Making Decisions via Simulation [Law, Ch. 10], [Handbook of Sim. Opt.], [Haas, Sec. 6.3.6]

Peter J. Haas

CS 590M: Simulation Spring Semester 2020

1/39

Overview Factor Screening Continuous Stochastic Optimization Robbins-Monro Algorithm Derivative Estimation Other Continuous Optimization Methods Ranking and Selection Selection of the Best Subset Selection Discrete Optimization Commercial Solvers

Overview

Goal: Select best system design or parameter setting

Performance under each alternative estimated via simulation

 $\min_{\theta\in\Theta}f(\theta)$

where $\Theta =$ feasible set

- f is often of the form $f(\theta) = E_{\theta}[c(X, \theta)]$
 - X is estimated from the simulation
 - E_{θ} indicates that dist'n of X depends on θ

イロト 不得下 イヨト イヨト 二日

Overview, Continued

Three cases:

- 1. Θ is uncountably infinite (continuous optimization)
 - Robbins-Monro Algorithm
 - Metamodel-based optimization
 - Sample average approximation
- 2. Θ is small and finite (ranking and selection of best system)
 - ▶ E.g., Dudewicz and Dalal (HW #7)
- 3. Θ is a large discrete set (discrete optimization)

Not covered here: Markov decision processes

Choose best policy: I.e., choose best function π, where π(s) = action to take when new state equals s [Chang et al., 2007]

Overview

Factor Screening

Continuous Stochastic Optimization Robbins-Monro Algorithm Derivative Estimation Other Continuous Optimization Methods Ranking and Selection Selection of the Best Subset Selection Discrete Optimization Commercial Solvers

Factor Screening

Goal: Identify the most important drivers of model response

- Needed for understanding
- Needed to focus modeling resources (e.g., input distributions)
- Needed to select decision variables for optimization

Based on a simulation metamodel, for example:

 $Y(x) = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k + \epsilon$

- Y = simulation model output
- Parameters $x = (x_1, \ldots, x_k)$
- $\epsilon =$ noise term (often Gaussian)
- Estimate the β_i's using "low" and "high" x_i values
- ► Test if each |β_i| is significantly different from 0

Will talk more about metamodels later on...

β_i coefficients indicate parameter importance

Main-Effects Plot (PHI Profit x 10^5)

Challenge: Many Features

• Example with k = 3:

$$\hat{\beta}_{1} = \frac{Y(h, l, l) + Y(h, l, h) + Y(h, h, l) + Y(h, h, h)}{4} - \frac{Y(l, l, l) + Y(l, l, h) + Y(l, h, l) + Y(l, h, h)}{4}$$

- In general, need 2^k simulations ("full factorial" design)
- Can be smarter, e.g., "fractional factorial" designs (will talk about this soon)
- In general: interplay between metamodel complexity (e.g., β_{ij} terms) and computational cost

Sequential bifurcation

- For huge number of factors
- Assumes Gaussian noise, nonnegative β 's
- Test groups (sums of β_i 's)

Overview Factor Screening

Continuous Stochastic Optimization Robbins-Monro Algorithm

Derivative Estimation Other Continuous Optimization Methods Ranking and Selection Selection of the Best Subset Selection Discrete Optimization Commercial Solvers

Continuous Stochastic Optimization

Robbins-Monro Algorithm

- Goal: $\min_{\theta \in [\underline{\theta}, \overline{\theta}]} f(\theta)$
- Estimate f'(θ) and use stochastic approximation (also called stochastic gradient descent)

$$\theta_{n+1} = \Pi\left(\theta_n - \left(\frac{a}{n}\right)Z_n\right)$$

Continuous Stochastic Optimization, Continued

Convergence

- the local only local • Suppose that θ^* is true minimizer and the only local minimizer
- Under mild conditions, $\lim_{n\to\infty} \theta_n = \theta^*$ a.s.
- Q: If θ^* is not the only local minimizer, what can go wrong?
- For large n, θ_n has approximately a normal dist'n

