Reading: Ch. 11 in Law & Ch. 10 in Handbook of Simulation

Peter J. Haas

CS 590M: Simulation Spring Semester 2020

Overview
Common Random Numbers
Antithetic Variates
Conditional Monte Carlo
Control Variates
Importance Sampling
Likelihood ratios
Rare-event estimation

Many Different Techniques

- Common random numbers
- Antithetic variates
- Conditional Monte Carlo
- Control variates
- Importance sampling
- Stratified sampling
- ► Latin hypercube sampling (HW #1)
- Quasi-random numbers
- **.** . . .

Variance Reduction and Efficiency Improvement

Typical goal is variance reduction

- ▶ I.e., reduce variance of estimator α_n of α
- ▶ Narrower CIs ⇒ less computational effort for given precision
- So methods often called "variance reduction" methods

Care is needed when evaluating techniques

- Reduction in effort must outweigh increased cost of executing V-R method
- Increase in programming complexity?
- In many cases, additional effort is obviously small
- What about more complicated cases?

Comparing Efficiency-Improvement Schemes

Trading off statistical and computational efficiency

- ▶ Suppose $\alpha = E[X] = E[Y]$
- ▶ Should we generate i.i.d. replicates of X or Y to estimate α ?
- Assume large but fixed computer budget c
- ▶ Let $\tau_X(i)$ be (random) time to generate X_i
- Assume that $(X_1, \tau_X(1)), (X_2, \tau_X(2)), \ldots$ are i.i.d.
- Number of X-observations generated within budget c is $N_x(c) = \max\{n \ge 0 : \tau_X(1) + \dots + \tau_X(n) \le c\}$
- ▶ So estimator based on budget is $\alpha_X(c) = \frac{1}{N_X(c)} \sum_{i=1}^{N_X(c)} X_i$

Comparing Efficiency-Improvement Schemes, Continued

Hammersley-Handscomb Efficiency Measure

- ▶ Can show: $\lim_{c\to\infty} N(c)/c = \lambda_X$ a.s., where $\lambda_X = 1/E[\tau_X]$
- Hence

$$\alpha_{X}(c) - \alpha = \frac{1}{N_{X}(c)} \sum_{i=1}^{N_{X}(c)} X_{i} - \alpha \approx \frac{1}{\lfloor \lambda_{X} c \rfloor} \sum_{i=1}^{\lfloor \lambda_{X} c \rfloor} X_{i} - \alpha$$

$$\stackrel{D}{\sim} \sqrt{\frac{\mathsf{Var}[X]}{\lambda_{X} c}} N(0, 1) = \frac{1}{\sqrt{c}} \sqrt{E[\tau_{X}] \cdot \mathsf{Var}[X]} N(0, 1)$$

Similarly,

$$\alpha_Y(c) - \alpha \stackrel{\mathsf{D}}{\sim} \frac{1}{\sqrt{c}} \sqrt{E[\tau_Y] \cdot \mathsf{Var}[Y]} \ \mathsf{N}(0,1)$$

► Efficiency measure: $\frac{1}{E[\tau_V] \cdot \text{Var}[Y]}$ (holds fairly generally)

Overview

Common Random Numbers

Antithetic Variates
Conditional Monte Carlo
Control Variates
Importance Sampling
Likelihood ratios

Common Random Numbers (CRN)

Applies when comparing alternate systems

 Intuition: Sharper comparisons if systems experience same random fluctuations

More precisely:

- Goal: Compare two perf. measures distributed as X and Y
- ► Estimate $\alpha = E[X] E[Y] = E[X Y]$
- Generate i.i.d. pairs $(X_1, Y_1), \ldots, (X_n, Y_n)$
- ▶ Point estimate: $\alpha_n = (1/n) \sum_{i=1}^n (X_i Y_i)$

$$Var[\alpha_n] = \frac{1}{n} Var[X - Y] = \frac{1}{n} (Var[X] + Var[Y] - 2 Cov[X, Y])$$

- So want Cov[X, Y] > 0
 - ▶ Note that Cov[X, Y] = 0 if X and Y simulated independently

CRN, Continued

Simple case: One random number per sample of X and of Y

- ▶ Use same random number: $X_i = X_i(U_i)$ and $Y_i = Y_i(U_i)$
- ▶ If X(u), Y(u) both \uparrow (or both \downarrow) in u, then Cov[X, Y] > 0
- ▶ True for inversion method: $X_i = F_X^{-1}(U_i)$ and $Y_i = F_Y^{-1}(U_i)$

