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Many Different Techniques

» Common random numbers
Antithetic variates

Conditional Monte Carlo

v

v

Control variates

v

v

Importance sampling

v

Stratified sampling
» Latin hypercube sampling (HW #1)

v

Quasi-random numbers

Variance Reduction and Efficiency Improvement

Typical goal is variance reduction
» |.e., reduce variance of estimator «, of «
» Narrower Cls = less computational effort for given precision

» So methods often called “variance reduction” methods

Care is needed when evaluating techniques

» Reduction in effort must outweigh increased cost of executing
V-R method

> Increase in programming complexity?
> In many cases, additional effort is obviously small

» What about more complicated cases?
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Comparing Efficiency-Improvement Schemes

Trading off statistical and computational efficiency
» Suppose a = E[X] = E[Y]
» Should we generate i.i.d. replicates of X or Y to estimate «?
» Assume large but fixed computer budget ¢
> Let 7x(/) be (random) time to generate X;
> Assume that (X1,7x(1)), (X2,7x(2)),... are i.i.d.
» Number of X-observations generated within budget c is
Ny(c) =max{n>0:7x(1)+ -+ 7x(n) < c}

» So estimator based on budget is ax(c) = le(c) Zﬁvle(c) Xi

Comparing Efficiency-Improvement Schemes, Continued

Hammersley-Handscomb Efficiency Measure
» Can show: limc o N(c)/c = Ax a.s., where \x = 1/E[7x]

» Hence

1 Nx(C) 1 kacJ
ax(c) —a=—— Xi—a~ —— Xi— «
X - =g 2 Dxd] 2

D Var[X] . 1
R \/:N(o,n =7 E[rx] - Var[X] N(0, 1)

av(c) —a 2 X /Efry]-VarY] N(O, 1) J

> Similarly,

NG

» Efficiency measure: W (holds fairly generally)

Efficiency-Improvement Techniques

Common Random Numbers

Common Random Numbers (CRN)

Applies when comparing alternate systems

» Intuition: Sharper comparisons if systems experience same
random fluctuations

More precisely:
» Goal: Compare two perf. measures distributed as X and Y
Estimate o = E[X]| — E[Y] = E[X — Y]
Generate i.i.d. pairs (X1, Y1), ..., (Xn, Ya)
Point estimate: «, = (1/n) > 7 1 (X; — Y))

v

v

v

Var[a,] = %Var[X _v]= %(Var[X] + Var[¥] — 2 Cov[X, Y]) J

v

So want Cov[X, Y] >0
» Note that Cov[X, Y] =0 if X and Y simulated independently




CRN, Continued

Simple case: One random number per sample of X and of Y
» Use same random number: X; = X;(U;) and Y; = Yi(U))
» If X(u), Y(u) both 1 (or both ]) in u, then Cov[X, Y] > 0
» True for inversion method: X; = F,'(U;) and Y; = F,}(U))

In practice
» Sync random numbers between systems as much as possible
» Use multiple random number streams, one per event

» Jump-head facility of random number generator is crucial

CRN, Continued

Example: Long-run waiting times in two GI/G/1 queues

» Suppose that
> Interarrival times are i.i.d according to cdf G for both systems
» Service times are i.i.d. according to cdf H; for queue i (i = 1,2)

> Use one sequence (U; : j > 0) to generate a single stream of
interarrival times for use in both systems

> Use one sequence (V; : j > 0) to generate service times in
both systems: Sy ; = H, *(V;) and Sy = H, *(V;) for j > 1

» Note: Need two streams {U;} and {V;}

» Systems get out of sync with only one stream
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Efficiency-Improvement Techniques

Antithetic Variates
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Antithetic Variates

Applies when analyzing a single system

> Intuition: Combat “luck of the draw” by pairing each realized
scenario with its opposite

More precisely:
» Goal: Estimate E[X]
» Generate Xi,...,Xo, and set a, = X,

» Suppose pairs (X1, X2), (X3, Xa), ..., (Xon—1, Xop) are i.i.d.
(possible corr. within pairs)

1
Var[az,] = yr] (Var[Xi] + - -+ + Var[Xz,] +
2 COV[Xl, X2] 442 COV[XQ,,,l, X2n])

» So want COV[XQJ',l,XQJ'] <0forj>1




Antithetic Variates, Continued

Simple case: One random number per sample of X and of Y
» Use same random number: X; = X;(U;) and Y; = Y;(1 — U))
» If X(u), Y(u) both 1 (or both ]) in u, then Cov[X, Y] <0
» E.g., inversion method: X; = F,'(U;) and Y; = F, ' (1 — U;)

