Efficiency-Improvement Techniques
Reading: Ch. 11 in Law & Ch. 10 in Handbook of Simulation
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Many Different Techniques

» Common random numbers

» Antithetic variates

» Conditional Monte Carlo

» Control variates

» Importance sampling

» Stratified sampling

» Latin hypercube sampling (HW #1)

» Quasi-random numbers
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Variance Reduction and Efficiency Improvement

Typical goal is variance reduction
» |.e., reduce variance of estimator «, of «
> Narrower Cls = less computational effort for given precision

» So methods often called “variance reduction” methods

Care is needed when evaluating techniques

» Reduction in effort must outweigh increased cost of executing
V-R method

> Increase in programming complexity?
> In many cases, additional effort is obviously small

» What about more complicated cases?
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Comparing Efficiency-Improvement Schemes

Trading off statistical and computational efficiency

>

>

>

Suppose o = E[X] = E[Y]

Should we generate i.i.d. replicates of X or Y to estimate a?
Assume large but fixed computer budget ¢

Let 7x(/) be (random) time to generate X;

Assume that (X1, 7x(1)), (X2,7x(2)),... are i.i.d.

Number of X-observations generated within budget c is
Ny(c) =max{n>0:7x(1)+ -+ 7x(n) < c}

So estimator based on budget is ax(c) = le(c) ZII.\Zl(C) Xi
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Comparing Efficiency-Improvement Schemes, Continued

Hammersley-Handscomb Efficiency Measure
» Can show: limc_,o N(c)/c = Ax a.s., where A\x = 1/E[7x]

» Hence

Nx(C)

1 1
ax(c) —a = Nx () ZX,-—azm ; Xi —

i=

[ \/WN(O, 1) = % Efrx] - Var[X] N(0,1)

» Similarly,

o) — a2 \%\/E[TY] Var[Y] N(0,1) J

» Efficiency measure: W (holds fairly generally)



Efficiency-Improvement Techniques

Common Random Numbers
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Common Random Numbers (CRN)

Applies when comparing alternate systems

> Intuition: Sharper comparisons if systems experience same
random fluctuations

More precisely:
» Goal: Compare two perf. measures distributed as X and Y
» Estimate o = E[X]| — E[Y] = E[X — Y]
» Generate i.i.d. pairs (X1, Y1),...,(Xn, Ya)
» Point estimate: a, = (1/n) > 7 (X; — Y))

Var[a,] = %Var[X _v]= %(Var[X] 4 Var[¥] — 2 Cov[X, Y]) J

» So want Cov[X, Y] >0
» Note that Cov[X, Y] =0 if X and Y simulated independently



CRN, Continued

Simple case: One random number per sample of X and of Y
» Use same random number: X; = X;(U;) and Y; = Y;(U;)
» If X(u), Y(u) both 1 (or both |) in u, then Cov[X, Y] >0
» True for inversion method: X; = Fy '(U;) and Y; = F, ' (U;)

In practice
» Sync random numbers between systems as much as possible
> Use multiple random number streams, one per event

» Jump-head facility of random number generator is crucial
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CRN, Continued

Example: Long-run waiting times in two GI/G/1 queues

» Suppose that

> Interarrival times are i.i.d according to cdf G for both systems
» Service times are i.i.d. according to cdf H; for queue i (i =1, 2)

» Use one sequence (U;j : j > 0) to generate a single stream of
interarrival times for use in both systems

» Use one sequence (V; : j > 0) to generate service times in
both systems: Sy ; = H; *(V;) and Sy = H, '(V;) for j > 1

» Note: Need two streams {U;} and {V;}
» Systems get out of sync with only one stream
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Efficiency-Improvement Techniques

Antithetic Variates
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Antithetic Variates

Applies when analyzing a single system

» Intuition: Combat “luck of the draw” by pairing each realized
scenario with its opposite

More precisely:
> Goal: Estimate E[X]
» Generate Xi,...,Xo, and set a,, = Xon

» Suppose pairs (X1, X2), (X3, Xa), ..., (Xon—1, Xop) are i.i.d.
(possible corr. within pairs)

(Var[Xi] + -+ - + Var[Xzn] +
2 COV[Xl, Xz] 442 COV[)(Q,,,l7 Xgn])

1
Var[azn] = ﬁ

» So want Cov[Xzj_1, Xoj] < 0 forj>1
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Antithetic Variates, Continued

Simple case: One random number per sample of X and of Y
» Use same random number: X; = X;(U;) and Y; = Y;(1 — U;)
> If X(u), Y(u) both 1 (or both |) in u, then Cov[X, Y] <0
» E.g., inversion method: X; = F, '(U;) and Y = F, 1 (1 — U;)