In practice

- Sync random numbers between systems as much as possible
- Use multiple random number streams, one per event
- Jump-head facility of random number generator is crucial

CRN, Continued

Example: Long-run waiting times in two GI/G/1 queues

- Suppose that
 - ▶ Interarrival times are i.i.d according to cdf *G* for both systems
 - ▶ Service times are i.i.d. according to cdf H_i for queue i (i = 1, 2)
- ▶ Use one sequence $(U_j : j \ge 0)$ to generate a single stream of interarrival times for use in both systems
- ▶ Use one sequence $(V_j : j \ge 0)$ to generate service times in both systems: $S_{1,j} = H_1^{-1}(V_j)$ and $S_{2,j} = H_2^{-1}(V_j)$ for $j \ge 1$
- ▶ Note: Need two streams $\{U_i\}$ and $\{V_i\}$
 - Systems get out of sync with only one stream

Overview
Common Random Numbers
Antithetic Variates
Conditional Monte Carlo
Control Variates
Importance Sampling

Antithetic Variates

Applies when analyzing a single system

Intuition: Combat "luck of the draw" by pairing each realized scenario with its opposite

More precisely:

- ▶ Goal: Estimate E[X]
- Generate X_1, \ldots, X_{2n} and set $\alpha_n = \bar{X}_{2n}$
- Suppose pairs $(X_1, X_2), (X_3, X_4), \dots, (X_{2n-1}, X_{2n})$ are i.i.d. (possible corr. within pairs)

$$Var[\alpha_{2n}] = \frac{1}{4n^2} (Var[X_1] + \dots + Var[X_{2n}] + 2 Cov[X_1, X_2] + \dots + 2 Cov[X_{2n-1}, X_{2n}])$$

► So want $Cov[X_{2j-1}, X_{2j}] < 0$ for $j \ge 1$

Antithetic Variates, Continued

Simple case: One random number per sample of X and of Y

- ▶ Use same random number: $X_i = X_i(U_i)$ and $Y_i = Y_i(1 U_i)$
- ▶ If X(u), Y(u) both \uparrow (or both \downarrow) in u, then Cov[X, Y] < 0
- ▶ E.g., inversion method: $X_i = F_X^{-1}(U_i)$ and $Y_i = F_Y^{-1}(1 U_i)$

Ex: Avg. waiting time of first 100 cust. in GI/G/1 queue

- ▶ Interarrival times (service times) i.i.d according to cdf *G* (*H*)
- ▶ Replication 2k 1: $(I_j, S_j) = (G^{-1}(U_j), H^{-1}(V_j))$
- ▶ Replication 2k: $(I_j, S_j) = (G^{-1}(1 U_j), H^{-1}(1 V_j))$

Ex: Alternative method for GI/G/1 queue (Explain?)

- ▶ Replication 2k 1: $(I_j, S_j) = (G^{-1}(U_j), H^{-1}(V_j))$
- ▶ Replication 2k: $(I_i, S_i) = (G^{-1}(V_i), H^{-1}(U_i))$

Warning: CRN + AV together can backfire! [Law, p. 609]

Overview Common Random Numbers Antithetic Variates

Conditional Monte Carlo

Control Variates
Importance Sampling
Likelihood ratios
Rare-event estimation

Conditional Monte Carlo

Example: Markovian GSMP $(X(t): t \ge 0)$

- ▶ All events are simple w. exponential clock-setting dist'ns
- ▶ Simulation algorithm (up to *n*th state transition time T_n)
 - ▶ Generate states $S_0, \ldots, S_{n-1} \stackrel{D}{\sim} \mathsf{DTMC}$ w. transition matrix R
 - ► Generate holding time in each S_k : $H_k \stackrel{D}{\sim} exp(\lambda(S_k))$
- ▶ Goal: Estimate $\alpha = E[Z]$ with $Z = \int_0^{T_n} f(X(u)) du = \sum_{k=0}^{n-1} f(S_k) H_k$
- Variance reduction trick:
 - ▶ Generate states S_0, \ldots, S_{n-1} as above
 - Set holding time in S_k = mean holding time = $1/\lambda(S_k)$
- Q: Why does this work?

