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Steady-State Simulation

Why do it?

I Quick approximation for cumulative cost C (t) =
∫ t

0 Y (s) ds

I Y (s) is output process of the simulation, e.g., Y (t) = f
(
X (t)

)
where X (t) is system state and f is a real-valued function

I If time-average limit α = limt→∞(1/t)
∫ t

0
Y (s) ds exists, then

C (t) ≈ tα for large t

I Avoids arbitrary choice of time horizon

I Avoids arbitrary choice of initial conditions

Appropriate if

I No “natural” termination time for simulation

I No “natural” initial conditions

I Rapid convergence to (quasi-)steady state
(e.g., telecom w. nanosecond timescale observed every 5 min.)

3 / 34

Steady-State Performance Measures

The setup for GSMP
(
X (t) : t ≥ 0

)
with state space S

I Output process Y (t) = f
(
X (t)

)
where f is a real-valued function

I Let µ = initial distribution of GSMP

A reminder: General notion of convergence in distribution
I Discrete-state case:

I Xn ⇒ X if limn→∞ P(Xn = s) = P(X = s) for all s ∈ S
I X (t)⇒ X if limt→∞ P

(
X (t) = s

)
= P(X = s) for all s ∈ S

I Note: E [f (X )] =
∑

s∈S f (s)π(s), where
π(s) = limt→∞ P

(
X (t) = s

)
= P(X = s)

I Continuous-state case:
I Zn ⇒ Z if limn→∞ P(Zn ≤ x) = P(Z ≤ x)

for all x where FZ is continuous

I Ex:
√
n
σ

(
X̄n − µX

)
⇒ N(0, 1) by CLT
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Steady-State Performance Measures, Continued

Time-Average Limit of Y (t) process

α such that Pµ
{

limt→∞(1/t)
∫ t

0 Y (u) du = α
}

= 1 for any µ

Steady-State Mean of Y (t) process

α = E [f (X )], where, for any µ, X (t)⇒ X and E [f (X )] exists

Limiting Mean of Y (t) process

α = limt→∞ E
[
f
(
X (t)

)]
for any µ

I “for any µ” = for any member of GSMP family indexed by µ
(with other building blocks the same)

I E [f (X )] exists if and only if E [|f (X )|] <∞
I If f is bounded or S is finite, then X (t)⇒ X implies

limt→∞ E
[
f
(
X (t)

)]
= E [f (X )] (s-s mean = limiting mean)
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Steady-State Simulation Challenges

Autocorrelation problem

I For time-average limit,
α = limt→∞ Ȳ (t) = limt→∞(1/t)

∫ t

0
Y (u) du

I Natural estimator of α is Ȳ (t) for some large t
(obtained from one long observation of system)

I But Y (t) and Y (t + ∆t) highly correlated if ∆t is small

I So estimator is average of autocorrelated observations

I Techniques based on i.i.d. observations don’t work

Initial-Transient Problem

I Steady-state distribution unknown,
so initial dist’n is not typical of steady-state behavior

I Autocorrelation implies that initial bias will persist

I Very hard to detect “end of initial-transient period”
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Estimation Methods

Many alternative estimation methods

I Regenerative method

I Batch-means method

I Autoregressive method

I Standardized-time-series methods

I Integrated-path method

I . . .

We will focus on:

I Regenerative method: clean and elegant

I Batch means: simple, widely used and the basis for other
methods
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The Regenerative Method

References:

I Shedler [Ch. 2 & 3], Haas [Ch. 5 & 6]

I Recent developments: ACM TOMACS 25(4), 2015

Regenerative Processes

I Intuitively:
(
X (t) : t ≥ 0

)
is regenerative if process

“probabilistically restarts” infinitely often
I Restart times T (0),T (1), . . . called regeneration times or

regeneration points
I Regeneration points are random
I Must be almost surely (a.s.) finite
I Ex: Arrivals to empty GI/G/1 queue
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Regenerative Processes: Formal Definition

Definition: Stopping time

A random variable T is a stopping time with respect to(
X (t) : t ≥ 0

)
if occurrence or non-occurrence of event {T ≤ t} is

completely determined by
(
X (u) : 0 ≤ u ≤ t

)
Definition: Regenerative process

The process
(
X (t) : t ≥ 0

)
is regenerative if there exists an infinite

sequence of a.s. finite stopping times
(
T (k) : k ≥ 0

)
s.t. for k ≥ 1

1.
(
X (t) : t ≥ T (k)

)
is distributed as

(
X (t) : t ≥ T (0)

)
2.
(
X (t) : t ≥ T (k)

)
is independent of

(
X (t) : t < T (k)

)
I If T (0) = 0, process is non-delayed (else delayed)

I Can drop stopping-time requirement, (more complicated def.)

