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Many Different Techniques

I Common random numbers

I Antithetic variates

I Conditional Monte Carlo

I Control variates

I Importance sampling

I Stratified sampling

I Latin hypercube sampling (HW #1)

I Quasi-random numbers

I . . .
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Variance Reduction and Efficiency Improvement

Typical goal is variance reduction

I I.e., reduce variance of estimator αn of α

I Narrower CIs ⇒ less computational effort for given precision

I So methods often called “variance reduction” methods

Care is needed when evaluating techniques

I Reduction in effort must outweigh increased cost of executing
V-R method

I Increase in programming complexity?

I In many cases, additional effort is obviously small

I What about more complicated cases?
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Comparing Efficiency-Improvement Schemes

Trading off statistical and computational efficiency

I Suppose α = E [X ] = E [Y ]

I Should we generate i.i.d. replicates of X or Y to estimate α?

I Assume large but fixed computer budget c

I Let τX (i) be (random) time to generate Xi

I Assume that
(
X1, τX (1)

)
,
(
X2, τX (2)

)
, . . . are i.i.d.

I Number of X -observations generated within budget c is
Nx(c) = max{n ≥ 0 : τX (1) + · · ·+ τX (n) ≤ c}

I So estimator based on budget is αX (c) = 1
NX (c)

∑NX (c)
i=1 Xi
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Comparing Efficiency-Improvement Schemes, Continued

Hammersley-Handscomb Efficiency Measure

I Can show: limc→∞N(c)/c = λX a.s., where λX = 1/E [τX ]

I Hence

αX (c)− α =
1

NX (c)

NX (c)∑
i=1

Xi − α ≈
1

bλX cc

bλX cc∑
i=1

Xi − α

D∼

√
Var[X ]

λX c
N(0, 1) =

1√
c

√
E [τX ] · Var[X ] N(0, 1)

I Similarly,

αY (c)− α D∼ 1√
c

√
E [τY ] · Var[Y ] N(0, 1)

I Efficiency measure: 1
E [τY ]·Var[Y ] (holds fairly generally)
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Common Random Numbers (CRN)

Applies when comparing alternate systems

I Intuition: Sharper comparisons if systems experience same
random fluctuations

More precisely:

I Goal: Compare two perf. measures distributed as X and Y

I Estimate α = E [X ]− E [Y ] = E [X − Y ]

I Generate i.i.d. pairs (X1,Y1), . . . , (Xn,Yn)

I Point estimate: αn = (1/n)
∑n

i=1(Xi − Yi )

Var[αn] =
1

n
Var [X − Y ] =

1

n

(
Var[X ] + Var[Y ]− 2 Cov[X ,Y ]

)
I So want Cov[X ,Y ] > 0

I Note that Cov[X ,Y ] = 0 if X and Y simulated independently
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CRN, Continued

Simple case: One random number per sample of X and of Y

I Use same random number: Xi = Xi (Ui ) and Yi = Yi (Ui )

I If X (u), Y (u) both ↑ (or both ↓) in u, then Cov[X ,Y ] > 0

I True for inversion method: Xi = F−1
X (Ui ) and Yi = F−1

Y (Ui )

In practice

I Sync random numbers between systems as much as possible

I Use multiple random number streams, one per event

I Jump-head facility of random number generator is crucial
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CRN, Continued

Example: Long-run waiting times in two GI/G/1 queues
I Suppose that

I Interarrival times are i.i.d according to cdf G for both systems
I Service times are i.i.d. according to cdf Hi for queue i (i = 1, 2)

I Use one sequence (Uj : j ≥ 0) to generate a single stream of
interarrival times for use in both systems

I Use one sequence (Vj : j ≥ 0) to generate service times in
both systems: S1,j = H−1

1 (Vj) and S2,j = H−1
2 (Vj) for j ≥ 1

I Note: Need two streams {Ui} and {Vi}
I Systems get out of sync with only one stream
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Antithetic Variates

Applies when analyzing a single system

I Intuition: Combat “luck of the draw” by pairing each realized
scenario with its opposite