Estimation Algorithm for $100(1 - \delta)$ % Confidence Interval

- 1. Fix n > 1 and $m \in [5, 10]$
- 2. Run the Robbins-Monro iteration for n steps to obtain θ_n
- 3. Repeat Step 2 a total of *m* times to obtain $\theta_{n,1}, \ldots, \theta_{n,m}$
- 4. Compute point estimator $\bar{\theta}_m = (1/m) \sum_{i=1}^m \theta_{n,i}$
- 5. Compute 100(1 δ %) CI as $[\bar{\theta}_m \frac{s_m t_{m-1,\delta}}{\sqrt{m}}, \bar{\theta}_m + \frac{s_m t_{m-1,\delta}}{\sqrt{m}}]$

where $s_m^2 = \frac{1}{m-1} \sum_{i=1}^m (\theta_{n,i} - \bar{\theta})^2$ and $t_{m-1,\delta}$ = Student-t quantile

Continuous Stochastic Optimization, Continued

Remarks

- Variants available for multi-parameter problems
- Drawbacks to basic algorithm are slow convergence and high sensitivity to the gain *a*; current research focuses on more sophisticated methods
- Simple improvement: return best value seen so far

Kiefer-Wolfowitz algorithm

- ► Replaces derivative $f'(\theta_n)$ by finite difference $\frac{f(\theta_n + \Delta) f(\theta_n \Delta)}{2\Delta}$
- Spalls' simultaneous perturbation stochastic approximation (SPSA) method handles high dimensions
 - At the kth iteration of a d-dimensional problem, run simulation at θ_k ± cΔ_k, where c > 0 and Δ_k is a vector of i.i.d. random variables l₁,..., l_d with P(l_j = 1) = P(l_j = −1) = 0.5

Overview Factor Screening

Continuous Stochastic Optimization

Robbins-Monro Algorithm

Derivative Estimation

Other Continuous Optimization Method Ranking and Selection Selection of the Best Subset Selection Discrete Optimization Commercial Solvers

Estimating the Derivative $f'(\theta_n)$

Suppose that $f(\theta) = E_{\theta}[c(X, \theta)]$

- Ex: M/M/1 queue with interarrival rate λ and service rate θ
- X = average waiting time for first 100 customers
- $c(x, \theta) = a\theta + bx$ (trades off operating costs and delay costs)

Use likelihood ratios

We have f(θ + h) = E_{θ+h} [c(X, θ + h)] = E_θ [c(X, θ + h)L(h)] for appropriate likelihood L(h)

To estimate $g(\theta) \stackrel{\Delta}{=} f'(\theta) = E_{\theta} [c'(X, \theta) + c(X, \theta)L'(0)]$

- ▶ Simulate system to generate i.i.d. replicates X₁,..., X_m
- At the same time, compute $L'_1(0), \ldots, L'_m(0)$
- Compute the estimate $g_m(\theta) = \frac{1}{m} \sum_{i=1}^m [c'(X_i, \theta) + c(X_i, \theta)L'_i(0)]$
- Robbins and Monro showed that taking m = 1 is optimal (many approximate steps vs few precise steps)

nth step of R-M algorithm

 Generate a single sample X of the performance measure and compute L'(0)

2. Set
$$Z_n = g_1(\theta_n) = c'(X, \theta_n) + c(X, \theta_n)L'(0)$$

3. Set
$$\theta_{n+1} = \Pi \left(\theta_n - \left(\frac{a}{n} \right) Z_n \right)$$

Ex: M/M/1 queue

- Let V_1, \ldots, V_{100} be the 100 generated service times
- Let X = avg of the 100 waiting times (the perf. measure)

