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Peter J. Haas

CS 590M: Simulation
Spring Semester 2020

/39



Making Decisions via Simulation
Overview
Factor Screening

Continuous Stochastic Optimization
Robbins-Monro Algorithm
Derivative Estimation
Other Continuous Optimization Methods
Ranking and Selection
Selection of the Best
Subset Selection
Discrete Optimization

Commercial Solvers

)

39



Overview

Goal: Select best system design or parameter setting

» Performance under each alternative estimated via simulation

min f(0)

where © = feasible set

» f is often of the form f(0) = Ey[c(X, )]
» X is estimated from the simulation
» Ey indicates that dist'n of X depends on 6
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Overview, Continued

Three cases:
1. © is uncountably infinite (continuous optimization)

» Robbins-Monro Algorithm
» Metamodel-based optimization
» Sample average approximation

2. © is small and finite (ranking and selection of best system)
» E.g., Dudewicz and Dalal (HW #7)

3. © is a large discrete set (discrete optimization)

Not covered here: Markov decision processes

» Choose best policy: l.e., choose best function m, where 7(s) =
action to take when new state equals s [Chang et al., 2007]
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Making Decisions via Simulation

Factor Screening
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Factor Screening

Goal: Identify the most important drivers of model response
> Needed for understanding
> Needed to focus modeling resources (e.g., input distributions)

> Needed to select decision variables for optimization
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Factor Screening, Continued

Based on a simulation metamodel, for example:

Y(x) = fo+ Bixy + -+ Brx + € J

> Y = simulation model output ()

» Parameters x = (X1, ce ,Xk) Y(x) = fo + i
x) = Po T P1T

» ¢ = noise term (often Gaussian) ..
» Estimate the §;'s . .

using "low” and "high” x; values

.
.
\ \ ’

. . \ |
» Test if each |3;] is low high
significantly different from 0

» Will talk more about metamodels later on...



Factor Screening, Continued

B; coefficients indicate parameter importance

Main-Effects Plot (PHI Profit x 1045)
HRred DRred EIRdrftx.01

CapAmt | PayMod Tage HIRdrftx.01
[}
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Factor Screening, Continued

Challenge: Many Features
» Example with k = 3:

g, YL 1)+ Y(h 1 B) + Y (b 1) + Y (b, )
-
4
Y, 1,0+ Y(, 1, h) + Y (I, b, 1)+ Y(I, h, )
4

» In general, need 2% simulations (" full factorial” design)

» Can be smarter, e.g., "fractional factorial” designs
(will talk about this soon)

> In general: interplay between metamodel complexity
(e.g., Bjj terms) and computational cost
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Factor Screening, Continued

Sequential bifurcation
» For huge number of factors
» Assumes Gaussian noise, nonnegative 5's

» Test groups (sums of f;'s) T, Ty Ty T7 Tg To

L4 L5 Te L10 T11 L12

/\

Tr1 T2 T3 Ig
y\xi T10 AN\ T12
Tr1 T2 X3 Ty Ty T

T, 7\

" X %y

T T T6
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Making Decisions via Simulation

Continuous Stochastic Optimization
Robbins-Monro Algorithm
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Continuous Stochastic Optimization

Robbins-Monro Algorithm
> Goal: min,_(y g f(0)

» Estimate f’(#) and use stochastic approximation
(also called stochastic gradient descent)

=00~ (2)2) |

where 16)
» a > 0 (the gain)

> E[Zy] = f'(0n)

0 ifo<o ‘

» NO) =46 fo<<8 |
0 ifo>0

(projection function) GIF' 0‘ ‘—;2
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Continuous Stochastic Optimization, Continued,otvj,
\ e iy ko
oy | "‘f;:.,\ i

Convergence £
® U 9
» Suppose that 6 is true minimizer and the only local minimizer
» Under mild conditions, lim, ., 6, = 0" a.s.
» Q: If 6% is not the only local minimizer, what can go wrong?