More precisely:

I Goal: Estimate E [X ]

I Generate X1, . . . ,X2n and set αn = X̄2n

I Suppose pairs (X1,X2), (X3,X4), . . . , (X2n−1,X2n) are i.i.d.
(possible corr. within pairs)

Var[α2n] =
1

4n2

(
Var[X1] + · · ·+ Var[X2n] +

2 Cov[X1,X2] + · · ·+ 2 Cov[X2n−1,X2n]
)

I So want Cov[X2j−1,X2j ] < 0 for j ≥ 1
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Antithetic Variates, Continued

Simple case: One random number per sample of X and of Y

I Use same random number: Xi = Xi (Ui ) and Yi = Yi (1− Ui )

I If X (u), Y (u) both ↑ (or both ↓) in u, then Cov[X ,Y ] < 0

I E.g., inversion method: Xi = F−1
X (Ui ) and Yi = F−1

Y (1− Ui )

Ex: Avg. waiting time of first 100 cust. in GI/G/1 queue

I Interarrival times (service times) i.i.d according to cdf G (H)

I Replication 2k − 1: (Ij ,Sj) =
(
G−1(Uj),H

−1(Vj)
)

I Replication 2k : (Ij , Sj) =
(
G−1(1− Uj),H

−1(1− Vj)
)

Ex: Alternative method for GI/G/1 queue (Explain?)

I Replication 2k − 1: (Ij ,Sj) =
(
G−1(Uj),H

−1(Vj)
)

I Replication 2k : (Ij ,Sj) =
(
G−1(Vj),H

−1(Uj)
)

Warning: CRN + AV together can backfire! [Law, p. 609]
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Conditional Monte Carlo

Example: Markovian GSMP
(
X (t) : t ≥ 0

)
I All events are simple w. exponential clock-setting dist’ns
I Simulation algorithm (up to nth state transition time Tn)

I Generate states S0, . . . ,Sn−1
D∼ DTMC w. transition matrix R

I Generate holding time in each Sk : Hk
D∼ exp

(
λ(Sk)

)
I Goal: Estimate α = E [Z ] with

Z =
∫ Tn

0 f
(
X (u)

)
du =

∑n−1
k=0 f (Sk)Hk

I Variance reduction trick:
I Generate states S0, . . . ,Sn−1 as above
I Set holding time in Sk = mean holding time = 1/λ(Sk)

I Q: Why does this work?
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Conditional Monte Carlo, Continued

Law of total expectation

E
[
E [U|V ]

]
= E [U]

Variance decomposition

Var[U] = Var
[
E [U|V ]

]
+ E

[
Var[U|V ]

]
≥ Var

[
E [U|V ]

]
Key Idea

I Simulate V and compute Ũ = E [U|V ]

I Then Ũ has same mean as U but smaller variance

I So generate i.i.d replicates of Ũ to estimate α = E [U]

Markovian GSMP example revisited

I U = Z =
∑n−1

k=0 f (Sk)Hk and V = (S0, . . . ,Sn−1)

I So estimate E [Z̃ ] from i.i.d replicates Z̃1, . . . , Z̃m, where

Z̃ = E [Z |S0, . . . ,Sn−1] =
∑n−1

k=0 f (Sk)E [Hk |Sk ] =
∑n−1

k=0 f (Sk) 1
λ(Sk )
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Control Variates

Intuition: Exploit extra system knowledge

I Goal: Estimate α = E [X ]
I Suppose that there exists a random variable Y such that

I Y is strongly correlated with X
I E [Y ] can be computed analytically

I Control variable: C = Y − E [Y ]

I Controlled estimator: X (λ) = X − λC
I E [X (λ)] =

I v(λ) = Var[X (λ)] = Var[X ]− 2λCov[X ,C ] + λ2 Var[C ]

I v(λ) is minimized at λ∗ =

I Minimizing variance is v(λ∗) = (1− ρ2) Var[X ], where

ρ = Cov[X ,C ]√
Var[X ]·Var[C ]