Ex: Avg. waiting time of first 100 cust. in GI/G/1 queue
» Interarrival times (service times) i.i.d according to cdf G (H)
> Replication 2k — 1: (/;, 5;) = (G *(U;). H*(V)))
» Replication 2k: (/;,5;) = (G (1 - Uj),H *(1 - V)))

Ex: Alternative method for GI/G/1 queue (Explain?)
> Replication 2k — 1: (/;, 5;) = (G *(U;). H (V)
» Replication 2k: (/;,5;) = (G *(V}), H *(U)))

Warning: CRN + AV together can backfire! [Law, p. 609]
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Efficiency-Improvement Techniques

Conditional Monte Carlo
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Conditional Monte Carlo

Example: Markovian GSMP (X(t): t > 0)
> All events are simple w. exponential clock-setting dist'ns
» Simulation algorithm (up to nth state transition time T,)
» Generate states Sp, ..., 5,1 R DTMC w. transition matrix R
» Generate holding time in each Sx: Hy 2 exp(A(Sk))
» Goal: Estimate o = E[Z] with
Z = [ F(X(u)) du = 3775 F(Sk)Hx
» Variance reduction trick:

» Generate states S, ..., S, 1 as above
» Set holding time in Sx = mean holding time = 1/\(Sk)

» Q: Why does this work?
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Conditional Monte Carlo, Continued

Law of total expectation

E[E[UIV = E[U]  er: £())= Ze[MIV-4] plvev)

Variance decomposition
Var[U] = Var[E[U|V]] + E[Var[U|V]] > Var[E[U|V]]

Key Ildea

» Simulate V and compute U = E[U|V]

» Then U has same mean as U but smaller variance

» So generate i.i.d replicates of U to estimate a = E[U]
Markovian GSMP example revisited

» U=2Z= 7"0f(Sk)Hx and V = (Sp, ..., 5, 1)

> So estimate E[Z] from i.i.d replicates Zi,..., Zm, where

Z = E[Z|S0, ., Sa-1] = S4=o F(SKEHI S = 020 F(SK) x5y
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Efficiency-Improvement Techniques

Control Variates
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Control Variates

Intuition: Exploit extra system knowledge
» Goal: Estimate o = E[X]
» Suppose that there exists a random variable Y such that

» Y is strongly correlated with X /MV z L{[Vj

» E[Y] can be computed analytically VY- Py 0
» Control variable: C =Y — E[Y] cly- ﬂ/j A 3 /
» Controlled estimator: X(\) = X — A\C B
> EX(\)] = [:[X‘/\‘/:( - DAL = DX

» v(A\) = Var[X()\)] = Var[X] — 2) Cov[X, C] + A2 Var[C]
» v(A) is minimized at \* = CO‘/EX/CJ/ l/ér[cj

» Minimizing variance is v(\*) = (1 — p?) Var[X], where

Cov[X,C]

—2 = = correlation coefficient of X and C
Var[X]-Var[C]

p:
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Control Variates, Continued

The method
1. Simulate i.i.d. pairs (X1, C1),. .., (Xn, Cp)
2. Estimate A\* by

L Nz /LS
An_n_lg(x, xn)c,/n;c,?

3. Apply usual estimation techniques to 71, ..., Z,, where
Z,':X,'—)\*C,' fOI’].SI'SH

Ex: E[avg delay] for first n customers in GI/G/1 queue
» X; = average delay in ith replication
> Vi« = kth service time in i replication, with E[V; ] =5
» Take G; = (1/n)> )y Vik—5
» Q: Why is this a good choice?
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Control Variates, Continued

Internal and External Controls

» C; in queueing example is an internal control, generated
internally to the simulation
» Example of an external control:

» Simplify original simulation model M to a version M’ where
performance measure o can be computed analytically

» Generate replications of M and M’ using common random
numbers to obtain (X1, X{),...,(Xs, X))

» Take GG =X/ — o/

Multiple controls
» XA, Am) = X = A CH ) c(m)

» Can compute (A],..., A},) by solving linear syst. of equations

» Essentially, we fit a linear regression model and simulate the
leftover uncertainty (i.e., the residuals)
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Efficiency-Improvement Techniques

Importance Sampling
Likelihood ratios
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Importance Sampling

Likelihood ratios for i.i.d. random variables
» Goal: Estimate ov = E|g,(Xo, X1,..., X,)]
» Xo,..., X, are i.i.d. replicates of X with pmf p(s) = P(X = s)
» Let Y be another RV with pmf g(s) = P(Y = s)
» Suppose that Y is “easier” to simulate than X

» We will estimate a by simulating Y and then “correcting”

Likelihood ratio for i.i.d. random variables

H?:o P(Y/)

= Iy a()

(rel. likelihood of seeing Y under p vs under q)