» For large n, 0, has approximately a normal dist'n

Estimation Algorithm for 100(1 — )% Confidence Interval
1. Fix n>1and m € [5, 10]
. Run the Robbins-Monro iteration for n steps to obtain 6,

. Compute point estimator #,, = (1/m) >y Ony

2
3. Repeat Step 2 a total of m times to obtain 0,1,...,0,m
4
5

. Compute 100(1 — 6%) Cl as [, — Tm=td §, o Smimio

Vm vm

y

where s2 = ﬁ J-m:1(9,,J - 9_)2 and t,_1; = Student-t quantile
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Continuous Stochastic Optimization, Continued

Remarks
» Variants available for multi-parameter problems

» Drawbacks to basic algorithm are slow convergence and high
sensitivity to the gain a; current research focuses on more
sophisticated methods

» Simple improvement: return best value seen so far

Kiefer-Wolfowitz algorithm

F(On+A)—F(0,—A)
2A

» Spalls’ simultaneous perturbation stochastic approximation

(SPSA) method handles high dimensions
> At the kth iteration of a d-dimensional problem, run simulation

at 0, + cAy, where ¢ > 0 and Ay is a vector of i.i.d. random
variables I, ..., Iy with P(l; =1) = P(l; = -1) = 0.5

» Replaces derivative f'(6,) by finite difference
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Making Decisions via Simulation

Continuous Stochastic Optimization

Derivative Estimation
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Estimating the Derivative '(6,)
Suppose that 1 (0) = Ey[c(X,0)]
» Ex: M/M/1 queue with interarrival rate A\ and service rate ¢
» X = average waiting time for first 100 customers
» c(x,0) = abl + bx (trades off operating costs and delay costs)
Use likelihood ratios
» We have f(60 + h) = Epyn[c(X, 0+ h)] = Eg[c(X, 0+ h)L(h)]
for appropriate likelihood L(h)

f(0+ h)—£(9)

)= /|1i~r>no h
. c(X,0 + h)L(h) — c(X,0)L(0)
B /lino Ee[ h ]
=E [/lwlno G0 h)L(hz — C(X’O)L(O)} under regularlty cond.

L] 3 c(god) (9‘*[1
=E [d (c(X, 0+ h)L(h)) \ 0] %0887 (dm m/g
= Ey[c'(X,0) + c(X,6)L'(0)] ' =0c/00 L' =0L/Oh
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Derivative Estimation, Continued

To estimate g(6) 2 /(0) = Ey[c/(X,0) + c(X,0)L'(0)]
» Simulate system to generate i.i.d. replicates Xi,..., X,
» At the same time, compute L} (0),.... L} (0)

» Compute the estimate g,,(0) = £ 37 [¢/(X:.0) + c(X;. 0)LL(0)]

» Robbins and Monro showed that taking m = 1 is optimal
(many approximate steps vs few precise steps)

nth step of R-M algorithm

1. Generate a single sample X of the performance measure
and compute L'(0)

2. Set Z, = g1(0,) = (X, 0,) + c(X,0,)L'(0)
3. Set 0,1 = n(en _ (a)z,,)
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Derivative Estimation, Continued
Ex: M/M/1 queue
> Let Vi,..., Vipo be the 100 generated service times
» Let X = avg of the 100 waiting times (the perf. measure)

100 (6+h)v; 100
L(h) = H (0 + h)e™ :H<6+h> o—hVi
i=1

P fe—0Vi 0
00 o
= L'(0) = Z<5 - V,-) (can be computed incrementally)

i=1

c(x,0) = ab + bx = c(x,0)=a

100

1
— / ! f— —_—— .
Z,=c¢ (X,,,@,,) ap c(Xn, 9,,)L,,(O) =a-+ (30,, AP bX,,) E (9 V,,’,)

i=1 "
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Derivative Estimation, Continued
A trick for computing L'(0)

» Likelihood ratio often has form: L(h) = ri(h)ra(h) - - re(h)
f ;s’ e s,e* Po1n(Sj+1:5).€))

> E.g., for a GSMP, r;(h) = Hgf)(();(sﬁe//7s,7€/*)) or ZZZSJS;lSj,JefJ)

» Using the product rule and the fact that r;(0) = 1 for all i

EC N CCECRUDIN

= [fl(h)%(rZ(h) e fk(h))]h:o + [r(h)ra(h) - - ri(h)] h=0

= % [ra(h) - ric(h)] g + ri(0)

» By induction: L'(0) = r{(0) +--- + r,(0)
(compute incrementally)

» For GSMP example (with f; = 0fy/00):

(0) = forn(X;s' € s, e)|, o f(X;s, ¢, s, e")

e fo(X;s',e,s, e*) (X8, €, s, e*)
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Derivative Estimation, Continued

Trick continued: M/M/1 queue

100 100 :
o-floo-fi
fe(V) —ge and fg’(v) = (1 _ gv)e—ev J
. 100 £ \/l 100 1 _0\/’ e_g\/’. 100 1
L(O):;égw;:;%=;(5—%) J
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Derivative Estimation, Continued