Ex: Avg. waiting time of first 100 cust. in GI/G/1 queue
> Interarrival times (service times) i.i.d according to cdf G (H)
» Replication 2k — 1: (1;,S;) = (G X(U;), H 1(V)))
> Replication 2k: (/;,5;) = (G Y1 - Uj).H (1 - V)))

Ex: Alternative method for GI/G/1 queue (Explain?)
> Replication 2k — 1: (/;,S;) = (G H(U;), H 1(V))
» Replication 2k: (/;,S;) = (G H(V}), H *(U)))

Warning: CRN + AV together can backfire! [Law, p. 609]
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Conditional Monte Carlo
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Conditional Monte Carlo

Example: Markovian GSMP (X(t) : t > 0)
> All events are simple w. exponential clock-setting dist'ns
» Simulation algorithm (up to nth state transition time T,)
» Generate states S, ...,S,_1 R DTMC w. transition matrix R
» Generate holding time in each Sx: Hy 2 exp(A(Sk))
Goal: Estimate ov = E[Z] with
Z = [y £ (X(u)) du = 55 F(Si) Hi
Variance reduction trick:

» Generate states Sg,...,S,_1 as above
» Set holding time in Sy = mean holding time = 1/\(S5)

Q: Why does this work?

v

v

v
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Conditional Monte Carlo, Continued

Law of total expectation
E[E[UV]] = E[U]

Variance decomposition

Var[U] = Var[E[U|V]] + E[Var[U|V]] > Var[E[U|V]]

Key ldea

» Simulate V and compute U = E[U|V]

» Then U has same mean as U but smaller variance

> So generate i.i.d replicates of U to estimate o = E[U]
Markovian GSMP example revisited

» U=2Z=>1"8f(Sk)Hx and V = (So,..., S, 1)

.y Zm, Where

Z = E[Z|So, - Sa1] = Sio F(SE[HKISH = X2 F(SK) 35y

> So estimate E[Z] from i.i.d replicates Z;, ..
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Efficiency-Improvement Techniques

Control Variates
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Control Variates

Intuition: Exploit extra system knowledge
» Goal: Estimate oo = E[X]

» Suppose that there exists a random variable Y such that

» Y is strongly correlated with X
» E[Y] can be computed analytically

» Control variable: C =Y — E[Y]

» Controlled estimator: X(\) = X — AC

- EIX(V)] =

» v()\) = Var[X()\)] = Var[X] — 2) Cov[X, C] + A? Var[C]

» v(A) is minimized at \* =

» Minimizing variance is v(\*) = (1 — p?) Var[X], where

Cov[X,C]

2= = correlation coefficient of X and C
Var[X]-Var[C]

p:
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Control Variates, Continued

The method
1. Simulate i.i.d. pairs (X1, (1), ..., (Xn, Cp)
2. Estimate \* by

_ 1 S x_xye /Ly
-3 (x xn)c,/n;c?

i=1

3. Apply usual estimation techniques to 73, ..., Z,, where
Z,‘ZX,‘*)\*C,']COI’].SI.SH

Ex: E[avg delay] for first n customers in GI/G/1 queue

» X; = average delay in ith replication

v

Vi k = kth service time in i replication, with E[V; ;| =5
Take C; = (1/n)> ] Vik —5
Q: Why is this a good choice?

v

v
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Control Variates, Continued

Internal and External Controls

» C; in queueing example is an internal control, generated
internally to the simulation
» Example of an external control:

» Simplify original simulation model M to a version M’ where
performance measure o’ can be computed analytically

» Generate replications of M and M’ using common random
numbers to obtain (X1, X{), ..., (Xs, X)

» Take C; = X/ — o

Multiple controls

» Can compute (A],...,A},) by solving linear syst. of equations

» Essentially, we fit a linear regression model and simulate the
leftover uncertainty (i.e., the residuals)
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Efficiency-Improvement Techniques

Importance Sampling
Likelihood ratios
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Importance Sampling

Likelihood ratios for i.i.d. random variables
» Goal: Estimate o = E[g,(Xo. X1,....X,)]
> Xo,..., Xy arei.id. replicates of X with pmf p(s) = P(X = s)
> Let Y be another RV with pmf g(s) = P(Y =s)

Suppose that Y is “easier” to simulate than X

v

v

We will estimate « by simulating Y and then “correcting”

Likelihood ratio for i.i.d. random variables

[ — H?:o p(Y:)
" 1T a(Y)

(rel. likelihood of seeing Y under p vs under q)

» To avoid blowups, define 0/0 = 0 and assume that
q(x) = 0 = p(x) = 0 (“absolute continuity”)
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Importance Sampling, Continued