$$\begin{split} L(h) &= \prod_{i=1}^{100} \frac{(\theta+h)e^{-(\theta+h)V_i}}{\theta e^{-\theta V_i}} = \prod_{i=1}^{100} \left(\frac{\theta+h}{\theta}\right) \ e^{-hV_i} \\ &\Rightarrow L'(0) = \sum_{i=1}^{100} \left(\frac{1}{\theta} - V_i\right) \quad \text{(can be computed incrementally)} \end{split}$$

$$c(x,\theta) = a\theta + bx \qquad \Rightarrow \qquad c'(x,\theta) = a$$

$$Z_{n} = c'(X_{n}, \theta_{n}) + c(X_{n}, \theta_{n})L'_{n}(0) = a + (a\theta_{n} + bX_{n})\sum_{i=1}^{100} \left(\frac{1}{\theta_{n}} - V_{n,i}\right)$$

A trick for computing L'(0)

- Likelihood ratio often has form: $L(h) = r_1(h)r_2(h)\cdots r_k(h)$
- ► E.g., for a GSMP, $r_i(h) = \frac{f_{\theta+h}(X;s',e',s,e^*)}{f_{\theta}(X;s',e',s,e^*)}$ or $\frac{P_{\theta+h}(S_{j+1};S_j,e_j^*)}{P_{\theta}(S_{j+1};S_j,e_i^*)}$

Using the product rule and the fact that r_i(0) = 1 for all i

$$\frac{d}{dh}L(h)\Big|_{h=0} = \frac{d}{dh}(r_1(h)r_2(h)\cdots r_k(h))\Big|_{h=0}$$

= $[r_1(h)\frac{d}{dh}(r_2(h)\cdots r_k(h))]_{h=0} + [r'_1(h)r_2(h)\cdots r_k(h)]_{h=0}$
= $\frac{d}{dh}[r_2(h)\cdots r_k(h)]_{h=0} + r'_1(0)$

- ► By induction: L'(0) = r'_1(0) + ··· + r'_k(0) (compute incrementally)
- For GSMP example (with $f'_{\theta} = \partial f_{\theta} / \partial \theta$):

$$r'_{i}(0) = \frac{\frac{d}{dh}f_{\theta+h}(X;s',e',s,e^{*})|_{h=0}}{f_{\theta}(X;s',e',s,e^{*})} = \frac{f'_{\theta}(X;s',e',s,e^{*})}{f_{\theta}(X;s',e',s,e^{*})} = \frac{f'_{\theta}(X;s',e',s,e^{*})}{f_{\theta}(X;s',e',e^{*})} = \frac{f'$$

Trick continued: M/M/1 queue

$$L(h) = \prod_{i=1}^{100} r_i(h) = \prod_{i=1}^{100} \frac{f_{\theta+h}(V_i)}{f_{\theta}(V_i)}$$

$$f_{ heta}(v) = heta e^{- heta v}$$
 and $f_{ heta}'(v) = (1 - heta v) e^{- heta v}$

$$L'(0) = \sum_{i=1}^{100} \frac{f'_{\theta}(V_i)}{f_{\theta}(V_i)} = \sum_{i=1}^{100} \frac{(1-\theta V_i)e^{-\theta V_i}}{\theta e^{-\theta V_i}} = \sum_{i=1}^{100} \left(\frac{1}{\theta} - V_i\right)$$

Remarks

- Derivative estimation is interesting outside of optimization for sensitivity analysis
- Drawback of likelihood-ratio derivative estimator: variance of likelihood ratio increases with length of simulation
- Alternative gradient estimation methods:
 - Infinitesimal perturbation analysis (IPA)
 - Smoothed perturbation analysis (SPA)
 - Measure-valued differentiation (MVD)
 - ► · · ·

Overview Factor Screening

Continuous Stochastic Optimization

Robbins-Monro Algorithm

Derivative Estimation

Other Continuous Optimization Methods

Ranking and Selection Selection of the Best Subset Selection Discrete Optimization