= correlation coefficient of X and C
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Control Variates, Continued

The method

1. Simulate i.i.d. pairs (X1,C1), . . . , (Xn,Cn)

2. Estimate λ∗ by

λ∗n =
1

n − 1

n∑
i=1

(Xi − X̄n)Ci

/
1

n

n∑
i=1

C 2
i

3. Apply usual estimation techniques to Z1, . . . ,Zn, where
Zi = Xi − λ∗Ci for 1 ≤ i ≤ n

Ex: E[avg delay] for first n customers in GI/G/1 queue

I Xi = average delay in ith replication

I Vi ,k = kth service time in i replication, with E [Vi ,k ] = 5

I Take Ci = (1/n)
∑n

k=1 Vi ,k − 5

I Q: Why is this a good choice?
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Control Variates, Continued

Internal and External Controls

I Ci in queueing example is an internal control, generated
internally to the simulation

I Example of an external control:
I Simplify original simulation model M to a version M ′ where

performance measure α′ can be computed analytically
I Generate replications of M and M ′ using common random

numbers to obtain (X1,X
′
1), . . . , (Xn,X

′
n)

I Take Ci = X ′i − α′

Multiple controls

I X (λ1, . . . , λm) = X − λ1C
(1) − · · · − λmC (m)

I Can compute (λ∗1, . . . , λ
∗
m) by solving linear syst. of equations

I Essentially, we fit a linear regression model and simulate the
leftover uncertainty (i.e., the residuals)
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Importance Sampling

Likelihood ratios for i.i.d. random variables

I Goal: Estimate α = E [gn(X0,X1, . . . ,Xn)]

I X0, . . . ,Xn are i.i.d. replicates of X with pmf p(s) = P(X = s)

I Let Y be another RV with pmf q(s) = P(Y = s)

I Suppose that Y is “easier” to simulate than X

I We will estimate α by simulating Y and then “correcting”

Likelihood ratio for i.i.d. random variables

Ln =

∏n
i=0 p(Yi )∏n
i=0 q(Yi )

(rel. likelihood of seeing Y under p vs under q)

I To avoid blowups, define 0/0 = 0 and assume that
q(x) = 0⇒ p(x) = 0 (“absolute continuity”)
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Importance Sampling, Continued

Likelihood-ratio identity for i.i.d. random variables

E [gn(Y0,Y1, . . . ,Yn)Ln] = E [gn(X0,X1, . . . ,Xn)]

Proof

E [gn(Y0, . . . ,Yn)Ln]

=
∑
s0∈S

· · ·
∑
sn∈S

gn(s0, . . . , sn)
(∏n

i=0 p(si )∏n
i=0 q(si )

)
P(Y0 = s0, . . . ,Yn = sn)

=
∑
s0∈S

· · ·
∑
sn∈S

gn(s0, . . . , sn)
(∏n

i=0 p(si )∏n
i=0 q(si )

) n∏
i=0

q(si )

=
∑
s0∈S

· · ·
∑
sn∈S

gn(s0, . . . , sn)
n∏

i=0

p(si )

= E [gn(X0, . . . ,Xn)]
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Importance Sampling, Continued

General guidance for choosing q

I Somewhat of an art (depends on details of model)

I But if gn(s0, . . . , sn) =
∏n

i=0 g(si ) for some g ≥ 0 and we take
q(s) = g(s)p(s)/α, then gn(Y0, . . . ,Yn)Ln ≡ α and var = 0

I Can’t actually choose q as above (since α is unknown) but
can guide choice

I q(s) is large if s is “important”, i.e., g(s) and/or p(s) is large

Implementation

I Set L = 1 initially & update whenever new Yi is generated:

L← L× p(Yi )

q(Yi )
for i ≥ 1
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Importance Sampling, Continued

Importance sampling for DTMCs

I Goal: Estimate E [gn(X0, . . . ,Xn)] where M = (Xi : i ≥ 0) is a
DTMC with initial dist’n µ and transition matrix P