I
{
X (t) : t ≥ 0

}
regen. ⇒

{
f
(
X (t)

)
: t ≥ 0

}
regen.

I Analogous definition for discrete-time processes
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Regenerative Processes: Examples

Ex 1: Successive times that CTMC hits a fixed state x

I Formally, T (0) = 0 and
T (k) = min{t > T (k − 1) : X (t−) 6= x and X (t) = x}

I Observe that X
(
T (k)

)
= x for all k

I The two regenerative criteria follow from Markov property

Ex 2: Successive times that CTMC leaves a fixed state x

I X
(
T (k)

)
distributed according to P(x , · ) for each k

I Second criterion follows from Markov property

Q: Is a semi-Markov process regenerative?
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Regenerative GSMPs

Ex 3: GSMP with a single state

I s̄ ∈ S is a single state if E (s̄) = {ē} for some ē ∈ E

I Regeneration points: successive times that ē occurs in s̄
I Observe that for each k ≥ 1,

I New state s ′ at T (k) distributed according to p( · ; s̄, ē)
I No old clocks
I Clock for new event e′ distributed as F ( · ; s ′, e′, s̄, ē)

I Regenerative property follows from Markov property for(
(Sn,Cn) : n ≥ 0

)
Ex 4: GI/G/1 queue

I X (t) = number of jobs in system at time t

I
(
X (t) : t ≥ 0

)
is a GSMP

I T (k) = time of kth arrival to empty system (why?)
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Regenerative GSMPs, Continued

Ex 5: Cancellation

I Suppose there exist s̄ ′, s̄ ∈ S and ē ∈ E (s̄) with
p(s̄ ′; s̄, ē)r(s̄, ē) > 0 such that O(s̄ ′; s̄, ē) = ∅

I T (k) = kth time that ē occurs in s̄ and new state is s̄ ′

Ex 6: Exponential clocks
I Suppose that

I There exists Ẽ ⊆ E such that each e ∈ Ẽ is a simple event
with F (x ; e) = 1− e−λ(e)x

I There exists s̄ ∈ S and ē ∈ E (s̄) s.t. E (s̄)− {ē} ⊆ Ẽ

I T (k) = kth time that ē occurs in s̄ (memoryless property)

Other (fancier) regeneration point constructions are possible

I E.g., if clock-setting distn’s have heavier-than-exponential
tails or bounded hazard rates h(t) = f (t)/

(
1− F (t)

)
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Regenerative Simulation: Cycles

Regeneration points decompose process into i.i.d. cycles

I kth cycle:
(
X (t) : T (k − 1) ≤ t < T (k)

)
I Length of kth cycle: τk = T (k)− T (k − 1)

I Set Yk =
∫ T (k)
T (k−1) Y (u) du

I The pairs (Y1, τ1), (Y2, τ2), . . . are i.i.d as (Y , τ)

Initial transient is not a problem!
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Regenerative Simulation: Time-Average Limits

I Recall: Ȳ (t) = (1/t)
∫ t

0 Y (u) du

Theorem

Suppose that E [|Y1|] <∞ and E [τ1] <∞. Then
limt→∞ Ȳ (t) = α a.s., where α = E [Y ]/E [τ ].

I So estimating time-average limit reduces to a ratio-estimation
problem (can use delta method, jackknife, bootstrap)

(Most of) Proof

Ȳ
(
T (n)

)
=

1

T (n)

∫ T (n)

0

Y (u) du =

∑n
j=1

∫ T (j)

T (j−1)
Y (u) du∑n

j=1

(
T (j)− T (j − 1)

) =

∑n
j=1 Yj∑n
j=1 τj

⇒ lim
n→∞

Ȳ
(
T (n)

)
= α a.s. by SLLN
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Regenerative Simulation: Steady-State Means

Definition

A real-valued random variable τ is said to be periodic with period
d if d is the largest real number such that, w.p.1, τ assumes values
in the set {0, d , 2d , 3d , . . .}. If no such number exists, then τ is
aperiodic. (A discrete random variable is aperiodic if d = 1.)