Likelihood-ratio identity for i.i.d. random variables
E[g,,(Yo, Yl, 0oo0g Yn)Ln] = E[gn(Xo,Xl, 500 ,Xn)]

Proof

E[gn(YO7 ey Yn)Ln]

= s s 17, p(si) .
_SU;S sngsgn( Byoooy n)<H7:oq(5,))P(YO 0, .-, Yo
— s s M n .
7502635 snze;gn( 05 o 9 n)<H7_Oq(s’_)>Hq( I)
:Z“.Zg”(so"'wsn) p(s,-)

SHES s,ES iy

= E[gn(X0> ce 7Xn)]
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Importance Sampling, Continued

General guidance for choosing g
» Somewhat of an art (depends on details of model)
» But if gn(so.....5,) = [/ &(si) for some g > 0 and we take
q(s) = g(s)p(s)/a, then gn(Yo, ..., Ys)L, = and var =0
» Can't actually choose g as above (since « is unknown) but
can guide choice

» g(s) is large if s is “important”, i.e., g(s) and/or p(s) is large

Implementation

» Set L = 1 initially & update whenever new Y is generated:

p(Yi)
q(Ys)

L+ Lx

fori>1
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Importance Sampling, Continued

Importance sampling for DTMCs

>

v

Goal: Estimate E|[g,(Xo, ..., X,)] where M = (X :

DTMC with initial dist'n ;. and transition matrix P
Simulate DTMC M = (Y; : i > 0) w. building blocks ji and P

i>0)isa

Yo I1is P(Yi1, Yi)

ly=< ——
i(Yo) ITiey P(Yie1, Vi)

v

v

Assume absolute continuity: if initial state or a jump has zero
probability in M, it has zero probability in M

Can be computed incrementally: set L = 1 and then

% P(Y: 1. Y,
MY) g e x PUinY)

L+ [ x =
f(Yo) P(Yi-1,Yi)

Can generalize to E[gy(Xo, ..., Xn)] where N is random

fori>1 }
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Importance Sampling, Continued

Importance sampling for GSMPs

» Goal: Estimate E[g:(X(u) : 0 < u < t)] where
G = (X(t) ct > O) is a GSMP with bldg blocks v, Fg, p, F

> Simulate GSMP G = (X(t) : t > 0) with building blocks 7,
Fo, p, F (all other building blocks, e.g., S and E(s), the same)

» Assume that cdfs Fg, F, I:_O, F have pdf's fy, f, fN('), f

» Assume absolute continuity: if jump or clock reading has zero
prob. in G, it has zero prob. in G

Importance Sampling, Continued

Simulation algorithm for GSMPs: as usual except

>

v

v

v

v

Set L = 1 initially

After generating initial state So, set L+ L x Zg(’;
0

: ~ . fo(Co.izei,50)

After generating Co; for e;, set L «— L x (G e %)

(6n,i;§n-,ei-§n71-,e:)
(Co.i:Snrei Sn—1.€})

After generating CN,,,,- for g, set L < L x ;

After generating a jump S,_1 — 5, set L « L x
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Application to Rare-Event Estimation

Example: DTMC model of machine reliability
» State space of (X,:n>0): S =1{0,1,2,3}
» X, = 0: machine fully operational at nth inspection
» X, =1 or 2: machine operational but degraded
» X, = 3: machine has failed

> 1(0) 2 P(Xo=0)=1

o 1 2 3
0/0 1 0 O

p_ L &m0 i U
2 0 & 0 34
3\ 0 0 1 0

> 1> A, so failures take a long time to occur
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Rare-Event Estimation, Continued

» Set N = min{n > 0: X, = 3} (time to failure)

Goal: Estimate v = P(N < j) = E[I(N < j)] with j small
Challenge: Event A = {N < j} is very rare

Can write o = E[g;(Xo, ..., X;)|, where

v

v

v

1 if x; =3 forsome 0 </ <y
gi(x0,....x) =

0 otherwise

v

Use importance sampling with A = g
l.e., simulate DTMC (X, : n > 0) with

v

o 1 2 3

0 1 0 O
05 0 05 O
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Rare-Event Estimation, Continued

Rare-Event Estimation Algorithm for Machine Reliability

1. Choose sample size n

2. Simulate (X, : n > 0) up to time T = min(j, N)

I, P(Xi1, X)

T, P(Xi1, X5)

4. Repeat Steps 2-3 n times, independently, to produce i.i.d.
replicates Wh, ..., W,

3. Compute W = /(N <)

5. Compute point estimates and confidence intervals as usual

Extensions of basic method include dynamic importance
sampling
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