⇥ f (✓), where f (✓) = E [c(X , ✓)]

I c is a deterministic function
I X is a random variable whose dist’n is independent of ✓

I Generate X1, . . . ,Xn i.i.d. and set fn(✓) = (1/n)
P

n

i=1 c(Xi , ✓)

I Use deterministic optimization methods to solve min✓2⇥ fn(✓)

I fn and f need some structure (convexity, smoothness)

I Can use delta method to get confidence intervals
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Selection of the Best

Goal

I Systems 1 through k have expected perf. measures
µ1  µ2  · · ·  µk

I Choose system with smallest expected value

Dudewicz and Dalal (HW #7)

I With probability � p, will return system i⇤ s.t. µi⇤  µ1 + �

I � is indi↵erence zone: max. di↵. that you care about

I 2-stage procedure tries to minimize overall simulation e↵ort

Many variants

I Adaptive (multistage) R&S

I Confidence intervals (comparison with the best)

I Pre-screening, common random numbers, . . .
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Dudewicz and Dalal Procedure

Assumes normally distributed observations (e.g., by CLT)

D&D algorithm

1. Simulate n0 replications for each of systems 1, 2, . . . , k

2. X̄ (1)
i

= avg(Xi ,1, . . . ,Xi ,n0) and S2
i
= svar(Xi ,1, . . . ,Xi ,n0)

3. Ni = max
�
n0 + 1, dh2S2

i
/�2e

�
= final # of reps for sys. i

4. Simulate Ni � n0 reps of system i for i = 1, 2, . . . , k

5. X̄ (2)
i

= avg(Xi ,n0+1,Xi ,n0+2, . . . ,Xi ,Ni
)

6. Wi =
n0
Ni

(
1 +

r
1� Ni

n0

h
1� (Ni�n0)�2

h2S2
i

i)

7. X̃i = Wi X̄
(1)
i

+ (1�Wi )X̄
(2)
i

8. Return system with smallest value of X̃i

h is a constant that depends on k , p, and n0 (Law Table 10.11)
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Dudewicz and Dalal: Proof Sketch

I Definition of Wi and Ni ensures that Ti =
X̃i�µi

�/h
has tn0�1 dist’n and Ti ’s are independent

I Assume that µ2 � µ1 � � (hence µj � µ1 � � for j � 2)

P(CS) = P{X̃1 < X̃j for j � 2}

= P

⇢
X̃1 � µ1

�/h
+

µ1

�/h
 X̃j � µj

�/h
+

µj

�/h
for j � 2

�

= P

⇢
�Tj 

µj � µ1

�/h
� T1 for j � 2

�

=

Z 1

�1

kY

j=2

Fn0

✓
µj � µ1

�/h
� t

◆
fn0(t) dt

�
Z 1

�1
[Fn0(h � t)]k�1fn0(t) dt , gn0,k(h)

I Set gn0,k(h) = p and solve for h
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Subset Selection

Overview

I Goal: With probability � p, return a set I of size m that
contains a system i⇤ s.t. µi⇤  µ1 + �

I Usually requires many fewer rep’s than selection of best
(good for screening solution candidates)

Extended D&D Algorithm (next slide)

I Reduces to D&D algorithm when m = 1

I Proof is very similar to D&D

Many variants
I Ex: BNK algorithm where size of I is not specified

I If size = 1 then you have the best
I See Boesel et al. 2003 reference in Law bibliography

I Common random numbers, Bayesian procedures, . . .
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Subset Selection, Continued

Extended D&D algorithm

1. Simulate n0 replications for each of systems 1, 2, . . . , k

2. X̄ (1)
i

= avg(Xi ,1, . . . ,Xi ,n0) and S2
i
= svar(Xi ,1, . . . ,Xi ,n0)

3. Ni = max
�
n0 + 1, dg2S2

i
/�2e

�
= final # of reps for sys. i

4. Simulate Ni � n0 reps of system i for i = 1, 2, . . . , k

5. X̄ (2)
i

= avg(Xi ,n0+1,Xi ,n0+2, . . . ,Xi ,Ni
)

6. Wi =
n0
Ni

(
1 +

r
1� Ni

n0

h
1� (Ni�n0)�2

g2S2
i

i)

7. X̃i = Wi X̄
(1)
i

+ (1�Wi )X̄
(2)
i

8. Return set I of systems with m smallest values of X̃i

g is a constant that depends on k , p, n0, and m
(Law Table 10.12)
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Discrete Optimization

Setting: Large but finite set of alternatives ⇥

I Global procedures: Simulate all ✓ 2 ⇥ to find global optimum
I No finite stopping rule
I Asymptotically simulates all ✓ 2 ⇥ infinitely many times
I Asymptotic guarantee of finding the optimal solution wp1
I Ex: stochastic ruler, stochastic branch and bound, R-BEESE,

SMRAS

I Local procedures: Only finds local optimum
I Only searches “promising” elements of ⇥
I Often searches in neighborhood of current optimal solution
I Stopping rule, preferably followed by ”cleanup” phase

I Goal: Minimum additional simulations for statistical guarantee

I Subset selection + R&S

I Ex: COMPASS, AHA1
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Discrete Optimization, Continued
Key ingredients

I Estimation set En ✓ ⇥: Solutions to simulate at nth step
I Memory set Mn: Information about systems simulated so far
I Sampling distribution F ( · |Mn): Used to choose En

I Sim. allocation rule SARn(En|Mn): # reps for each ✓ 2 En

I Stopping rule to decide if we are done

Generic Local Procedure

1. Initialization: M0  ;, n = 0, ✓⇤0 = initial feasible solution

2. Sampling: Sample from ⇥ using F ( · |Mn) to form set En

3. Estimation: Apply SARn(En|Mn) to elements ✓ 2 En

4. Iteration: Update estimator f̂ (✓) for ✓ 2 En and choose ✓⇤
n+1

as solution wth best f̂ value.

5. Stop at ✓⇤
n+1?

6. If yes, (run cleanup phase and) return answer,
else set n n + 1 and go to Step 2.
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Example of Local Procedure: AHA

A particular instantiation of generic local algorithm

I Memory: Mn = all
�
✓, f̂ (✓)

�
pairs though nth iteration

I Sampling: F ( · |Mn) samples m feasible points from hyperbox
around current best solution ✓⇤

n�1 (next slide)

I Estimation set: En = best solution ✓⇤
n�1 plus sampled points

I Allocation rule: Simulate at all points in En with cumulative
replications given by Rn(✓) = min

�
5, 5(log n)1.01

 

I Stopping rule: Test the hypothesis that f (✓⇤n) is minimum in
neighborhood, if so, run cleanup1
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AHA Scenario Sampling
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Commercial Solvers

Based on Robust metaheuristics

I Designed for deterministic problems

I Don’t impose strong structural requirements

I Somewhat tolerant of some sampling variability

I No probabilistic guarantees provided

I Ex: Genetic algorithms, simulated annealing, tabu search

Example commercial solvers

I OptQuest (for Simul8, Arena, Simio, AnyLogic, etc.)

I Witness

I ExtendSim Evolutionary Optimizer

I RiskOptimizer

I AutoStat for AutoMod
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Commercial Solvers, Continued

Increasing the e↵ectiveness of commercial solvers

I Preliminary experiment to control sampling variability
I Usually # of replications increases close to optimum
I Some commercial packages used fixed # reps throughout
I Always use “adaptive” option if available
I Else simulate at a variety of ✓ values, estimate n = # reps

needed to statistically distinguish between worst and best
solutions, then use n as a minimal value

I Restart at a number of di↵erent initial ✓ values

I Run a cleanup phase
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