Remarks

» Derivative estimation is interesting outside of optimization
for sensitivity analysis

» Drawback of likelihood-ratio derivative estimator:
variance of likelihood ratio increases with length of simulation

> Alternative gradient estimation methods:
Infinitesimal perturbation analysis (IPA)
Smoothed perturbation analysis (SPA)
Measure-valued differentiation (MVD)

v

v VvYyy
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Making Decisions via Simulation

Continuous Stochastic Optimization

Other Continuous Optimization Methods
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Other Continuous Optimization Methods
f(6)

Metamodel-based optimization
» Run simulation at selected “design points”
and fit (fuzzy) response surface
» Then optimize over surface

» Surface can be fit locally or globally
» Surface models include:
» Polynomials (“response surface methdology”)
» Gaussian field models (stochastic kriging, moving least squares)
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Other Continuous Optimization Methods

Sample Average Approximation (discussed previously)
» Goal: mingeg 7(0), where £(0) = E[c(X,0)]
> c is a deterministic function
» X is a random variable whose dist'n is independent of

Generate Xi,..., X, i.i.d. and set £,(0) = (1/n) >-7; c(X;,0)

Use deterministic optimization methods to solve mingecg ,(6)

v

v

v

fn and f need some structure (convexity, smoothness)

v

Can use delta method to get confidence intervals

Can comé/hc SAA h///4 /4(/4aaz/ /4//\5 (X)g
| ase LR fo convesd froim L, [_c(yg) ,ta [

UNse SAA as Jescerled qLovc

1 -
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Making Decisions via Simulation

Ranking and Selection
Selection of the Best
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Selection of the Best

Goal

» Systems 1 through k have expected perf. measures
p1 < p2 < < g

» Choose system with smallest expected value

Dudewicz and Dalal (HW #T7)
» With probability > p, will return system i* s.t. pjx < 1 + 9
» ¢ is indifference zone: max. diff. that you care about

> 2-stage procedure tries to minimize overall simulation effort

Many variants
» Adaptive (multistage) R&S
» Confidence intervals (comparison with the best)

» Pre-screening, common random numbers, ...
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Dudewicz and Dalal Procedure

Assumes normally distributed observations (e.g., by CLT)
D&D algorithm

1.

S (RS

Simulate ng replications for each of systems 1,2,... k
)_(i(l) = avg(Xi1,...,Xin) and 5,-2 =svar(Xi1,..., Xin)
N; = max(ng + 1, [h25?/6%]) = final # of reps for sys. i
Simulate N; — ng reps of system j for i =1,2,..., k
X = avg(Ximp 1, Xisng42s - - Xiny)

. N;— )62
W,-”N(j_{l—i—\/l—%{l—( ) }}

K= wiX™® 4 (1 - wyx®?

1

8. Return system with smallest value of X;

h'is a constant that depends on k, p, and ng (Law Table 10.11)
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Dudewicz and Dalal: Proof Sketch

» Definition of W; and N; ensures that T; = 5/#’
has tp,—1 dist'n and T;'s are independent

> Assume that pio — ;11 > 6 (hence j1j — p1q > 0 for j > 2)

P(CS) = P{Xy < X; for j > 2}

Xo—p | m _ K=
f > 2
{ 5/h +<5/h— 5/h +5//1 orJ

— Ty for j > 2}
_ W — Fhgy is cdf of t,,—1
= /_ H n0< 6/h - f) foo (1) dt fog is pdf of thy_1

> / [Foo (B — £)]<" o (£) dt 2 g ()

> Set g, x(h) = p and solve for h
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Making Decisions via Simulation

Ranking and Selection

Subset Selection
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Subset Selection

; pr < opp < <k
Overview

» Goal: With probability > p, return a set | of size m that
contains a system /* s.t. pj+ < pp 49

» Usually requires many fewer rep's than selection of best
(good for screening solution candidates)

Extended D&D Algorithm (next slide)
» Reduces to D&D algorithm when m =1
» Proof is very similar to D&D

Many variants
» Ex: BNK algorithm where size of I is not specified

» If size = 1 then you have the best
» See Boesel et al. 2003 reference in Law bibliography