» To avoid blowups, define 0/0 = 0 and assume that
q(x) = 0 = p(x) = 0 (“absolute continuity”)



Importance Sampling, Continued

Likelihood-ratio identity for i.i.d. random variables

Elgn(Yo, Yi,- .., Yn)Ln] = E[gn(Xo, X1, ..., X»)]
Proof
Elgn(Y0,---, Ya)Ln)
HLO p(si)
= .. &nlSo, , Sn L P(Yy = so, Y, = s,
€S sze; ( )<Hi:0 q(s,-)) (Yo )
H7:0 p(si) -
= .. 8nl(S0y---,5n i q(s;
%€S sgs ( )<Hi—0q(5i))g &
- . Z gn(S0s---+5n) | | P(si)
€S SnES i—0
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Importance Sampling, Continued gy, L
p Sampling, fi” b 3,7;2,‘) F90%)
= 7 ’ "'7(/5')()7_';217/9(
General guidance for choosing ¢ _ .~

» Somewhat of an art (depends on details of model)

» Butif g,(s0.....5,) = [[/_&(si) for some g > 0 and we take
q(s) = g(s)p(s)/c, then g,(Yo,..., Ys)L, = o and var =0

» Can't actually choose g as above (since « is unknown) but
can guide choice

> q(s) is large if s is “important”, i.e., g(s) and/or p(s) is large

Implementation

» Set L = 1 initially & update whenever new Y; is generated:

(Yi
(Yi

~

g

L+ Lx

~—

Q

fori>1 J
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Importance Sampling, Continued

Importance sampling for DTMCs

» Goal: Estimate E[g,(Xo, ..., X,)] where M = (X;: /1 >0)is a
DTMC with initial dist'n x and transition matrix P
Simulate DTMC M = (Y; : i > 0) w. building blocks ji and P

v

L PO T, P(Yies, Vi)
" (Yo T, A(Yi1, Vi)

v

Assume absolute continuity: if initial state or a jump has zero
probability in M, it has zero probability in M

v

Can be computed incrementally: set L = 1 and then

Lerx M)y ok P Y) fori>1 J

fi(Yo) P(Yi-1,Y))

» Can generalize to E[gn(Xo, .. .. Xn)] where N is random

9 )
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Importance Sampling, Continued

Importance sampling for GSMPs

» Goal: Estimate E|[g:(X(u) : 0 < u < t)| where
G = (X(t) St > O) is a GSMP with bldg blocks v, Fo, p, F

> Simulate GSMP G = (X(t) : t > 0) with building blocks 7,
Fo, p, F (all other building blocks, e.g., S and E(s), the same)

» Assume that cdfs Fo, F, Fo, F have pdf's fo, f, fo, f

» Assume absolute continuity: if jump or clock reading has zero
prob. in G, it has zero prob. in G
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Importance Sampling, Continued

Simulation algorithm for GSMPs: as usual except

» Set L =1 initially

> After generating initial state o, set L < L x E 503
(S0
: s ) fo(Co.i:€1,50)
> After generating Co; for e, set L < L x TG e S
ing C. . F(Co,iiSn€ir5n-1,€5)
> After generating C,; for e;, set [ < L x FCra e
» After generating a jump S,_1 — S, set L + L x g g Z ;
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Efficiency-Improvement Techniques

Importance Sampling

Rare-event estimation
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Application to Rare-Event Estimation

Example: DTMC model of machine reliability
» State space of (X, :n>0): S =1{0,1,2,3}
» X, = 0: machine fully operational at nth inspection

» X, =1 or 2: machine operational but degraded
» X, = 3: machine has failed

» 1(0) 2 P(Xo=0)=1

o 1 2 3
o/0 1 0 0
Pilﬁ“uoﬁo

> 1> ), so failures take a long time to occur
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Rare-Event Estimation, Continued

» Set N =min{n > 0: X, = 3} (time to failure)

Goal: Estimate o = P(N < j) = E[I(N < j)] with j small
Challenge: Event A= {N < j} is very rare

Can write o = E[gj(Xop. ..., X})], where

v

v

v

0 otherwise

v

Use importance sampling with A =
l.e., simulate DTMC (X, : n > 0) with

v

o 1 2 3

0o 1 0 0
05 0 05 0

){1 if x; =3 for some 0 < i<,
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Rare-Event Estimation, Continued

Rare-Event Estimation Algorithm for Machine Reliability

1.
2.

3.

Choose sample size n

Simulate (X, : n > 0) up to time T = min(j, N)

[, P(Xi1, X))

17, P(Xi-1, X)

Repeat Steps 2-3 n times, independently, to produce i.i.d.
replicates Wiy, ..., W,

Compute W = I(N <)

Compute point estimates and confidence intervals as usual

Extensions of basic method include dynamic importance
sampling
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