Commercial Solvers

Other Continuous Optimization Methods

Metamodel-based optimization

- Run simulation at selected "design points" and fit (fuzzy) response surface
- Then optimize over surface
- Surface can be fit locally or globally
- Surface models include:
 - Polynomials ("response surface methology")
 - Gaussian field models (stochastic kriging, moving least squares)

Other Continuous Optimization Methods

Sample Average Approximation (discussed previously)

• Goal: $\min_{\theta \in \Theta} f(\theta)$, where $f(\theta) = E[c(X, \theta)]$

- c is a deterministic function
- \triangleright X is a random variable whose dist'n is independent of θ
- Generate X_1, \ldots, X_n i.i.d. and set $f_n(\theta) = (1/n) \sum_{i=1}^n c(X_i, \theta)$
- Use deterministic optimization methods to solve $\min_{\theta \in \Theta} f_n(\theta)$
- f_n and f need some structure (convexity, smoothness)
- Can use delta method to get confidence intervals

Can combine SAA with likelihood ratios 1. Use LR to convert from Eg[c(X, 0)] to E[c(X, 0)] 2. Use SAA as described above

Overview Factor Screening Continuous Stochastic Optimization Robbins-Monro Algorithm Derivative Estimation Other Continuous Optimization Methods

Ranking and Selection Selection of the Best

Subset Selection Discrete Optimization Commercial Solvers

Selection of the Best

Goal

- ▶ Systems 1 through *k* have expected perf. measures $\mu_1 \le \mu_2 \le \cdots \le \mu_k$
- Choose system with smallest expected value

Dudewicz and Dalal (HW #7)

- With probability $\geq p$, will return system i^* s.t. $\mu_{i^*} \leq \mu_1 + \delta$
- δ is indifference zone: max. diff. that you care about
- 2-stage procedure tries to minimize overall simulation effort

Many variants

- Adaptive (multistage) R&S
- Confidence intervals (comparison with the best)
- Pre-screening, common random numbers, ...

Dudewicz and Dalal Procedure

Assumes normally distributed observations (e.g., by CLT)

D&D algorithm

1. Simulate n_0 replications for each of systems $1, 2, \ldots, k$ 2. $\bar{X}_{i}^{(1)} = \operatorname{avg}(X_{i,1}, \dots, X_{i,n_0})$ and $S_{i}^2 = \operatorname{svar}(X_{i,1}, \dots, X_{i,n_0})$ 3. $N_i = \max(n_0 + 1, \lceil h^2 S_i^2 / \delta^2 \rceil) = \text{final } \# \text{ of reps for sys. i}$ 4. Simulate $N_i - n_0$ reps of system *i* for i = 1, 2, ..., k5. $\bar{X}_{i}^{(2)} = \operatorname{avg}(X_{i,n_{0}+1}, X_{i,n_{0}+2}, \dots, X_{i,N_{i}})$ 6. $W_i = \frac{n_0}{N_i} \left\{ 1 + \sqrt{1 - \frac{N_i}{n_0} \left[1 - \frac{(N_i - n_0)\delta^2}{h^2 S_i^2} \right]} \right\}$ 7. $\tilde{X}_i = W_i \bar{X}_i^{(1)} + (1 - W_i) \bar{X}_i^{(2)}$ 8. Return system with smallest value of \tilde{X}_i

h is a constant that depends on k, p, and n_0 (Law Table 10.11)

(日) (四) (王) (王) (王) (王)

Dudewicz and Dalal: Proof Sketch

▶ Definition of W_i and N_i ensures that T_i = X_i-µ_i/δ/h has t_{n0}-1 dist'n and T_i's are independent