» Common random numbers, Bayesian procedures, ...
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Subset Selection, Continued g S
) Ly
Extended D&D algorithm
1. Simulate ng replications for each of systems 1,2 ... k
2. )_<I.(1) =avg(Xj1,...,Xjn) and 5i2 =svar(Xi1,..., Xin)
3. N; = max(no + 1, [g25?/6%]) = final # of reps for sys. i
4. Simulate N; — ng reps of system i for i =1,2,... k
5. X = avg(Xi 41, Ximp2, - - -» Xion,)
6. W; = ,\;){1 " \/1 — My (N;2§§)52]}
7. % = wix® 4+ (1 - w)x®

1

8. Return set / of systems with m smallest values of X;

g is a constant that depends on k, p, ng, and m
(Law Table 10.12)
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Making Decisions via Simulation

Discrete Optimization
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Discrete Optimization \t) \‘/Ly_/\)
@9

Setting: Large but finite set of alternatives © s

» Global procedures: Simulate all § € © to find global optimum

» No finite stopping rule

Asymptotically simulates all 8 € © infinitely many times
Asymptotic guarantee of finding the optimal solution wpl
Ex: stochastic ruler, stochastic branch and bound, R-BEESE,
SMRAS

v vy

» Local procedures: Only finds local optimum

» Only searches “promising” elements of ©
» Often searches in neighborhood of current optimal solution
» Stopping rule, preferably followed by "cleanup” phase

» Goal: Minimum additional simulations for statistical guarantee
> Subset selection + R&S

» Ex: COMPASS, AHA!

1J. Xu, B. L. Nelson, and L. J. Hong, " An Adaptive Hyperbox Algorithm for High-Dimensional
Discrete Optimization via Simulation Problems”, INFORMS J. Comput. 24(1), 2013, 133-146.
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Discrete Optimization, Continued
Key ingredients
» Estimation set E, C ©: Solutions to simulate at nth step
Memory set M,: Information about systems simulated so far
Sampling distribution F(-|M,): Used to choose E,
Sim. allocation rule SAR,(E,|M,): # reps for each 6 € E,
Stopping rule to decide if we are done

vV vyVvYyy

Generic Local Procedure
1. Initialization: My <— (), n =0, 6§ = initial feasible solution
2. Sampling: Sample from © using F(-|M,) to form set E,
3. Estimation: Apply SAR,(E,|M,) to elements 0 € E,
4. Iteration: Update estimator f(6) for 6 € E, and choose O 1
as solution wth best f value.
Stop at 0,7

o o

. If yes, (run cleanup phase and) return answer,
else set n <— n+ 1 and go to Step 2.
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Example of Local Procedure: AHA

A particular instantiation of generic local algorithm

» Memory: M, = all (0, f(G)) pairs though nth iteration

» Sampling: F(-|M,) samples m feasible points from hyperbox
around current best solution 6% _; (next slide)

» Estimation set: E, = best solution 0} _; plus sampled points

» Allocation rule: Simulate at all points in E, with cumulative
T : - 1.01
replications given by R, () *w}ﬂ;}?{S’ 5(log n)-01}

» Stopping rule: Test the hypothesis that f(6}) is minimum in
neighborhood, if so, run cleanup?

1. Boesel, B.L. Nelson, and S. Kim, " Using ranking and selection to "clean up” after
simulation optimization”, Oper. Res. 51(5), 2003, 814-825.
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AHA Scenario Sampling

® first iteration

O second iteration
ir—

second [ 5y

hyperbox 2

67
1
o

first hyperbox

feasible region

36/
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Making Decisions via Simulation

Commercial Solvers
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Commercial Solvers

Based on Robust metaheuristics
> Designed for deterministic problems
» Don’t impose strong structural requirements

» Somewhat tolerant of some sampling variability

v

No probabilistic guarantees provided

v

Ex: Genetic algorithms, simulated annealing, tabu search

Example commercial solvers
OptQuest (for Simul8, Arena, Simio, AnylLogic, etc.)
Witness

v

v

v

ExtendSim Evolutionary Optimizer
RiskOptimizer
AutoStat for AutoMod

v

v
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Commercial Solvers, Continued

Increasing the effectiveness of commercial solvers

» Preliminary experiment to control sampling variability

>
-

¥

1
{

vV vVvYyy

Usually # of replications increases close to optimum

Some commercial packages used fixed # reps throughout
Always use “adaptive” option if available

Else simulate at a variety of 6 values, estimate n = # reps
needed to statistically distinguish between worst and best
solutions, then use n as a minimal value

7‘9 50\\\'\
&’ﬂ’”ﬂnben Restart at a number of different initial 8 values

"kl
av?
=

i)

» Run a cleanup phase
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