Conditional Monte Carlo, Continued

Law of total expectation

$$E[E[U|V]] = E[U]$$
 ex: $E[W] = \sum_{i} E[U|V=v_{i}] \cdot \rho(V=v_{i})$

Variance decomposition

$$Var[U] = Var[E[U|V]] + E[Var[U|V]] \ge Var[E[U|V]]$$

Key Idea

- ▶ Simulate V and compute $\tilde{U} = E[U|V]$
- lacktriangle Then $ilde{U}$ has same mean as U but smaller variance
- ▶ So generate i.i.d replicates of \tilde{U} to estimate $\alpha = E[U]$

Markovian GSMP example revisited

- $V = Z = \sum_{k=0}^{n-1} f(S_k) H_k$ and $V = (S_0, \dots, S_{n-1})$
- ▶ So estimate $E[\tilde{Z}]$ from i.i.d replicates $\tilde{Z}_1, \ldots, \tilde{Z}_m$, where

$$\tilde{Z} = E[Z|S_0, \dots, S_{n-1}] = \sum_{k=0}^{n-1} f(S_k) E[H_k|S_k] = \sum_{k=0}^{n-1} f(S_k) \frac{1}{\lambda(S_k)}$$

Overview Common Random Numbers Antithetic Variates Conditional Monte Carlo

Control Variates

mportance Sampling
Likelihood ratios
Rare-event estimation

Control Variates

Intuition: Exploit extra system knowledge

- Goal: Estimate $\alpha = E[X]$
- Suppose that there exists a random variable Y such that
 - Y is strongly correlated with X
- Control variable: C = Y E[Y] $\angle LY M_Y = 0$
- ▶ Controlled estimator: $X(\lambda) = X \lambda C$
- $E[X(\lambda)] = E[X-\lambda c] = E[X] \lambda E[c] = E[X]$
- $\triangleright v(\lambda) = Var[X(\lambda)] = Var[X] 2\lambda Cov[X, C] + \lambda^2 Var[C]$
- \triangleright $v(\lambda)$ is minimized at $\lambda^* = \frac{\text{Cov}[X,C]}{\text{Var}[C]}$
- ▶ Minimizing variance is $\nu(\lambda^*) = (1 \rho^2) \operatorname{Var}[X]$, where

$$\rho = \frac{\text{Cov}[X,C]}{\sqrt{\text{Var}[X]\cdot\text{Var}[C]}} = \text{correlation coefficient of } X \text{ and } C$$

Control Variates, Continued

The method

- 1. Simulate i.i.d. pairs $(X_1, C_1), \ldots, (X_n, C_n)$
- 2. Estimate λ^* by

$$\lambda_n^* = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n) C_i / \frac{1}{n} \sum_{i=1}^n C_i^2$$

3. Apply usual estimation techniques to Z_1, \ldots, Z_n , where $Z_i = X_i - \lambda^* C_i$ for $1 \le i \le n$

Ex: E[avg delay] for first n customers in GI/G/1 queue

- $ightharpoonup X_i = average delay in$ *i*th replication
- ▶ $V_{i,k} = k$ th service time in i replication, with $E[V_{i,k}] = 5$
- ► Take $C_i = (1/n) \sum_{k=1}^n V_{i,k} 5$
- Q: Why is this a good choice?

Control Variates, Continued

Internal and External Controls

- C_i in queueing example is an internal control, generated internally to the simulation
- Example of an external control:
 - Simplify original simulation model M to a version M' where performance measure α' can be computed analytically
 - ▶ Generate replications of M and M' using common random numbers to obtain $(X_1, X_1'), \ldots, (X_n, X_n')$
 - ▶ Take $C_i = X_i' \alpha'$

Multiple controls

- $X(\lambda_1,\ldots,\lambda_m) = X \lambda_1 C^{(1)} \cdots \lambda_m C^{(m)}$
- ▶ Can compute $(\lambda_1^*, \dots, \lambda_m^*)$ by solving linear syst. of equations
- ► Essentially, we fit a linear regression model and simulate the leftover uncertainty (i.e., the residuals)

Overview Common Random Numbers Antithetic Variates Conditional Monte Carlo Control Variates

Importance Sampling
Likelihood ratios
Rare-event estimation

Importance Sampling

Likelihood ratios for i.i.d. random variables

- ▶ Goal: Estimate $\alpha = E[g_n(X_0, X_1, ..., X_n)]$
- ▶ $X_0, ..., X_n$ are i.i.d. replicates of X with pmf p(s) = P(X = s)
- ▶ Let Y be another RV with pmf q(s) = P(Y = s)
- Suppose that Y is "easier" to simulate than X
- \blacktriangleright We will estimate α by simulating Y and then "correcting"