• Assume that $\mu_2 - \mu_1 \ge \delta$ (hence $\mu_j - \mu_1 \ge \delta$ for $j \ge 2$)

$$P(CS) = P\{\tilde{X}_1 < \tilde{X}_j \text{ for } j \ge 2\}$$

$$= P\left\{\frac{\tilde{X}_1 - \mu_1}{\delta/h} + \frac{\mu_1}{\delta/h} \le \frac{\tilde{X}_j - \mu_j}{\delta/h} + \frac{\mu_j}{\delta/h} \text{ for } j \ge 2\right\}$$

$$= P\left\{-T_j \le \frac{\mu_j - \mu_1}{\delta/h} - T_1 \text{ for } j \ge 2\right\}$$

$$= \int_{-\infty}^{\infty} \prod_{j=2}^{k} F_{n_0} \left(\frac{\mu_j - \mu_1}{\delta/h} - t\right) f_{n_0}(t) dt \quad \begin{array}{c} F_{n_0} \text{ is cdf of } t_{n_0-1} \\ f_{n_0} \text{ is pdf of } t_{n_0-1} \end{array}$$

$$\ge \int_{-\infty}^{\infty} [F_{n_0}(h-t)]^{k-1} f_{n_0}(t) dt \triangleq g_{n_0,k}(h)$$

• Set $g_{n_0,k}(h) = p$ and solve for h

Overview Factor Screening Continuous Stochastic Optimization Robbins-Monro Algorithm Derivative Estimation Other Continuous Optimization Method

Ranking and Selection

Selection of the Best

Subset Selection

Discrete Optimization Commercial Solvers

Subset Selection

Overview

$$\mu_1 \leq \mu_2 \leq \cdots \leq \mu_k$$

- ► Goal: With probability ≥ p, return a set l of size m that contains a system i^{*} s.t. µ_{i^{*}} ≤ µ₁ + δ
- Usually requires many fewer rep's than selection of best (good for screening solution candidates)

Extended D&D Algorithm (next slide)

- Reduces to D&D algorithm when m = 1
- Proof is very similar to D&D

Many variants

- Ex: BNK algorithm where size of I is not specified
 - If size = 1 then you have the best
 - ► See Boesel et al. 2003 reference in Law bibliography
- Common random numbers, Bayesian procedures, ...

Subset Selection, Continued

Extended D&D algorithm

- 1. Simulate n_0 replications for each of systems $1, 2, \ldots, k$
- 2. $\bar{X}_i^{(1)} = \operatorname{avg}(X_{i,1}, \dots, X_{i,n_0})$ and $S_i^2 = \operatorname{svar}(X_{i,1}, \dots, X_{i,n_0})$
- 3. $N_i = \max(n_0 + 1, \lceil g^2 S_i^2 / \delta^2 \rceil) = \text{final } \# \text{ of reps for sys. i}$
- 4. Simulate $N_i n_0$ reps of system *i* for i = 1, 2, ..., k
- 5. $\bar{X}_{i}^{(2)} = \operatorname{avg}(X_{i,n_{0}+1}, X_{i,n_{0}+2}, \dots, X_{i,N_{i}})$ 6. $W_{i} = \frac{n_{0}}{N_{i}} \left\{ 1 + \sqrt{1 - \frac{N_{i}}{n_{0}} \left[1 - \frac{(N_{i} - n_{0})\delta^{2}}{g^{2}S_{i}^{2}} \right]} \right\}$ 7. $\tilde{X}_{i} = W_{i}\bar{X}_{i}^{(1)} + (1 - W_{i})\bar{X}_{i}^{(2)}$
- 8. Return set I of systems with m smallest values of \tilde{X}_i

g is a constant that depends on *k*, *p*, *n*₀, and *m* (Law Table 10.12)

Overview Factor Screening Continuous Stochastic Optimization Robbins-Monro Algorithm Derivative Estimation Other Continuous Optimization Method Ranking and Selection Selection of the Best Subset Selection