Theorem

Suppose that
(
X (t) : t ≥ 0

)
is regenerative with finite state space

S and τ is aperiodic with E [τ ] <∞. Then X (t)⇒ X and
E [f (X )] = E [Y1(f )]/E [τ1] for any real-valued function f on S ,

where Y1(f ) =
∫ T (1)
T (0) f

(
X (u)

)
du and τ1 = T (1)− T (0)

I Under conditions of theorem, time avg limit is also a
steady-state mean (and a limiting mean)
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Regenerative Simulation: Other Performance Measures

Important observation:
Yk and τk can be any quantities determined by a cycle

I Ex 1: Long-run avg rate at which GSMP jumps from s to s ′

I Yk = number of jumps from s to s ′ in kth cycle
I τk = length of kth cycle

I Ex 2: Long-run fraction of jumps from s to s ′

I Yk = number of jumps from s to s ′ in kth cycle
I τk = total number of jumps in kth cycle

I Ex 3: Long-run frac. occurrences of e where new state ∈ A
I Yk = number of occurrences of e in kth cycle where s ′ ∈ A
I τk = total number of occurrences of e in kth cycle
I E.g., frac. ambulance arrivals that find emergency room full

18 / 34

Validity of Regenerative Method

Usually not hard to show probabilistic restart

But must also show:

I Regeneration points are a.s. finite
(i.e., infinitely many regenerations w.p.1)

I E [τ ] <∞
I σ2 <∞ for confidence intervals

I If S is finite, suffices to show that E [τ 2] <∞
I Nontrivial!

See my book for techniques to prove validity
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Regenerative Method: Delays

Formal definition of delays in a GSMP

I Sequences of starts (Un : n ≥ 0) and terminations (Vn : n ≥ 0)

I Assume U0 ≤ U1 ≤ · · · (delays enumerated in start order)

I nth delay is then Dn = Vn − Un

Regular delay sequence
I
(
Dn : n ≥ 0

)
is regular with respect to

(
X (t) : t ≥ 0

)
if

I Occurrence or non-occurrence of event {UN(t)+1 − t ≤ x}
determined by

(
X (t) : t ≤ u ≤ t + x

)
I Occurrence or non-occurrence of event {Vn ≤ Un + v}

determined by
(
X (t) : Un ≤ t ≤ Un + v

)
where N(t) = number of starts in [0, t]

I Intuition: A regular delay sequence is “determined” by(
X (t) : t ≥ 0

)
in a reasonable way
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Delays, Continued

Example of regular delays in a GSMP [Shedler, Sec. 5.5]

I Assume at most one ongoing delay at any time point

I Un = time of nth jump from a state s ∈ A1 to a state s ′ ∈ A2

I Vn = time of nth jump from a state s ∈ B1 to a state s ′ ∈ B2
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Delays, Continued

xxx xx
1 2p

1-p

delay 1
delay 2

Case 1: Delays bounded by regenenerative cycles of GSMP

I GSMP
(
X (t) : t ≥ 0

)
: X (t) = # of jobs at center 1 at time t

I T (k) = kth time GSMP jumps out of a single state s̄ = 0

I For delay 1: at each T (k) a single delay starts
(no other delays in progress)

I Thus every delay starts and ends in the same regen. cycle
Un ∈ [T (k − 1),T (k)]⇒ Vn ∈ [T (k − 1),T (k)]

I Sequence of delays is decomposed into i.i.d. cycles
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Delays, Continued

	
T(5)T(2) T(4)

D6

D1
D0

D3
D2

D5
D4

D7

t

0
1
2
3
4
5
6
7

T(1)T(0) T(3)

Regeneration points for (Dn : n ≥ 0):
N0 = 0,N1 = 2,N2 = 4,N3 = 6, and N4 = 7
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Delays, Continued

Ex: Estimate α = long-run fraction of delays ≥ 2 time units

I Set f (x) = 1 if x ≥ 2 and f (x) = 0 otherwise

I By discrete-time version of prior results,

α
∆
= lim

n→∞
(1/n)

n−1∑
j=0

f (Dj) = E [Y1]/E [τ1] a.s.

where Yk =
∑Nk−1

n=Nk−1
f (Dn) and τk = Nk − Nk−1

I In example, Y1 = f (D0) + f (D1) and τ1 = 2

I The (Yk , τk) pairs are i.i.d., so use ratio estimation methods
I If τ1 has period 1 (i.e., aperiodic in discrete time), then

I Dn ⇒ D
I α = E [f (D)] = steady state probability that a delay is ≥ 2

25 / 34

Delays, Continued

xxx xx
1 2p

1-p

delay 1
delay 2

Case 2: Delays span regenerative cycles

I Same GSMP as before: X (t) = # of jobs at center 1
(N jobs total)

I Same regeneration points T (k) as before: Jumps out of s̄ = 0

I For delay 2: At each T (k), one delay starts but N − 1 delays
are in progress

I Thus delays span regenerative cycles
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Delays, Continued

	
T(5)T(2) T(4)

D6

D1
D0

D3
D2

D5
D4

D7

t

0
1
2
3
4
5
6
7

T(1)T(0) T(3)