Likelihood ratio for i.i.d. random variables

$$L_n = \frac{\prod_{i=0}^n p(Y_i)}{\prod_{i=0}^n q(Y_i)} \quad \text{(rel. likelihood of seeing } \mathbf{Y} \text{ under } p \text{ vs under } q\text{)}$$

► To avoid blowups, define 0/0 = 0 and assume that $q(x) = 0 \Rightarrow p(x) = 0$ ("absolute continuity")

Likelihood-ratio identity for i.i.d. random variables

$$E[g_n(Y_0, Y_1, ..., Y_n) L_n] = E[g_n(X_0, X_1, ..., X_n)]$$

Proof

$$E[g_{n}(Y_{0},...,Y_{n})L_{n}]$$

$$= \sum_{s_{0} \in S} ... \sum_{s_{n} \in S} g_{n}(s_{0},...,s_{n}) \left(\frac{\prod_{i=0}^{n} p(s_{i})}{\prod_{i=0}^{n} q(s_{i})}\right) P(Y_{0} = s_{0},...,Y_{n} = s_{n})$$

$$= \sum_{s_{0} \in S} ... \sum_{s_{n} \in S} g_{n}(s_{0},...,s_{n}) \left(\frac{\prod_{i=0}^{n} p(s_{i})}{\prod_{i=0}^{n} q(s_{i})}\right) \prod_{i=0}^{n} q(s_{i})$$

$$= \sum_{s_{0} \in S} ... \sum_{s_{n} \in S} g_{n}(s_{0},...,s_{n}) \prod_{i=0}^{n} p(s_{i})$$

$$= E[g_{n}(X_{0},...,X_{n})]$$

Importance Sampling, Continued
$$g_{n}(y_{0}, ..., y_{n}) L_{n} = \pi g(s_{i}) \pi p(s_{i}) \pi g(s_{i})$$

General guidance for choosing q
 $\pi g(s_{i}) \pi g(s_$

- Somewhat of an art (depends on details of model)
- ▶ But if $g_n(s_0, ..., s_n) = \prod_{i=0}^n g(s_i)$ for some $g \ge 0$ and we take $g(s) = g(s)p(s)/\alpha$, then $g_n(Y_0, \dots, Y_n)L_n \equiv \alpha$ and var = 0
- \triangleright Can't actually choose q as above (since α is unknown) but can guide choice
 - ightharpoonup q(s) is large if s is "important", i.e., g(s) and/or p(s) is large

Implementation

▶ Set L=1 initially & update whenever new Y_i is generated:

$$L \leftarrow L \times \frac{p(Y_i)}{q(Y_i)}$$
 for $i \ge 1$

Importance sampling for DTMCs

- ▶ Goal: Estimate $E[g_n(X_0,...,X_n)]$ where $M=(X_i:i\geq 0)$ is a DTMC with initial dist'n μ and transition matrix P
- ▶ Simulate DTMC $\tilde{M} = (Y_i : i \ge 0)$ w. building blocks $\tilde{\mu}$ and \tilde{P}

$$L_{n} = \frac{\mu(Y_{0}) \prod_{i=1}^{n} P(Y_{i-1}, Y_{i})}{\tilde{\mu}(Y_{0}) \prod_{i=1}^{n} \tilde{P}(Y_{i-1}, Y_{i})}$$

- Assume absolute continuity: if initial state or a jump has zero probability in \tilde{M} , it has zero probability in M
- ▶ Can be computed incrementally: set L = 1 and then

$$L \leftarrow L imes rac{\mu(Y_0)}{ ilde{\mu}(Y_0)} \qquad ext{and} \qquad L \leftarrow L imes rac{P(Y_{i-1}, Y_i)}{ ilde{P}(Y_{i-1}, Y_i)} \qquad ext{for } i \geq 1$$

▶ Can generalize to $E[g_N(X_0,...,X_N)]$ where N is random

Importance sampling for GSMPs

- ▶ Goal: Estimate $E[g_t(X(u): 0 \le u \le t)]$ where $G = (X(t): t \ge 0)$ is a GSMP with bldg blocks ν , F_0 , ρ , F
- ▶ Simulate GSMP $\tilde{G} = (\tilde{X}(t) : t \ge 0)$ with building blocks $\tilde{\nu}$, \tilde{F}_0 , \tilde{p} , \tilde{F} (all other building blocks, e.g., S and E(s), the same)
- ▶ Assume that cdfs F_0 , F, \tilde{F}_0 , \tilde{F} have pdf's f_0 , f, \tilde{f}_0 , \tilde{f}
- Assume absolute continuity: if jump or clock reading has zero prob. in \tilde{G} , it has zero prob. in G