Discrete Optimization

Commercial Solvers

Discrete Optimization

Setting: Large but finite set of alternatives Θ

- Global procedures: Simulate all $\theta \in \Theta$ to find global optimum
 - No finite stopping rule
 - Asymptotically simulates all $\theta \in \Theta$ infinitely many times
 - Asymptotic guarantee of finding the optimal solution wp1
 - Ex: stochastic ruler, stochastic branch and bound, R-BEESE, SMRAS
- Local procedures: Only finds local optimum
 - Only searches "promising" elements of Θ
 - Often searches in neighborhood of current optimal solution
 - Stopping rule, preferably followed by "cleanup" phase
 - Goal: Minimum additional simulations for statistical guarantee
 - Subset selection + R&S
 - Ex: COMPASS, AHA¹

¹J. Xu, B. L. Nelson, and L. J. Hong, "An Adaptive Hyperbox Algorithm for High-Dimensional Discrete Optimization via Simulation Problems", *INFORMS J. Comput.* 24(1), 2013, 133–146.

Discrete Optimization, Continued

Key ingredients

- Estimation set $E_n \subseteq \Theta$: Solutions to simulate at *n*th step
- Memory set M_n: Information about systems simulated so far
- Sampling distribution $F(\cdot | M_n)$: Used to choose E_n
- ▶ Sim. allocation rule $SAR_n(E_n|M_n)$: # reps for each $\theta \in E_n$
- Stopping rule to decide if we are done

Generic Local Procedure

- 1. Initialization: $M_0 \leftarrow \emptyset$, n = 0, $\theta_0^* =$ initial feasible solution
- 2. Sampling: Sample from Θ using $F(\cdot | M_n)$ to form set E_n
- 3. Estimation: Apply $SAR_n(E_n|M_n)$ to elements $\theta \in E_n$
- 4. Iteration: Update estimator $\hat{f}(\theta)$ for $\theta \in E_n$ and choose θ_{n+1}^* as solution wth best \hat{f} value.
- 5. Stop at θ_{n+1}^* ?
- 6. If yes, (run cleanup phase and) return answer, else set $n \leftarrow n+1$ and go to Step 2.

Example of Local Procedure: AHA

A particular instantiation of generic local algorithm

- Memory: $M_n = \text{all } (\theta, \hat{f}(\theta))$ pairs though *n*th iteration
- ► Sampling: $F(\cdot | M_n)$ samples *m* feasible points from hyperbox around current best solution θ_{n-1}^* (next slide)
- Estimation set: E_n = best solution θ_{n-1}^* plus sampled points
- ► Allocation rule: Simulate at all points in E_n with cumulative replications given by $R_n(\theta) = \min_{\substack{n \in \mathcal{N}}} \{5, 5(\log n)^{1.01}\}$
- Stopping rule: Test the hypothesis that f(θ^{*}_n) is minimum in neighborhood, if so, run cleanup¹

¹J. Boesel, B.L. Nelson, and S. Kim, "Using ranking and selection to "clean up" after simulation optimization", *Oper. Res.* 51(5), 2003, 814–825.

AHA Scenario Sampling

Overview Factor Screening Continuous Stochastic Optimization Robbins-Monro Algorithm Derivative Estimation Other Continuous Optimization Method Ranking and Selection Selection of the Best Subset Selection Discrete Optimization

Commercial Solvers

Commercial Solvers

Based on Robust metaheuristics

- Designed for deterministic problems
- Don't impose strong structural requirements
- Somewhat tolerant of some sampling variability
- No probabilistic guarantees provided
- Ex: Genetic algorithms, simulated annealing, tabu search

Example commercial solvers

- OptQuest (for Simul8, Arena, Simio, AnyLogic, etc.)
- Witness
- ExtendSim Evolutionary Optimizer
- RiskOptimizer
- AutoStat for AutoMod

Commercial Solvers, Continued

Increasing the effectiveness of commercial solvers

Preliminary experiment to control sampling variability

- Usually # of replications increases close to optimum
- ► Some commercial packages used fixed # reps throughout
- Always use "adaptive" option if available
- Else simulate at a variety of θ values, estimate n = # reps needed to statistically distinguish between worst and best solutions, then use n as a minimal value

Restart at a number of different initial θ values

Run a cleanup phase