Case 2, continued

I Take subset of regeneration points so that
delay spans at most two cycles

I (Yk , τk) pairs are now one-dependent
I Variant of regenerative method works [see my book]

I Same point estimate
I CLT variance accounts for dependence between adjacent cycles
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Batch Means

A method for estimating time-average limits when we can’t
find regeneration points

To estimate α = limt→∞
1
t

∫ t
0 Y (u) du:

Basic Batch Means

1. Choose small integer m and large number v .

2. Set tm−1,δ = 1− (δ/2) Student-t quantile, m − 1 d.o.f.

3. Simulate
(
Y (t) : t ≥ 0

)
up to time t = mv

4. Compute batch mean Ȳj = 1
v

∫ jv
(j−1)v Y (u) du for 1 ≤ j ≤ m

5. Compute point estimator αm = (1/m)
∑m

j=1 Ȳj

6. Compute s2
m = 1

m−1

∑m
j=1(Ȳj − αm)2

7. Compute 100(1− δ)% confidence interval[
αm −

tm−1,δsm√
m

, αm +
tm−1,δsm√

m

]
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Batch Means, Continued
Why Does Batch Means Work?

I Intuition: Batch means look like i.i.d. normal random variables
I See my book for conditions on GSMP ensuring validity

	

Many variants and generalizations (Handbook of Simulation)
I Overlapping batch means
I Sequential batch means
I Standardized time series
I . . .

Comparison to regenerative method
I When both are applicable, regenerative yields shorter CIs

when run length is long
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Jackknifed Batch Means
Ex: Nonlinear functions of time-average limits

I Estimate α = g(µ1, µ2), where µi = limt→∞(1/t)
∫ t

0
fi
(
X (u)

)
du

I For i = 1, 2 set
I Ȳ

(i)
j = 1

v

∫ jv

(j−1)v
fi
(
X (u)

)
du for j = 1, . . . ,m

I ¯̄Y (i) = avg(Ȳ
(i)
1 , . . . , Ȳ

(i)
m )

I ¯̄Y
(i)
−k = avg(Ȳ

(i)
1 , . . . , Ȳ

(i)
k−1, Ȳ

(i)
k+1, . . . , Ȳ

(i)
m )

Jackknifed Batch Means (JBM)

1. Simulate
(
X (t) : t ≥ 0

)
up to time t = mv

2. Compute batch means Ȳ
(i)
1 , . . . , Ȳ

(i)
m for i = 1, 2

3. For 1 ≤ k ≤ m, compute pseudovalue

αm(k) = mg( ¯̄Y (1), ¯̄Y (2))− (m − 1)g( ¯̄Y
(1)
−k ,

¯̄Y
(2)
−k )

4. Compute point estimator αJ
m = (1/m)

∑m
k=1 αm(k)

5. Compute 100(1− δ) CI[
αJ
m − tm−1,δ(vm/m)1/2, αJ

m + tm−1,δ(vm/m)1/2
]

where vm = sample variance of αm(1), . . . , αm(m)
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Jackknifed Batch Means, Continued

Can apply JBM to obtain low-bias estimator for ordinary
time-average limits in a GSMP

I Goal: Estimate α = limt→∞(1/t)
∫ t

0 f
(
X (u)

)
du

I Can show that α = g(µ1, µ2), where g(x , y) = x/y and

I µ1 = limn→∞(1/n)
∑n−1

i=0 f (Sn)t∗(Sn,Cn)
I µ2 = limn→∞(1/n)

∑n−1
i=0 t∗(Sn,Cn)

where
(
(Sn,Cn) : n ≥ 0

)
is underlying GSSMC of GSMP and

t∗ is holding time function

I Partial proof: 1
ζn

∫ ζn
0 f

(
X (u)

)
du =

∑n−1
i=0 f (Sn)t∗(Sn,Cn)∑n−1

i=0 t∗(Sn,Cn)
→ µ1

µ2

I So can apply discrete-time version of JBM with batches:

I Ȳ
(1)
j = (1/v)

∑jv−1
i=(j−1)v f (Si )t

∗(Si ,Ci )

I Ȳ
(2)
j = (1/v)

∑jv−1
i=(j−1)v t

∗(Si ,Ci )

for j = 1, . . . ,m
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Jackknifed Batch Means, Continued

	
Can apply discrete-time version of JBM to analyze delays

I To estimate α = limn→∞(1/n)
∑n−1

j=0 f (Dj)

I Simulate D1,D2, . . . ,Dvm (here v is an integer)

I Batch means: Ȳj = (1/v)
∑jv−1

i=(j−1)v f (Di ) for j = 1, . . . ,m

I Ex: Cyclic queues with multiple servers per station
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