I Simulate DTMC M̃ = (Yi : i ≥ 0) w. building blocks µ̃ and P̃

Ln =
µ(Y0)

∏n
i=1 P(Yi−1,Yi )

µ̃(Y0)
∏n

i=1 P̃(Yi−1,Yi )

I Assume absolute continuity: if initial state or a jump has zero
probability in M̃, it has zero probability in M

I Can be computed incrementally: set L = 1 and then

L← L× µ(Y0)

µ̃(Y0)
and L← L× P(Yi−1,Yi )

P̃(Yi−1,Yi )
for i ≥ 1

I Can generalize to E [gN(X0, . . . ,XN)] where N is random
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Importance Sampling, Continued

Importance sampling for GSMPs

I Goal: Estimate E [gt(X (u) : 0 ≤ u ≤ t)] where
G =

(
X (t) : t ≥ 0

)
is a GSMP with bldg blocks ν, F0, p, F

I Simulate GSMP G̃ =
(
X̃ (t) : t ≥ 0

)
with building blocks ν̃,

F̃0, p̃, F̃ (all other building blocks, e.g., S and E (s), the same)

I Assume that cdfs F0, F , F̃0, F̃ have pdf’s f0, f , f̃0, f̃

I Assume absolute continuity: if jump or clock reading has zero
prob. in G̃ , it has zero prob. in G
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Importance Sampling, Continued

Simulation algorithm for GSMPs: as usual except

I Set L = 1 initially

I After generating initial state S̃0, set L← L× ν(S̃0)

ν̃(S̃0)

I After generating C̃0,i for ei , set L← L× f0(C̃0,i ;ei ,S̃0)

f̃0(C̃0,i ;ei ,S̃0)

I After generating C̃n,i for ei , set L← L× f (C̃n,i ;S̃n,ei ,S̃n−1,e∗n )

f̃ (C̃n,i ;S̃n,ei ,S̃n−1,e∗n )

I After generating a jump S̃n−1 → S̃n, set L← L× p(S̃n;S̃n−1,e∗n )

p̃(S̃n;S̃n−1,e∗n )
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Application to Rare-Event Estimation

Example: DTMC model of machine reliability
I State space of (Xn : n ≥ 0): S = {0, 1, 2, 3}

I Xn = 0: machine fully operational at nth inspection
I Xn = 1 or 2: machine operational but degraded
I Xn = 3: machine has failed

I ν(0)
∆
= P(X0 = 0) = 1

P =


0 1 2 3

0 0 1 0 0
1 µ

λ+µ 0 λ
λ+µ 0

2 0 µ
λ+µ 0 λ

λ+µ
3 0 0 1 0


I µ� λ, so failures take a long time to occur
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Rare-Event Estimation, Continued

I Set N = min{n > 0 : Xn = 3} (time to failure)

I Goal: Estimate α = P(N ≤ j) = E [I (N ≤ j)] with j small

I Challenge: Event A = {N ≤ j} is very rare

I Can write α = E [gj(X0, . . . ,Xj)], where

gj(x0, . . . , xj) =

{
1 if xi = 3 for some 0 ≤ i ≤ j ;

0 otherwise

I Use importance sampling with λ = µ

I I.e., simulate DTMC (X̃n : n ≥ 0) with

P̃ =


0 1 2 3

0 0 1 0 0
1 0.5 0 0.5 0
2 0 0.5 0 0.5
3 0 0 1 0

 and ν̃ = ν
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Rare-Event Estimation, Continued

Rare-Event Estimation Algorithm for Machine Reliability

1. Choose sample size n

2. Simulate (X̃n : n ≥ 0) up to time T = min(j ,N)

3. Compute W = I (N ≤ j)

∏T
i=1 P(X̃i−1, X̃i )∏T
i=1 P̃(X̃i−1, X̃i )

4. Repeat Steps 2–3 n times, independently, to produce i.i.d.
replicates W1, . . . ,Wn

5. Compute point estimates and confidence intervals as usual

Extensions of basic method include dynamic importance
sampling
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