Simulation algorithm for GSMPs: as usual except

- ▶ Set L = 1 initially
- ▶ After generating initial state \tilde{S}_0 , set $L \leftarrow L \times \frac{\nu(S_0)}{\tilde{\nu}(\tilde{S}_0)}$
- ▶ After generating $\tilde{C}_{0,i}$ for e_i , set $L \leftarrow L \times \frac{f_0(\tilde{C}_{0,i};e_i,\tilde{S}_0)}{\tilde{f}_0(\tilde{C}_{0,i};e_i,\tilde{S}_0)}$
- ▶ After generating $\tilde{C}_{n,i}$ for e_i , set $L \leftarrow L \times \frac{f(\tilde{C}_{n,i}; \tilde{S}_n, e_i, \tilde{S}_{n-1}, e_n^*)}{\tilde{f}(\tilde{C}_{n,i}; \tilde{S}_n, e_i, \tilde{S}_{n-1}, e_n^*)}$
- ▶ After generating a jump $\tilde{S}_{n-1} \to \tilde{S}_n$, set $L \leftarrow L \times \frac{p(\tilde{S}_n; \tilde{S}_{n-1}, e_n^*)}{\tilde{p}(\tilde{S}_n; \tilde{S}_{n-1}, e_n^*)}$

Overview Common Random Numbers Antithetic Variates Conditional Monte Carlo Control Variates

Importance Sampling
Likelihood ratios
Rare-event estimation

Application to Rare-Event Estimation

Example: DTMC model of machine reliability

- ▶ State space of $(X_n : n \ge 0)$: $S = \{0, 1, 2, 3\}$
 - $ightharpoonup X_n = 0$: machine fully operational at *n*th inspection
 - $X_n = 1$ or 2: machine operational but degraded
 - $X_n = 3$: machine has failed

$$P=egin{array}{ccccc} 0 & 1 & 2 & 3 \ 0 & 1 & 0 & 0 \ rac{\mu}{\lambda+\mu} & 0 & rac{\lambda}{\lambda+\mu} & 0 \ 0 & rac{\mu}{\lambda+\mu} & 0 & rac{\lambda}{\lambda+\mu} \ 0 & 0 & 1 & 0 \ \end{array}$$

• $\mu \gg \lambda$, so failures take a long time to occur

Rare-Event Estimation, Continued

- ▶ Set $N = \min\{n > 0 : X_n = 3\}$ (time to failure)
- ▶ Goal: Estimate $\alpha = P(N \le j) = E[I(N \le j)]$ with j small
- ▶ Challenge: Event $A = \{N \le j\}$ is very rare
- ▶ Can write $\alpha = E[g_j(X_0, ..., X_j)]$, where

$$g_j(x_0,\ldots,x_j) = \begin{cases} 1 & \text{if } x_i = 3 \text{ for some } 0 \leq i \leq j; \\ 0 & \text{otherwise} \end{cases}$$

- Use importance sampling with $\lambda = \mu$
- ▶ I.e., simulate DTMC $(\tilde{X}_n : n \ge 0)$ with

$$ilde{P} = egin{array}{ccccc} 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0.5 & 0 & 0.5 & 0 \\ 0 & 0.5 & 0 & 0.5 \\ 0 & 0 & 1 & 0 \end{array} \hspace{0.5cm} ext{and} \hspace{0.5cm} ilde{
u} =
u$$

Rare-Event Estimation, Continued

Rare-Event Estimation Algorithm for Machine Reliability

- 1. Choose sample size *n*
- 2. Simulate $(\tilde{X}_n : n \ge 0)$ up to time $T = \min(j, N)$
- 3. Compute $W = I(N \le j) \frac{\prod_{i=1}^{T} P(\tilde{X}_{i-1}, \tilde{X}_i)}{\prod_{i=1}^{T} \tilde{P}(\tilde{X}_{i-1}, \tilde{X}_i)}$
- 4. Repeat Steps 2–3 n times, independently, to produce i.i.d. replicates W_1, \ldots, W_n
- 5. Compute point estimates and confidence intervals as usual

Extensions of basic method include dynamic importance sampling