Steady-State Simulation Reading: Ch. 9 in Law & Ch. 15 in Handbook of Simulation Peter J. Haas CS 590M: Simulation Spring Semester 2020	Overview The Regenerative Method Regenerative processes Regenerative Simulation Delays The Batch Means Method Time-average limits Jackknifed Batch Means
1/34	2/34

Steady-State Simulation

Why do it?

- Quick approximation for cumulative cost $C(t) = \int_0^t Y(s) ds$
 - Y(s) is output process of the simulation, e.g., Y(t) = f(X(t)) where X(t) is system state and f is a real-valued function
 - If time-average limit $\alpha = \lim_{t \to \infty} (1/t) \int_0^t Y(s) ds$ exists, then $C(t) \approx t \alpha$ for large t
- Avoids arbitrary choice of time horizon
- Avoids arbitrary choice of initial conditions

Appropriate if

- No "natural" termination time for simulation
- No "natural" initial conditions
- Rapid convergence to (quasi-)steady state (e.g., telecom w. nanosecond timescale observed every 5 min.)

Steady-State Performance Measures

The setup for GSMP $(X(t): t \ge 0)$ with state space S

- Output process Y(t) = f(X(t))where f is a real-valued function
- Let $\mu = initial distribution of GSMP$

A reminder: General notion of convergence in distribution

- Discrete-state case:
 - $X_n \Rightarrow X$ if $\lim_{n\to\infty} P(X_n = s) = P(X = s)$ for all $s \in S$
 - $X(t) \Rightarrow X$ if $\lim_{t\to\infty} P(X(t) = s) = P(X = s)$ for all $s \in S$
 - Note: $E[f(X)] = \sum_{s \in S} f(s)\pi(s)$, where $\pi(s) = \lim_{t \to \infty} P(X(t) = s) = P(X = s)$
- Continuous-state case:
 - $Z_n \Rightarrow Z$ if $\lim_{n\to\infty} P(Z_n \le x) = P(Z \le x)$ for all x where F_Z is continuous

• Ex:
$$\frac{\sqrt{n}}{\sigma} \left(\bar{X}_n - \mu_X \right) \Rightarrow N(0,1)$$
 by CLT

Steady-State Performance Measures, Continued

Time-Average Limit of Y(t) process

 α such that $P_{\mu}\left\{\lim_{t\to\infty}(1/t)\int_{0}^{t}Y(u)\,du=\alpha\right\}=1$ for any μ

Steady-State Mean of Y(t) process $\alpha = E[f(X)]$, where, for any μ , $X(t) \Rightarrow X$ and E[f(X)] exists

Limiting Mean of Y(t) process

 $lpha = \lim_{t o \infty} Eig[fig(X(t) ig) ig]$ for any μ

- "for any µ" = for any member of GSMP family indexed by µ (with other building blocks the same)
- E[f(X)] exists if and only if $E[|f(X)|] < \infty$
- ▶ If f is bounded or S is finite, then $X(t) \Rightarrow X$ implies $\lim_{t\to\infty} E[f(X(t))] = E[f(X)]$ (s-s mean = limiting mean)

5/34

Steady-State Simulation Challenges

Autocorrelation problem

- ► For time-average limit, $\alpha = \lim_{t\to\infty} \overline{Y}(t) = \lim_{t\to\infty} (1/t) \int_0^t Y(u) du$
- But Y(t) and $Y(t + \Delta t)$ highly correlated if Δt is small
- So estimator is average of autocorrelated observations
- Techniques based on i.i.d. observations don't work

Initial-Transient Problem

- Steady-state distribution unknown, so initial dist'n is not typical of steady-state behavior
- Autocorrelation implies that initial bias will persist
- Very hard to detect "end of initial-transient period"

Estimation Methods

Many alternative estimation methods

- Regenerative method
- Batch-means method
- Autoregressive method
- Standardized-time-series methods
- Integrated-path method
- ▶ ...

We will focus on:

- Regenerative method: clean and elegant
- Batch means: simple, widely used and the basis for other methods

Steady-State Simulation

Dvervie

The Regenerative Method Regenerative processes

Regenerative Simulation Delays

The Batch Means Method Time-average limits Jackknifed Batch Means

The Regenerative Method

References:

- Shedler [Ch. 2 & 3], Haas [Ch. 5 & 6]
- ▶ Recent developments: ACM TOMACS 25(4), 2015

Regenerative Processes

- ► Intuitively: (X(t) : t ≥ 0) is regenerative if process "probabilistically restarts" infinitely often
- Restart times T(0), T(1),... called regeneration times or regeneration points
 - Regeneration points are random
 - Must be almost surely (a.s.) finite
 - \blacktriangleright Ex: Arrivals to empty GI/G/1 queue

Regenerative Processes: Formal Definition

Definition: Stopping time

A random variable T is a stopping time with respect to $(X(t): t \ge 0)$ if occurrence or non-occurrence of event $\{T \le t\}$ is completely determined by $(X(u): 0 \le u \le t)$

Definition: Regenerative process

The process $(X(t) : t \ge 0)$ is regenerative if there exists an infinite sequence of a.s. finite stopping times $(T(k) : k \ge 0)$ s.t. for $k \ge 1$

- 1. $(X(t): t \ge T(k))$ is distributed as $(X(t): t \ge T(0))$
- 2. $(X(t): t \ge T(k))$ is independent of (X(t): t < T(k))
- If T(0) = 0, process is non-delayed (else delayed)
- Can drop stopping-time requirement, (more complicated def.)
- ► $\{X(t): t \ge 0\}$ regen. $\Rightarrow \{f(X(t)): t \ge 0\}$ regen.
- Analogous definition for discrete-time processes

10/34

Regenerative Processes: Examples

Ex 1: Successive times that CTMC hits a fixed state x

- Formally, T(0) = 0 and T(k) = min{t > T(k-1) : X(t-) ≠ x and X(t) = x}
- Observe that X(T(k)) = x for all k
- The two regenerative criteria follow from Markov property

Ex 2: Successive times that CTMC leaves a fixed state x

- X(T(k)) distributed according to $P(x, \cdot)$ for each k
- Second criterion follows from Markov property

Q: Is a semi-Markov process regenerative?

Regenerative GSMPs

Ex 3: GSMP with a single state

- $\bar{s} \in S$ is a single state if $E(\bar{s}) = \{\bar{e}\}$ for some $\bar{e} \in E$
- ▶ Regeneration points: successive times that \bar{e} occurs in \bar{s}
- Observe that for each $k \ge 1$,
 - New state s' at T(k) distributed according to $p(\cdot; \bar{s}, \bar{e})$
 - No old clocks
 - Clock for new event e' distributed as $F(\cdot; s', e', \bar{s}, \bar{e})$
- ▶ Regenerative property follows from Markov property for ((S_n, C_n) : n ≥ 0)

Ex 4: GI/G/1 queue

- X(t) = number of jobs in system at time t
- $(X(t): t \ge 0)$ is a GSMP
- T(k) = time of kth arrival to empty system (why?)

Regenerative GSMPs, Continued

Ex 5: Cancellation

- Suppose there exist $\bar{s}', \bar{s} \in S$ and $\bar{e} \in E(\bar{s})$ with $p(\bar{s}'; \bar{s}, \bar{e})r(\bar{s}, \bar{e}) > 0$ such that $O(\bar{s}'; \bar{s}, \bar{e}) = \emptyset$
- T(k) = kth time that \bar{e} occurs in \bar{s} and new state is \bar{s}'

Ex 6: Exponential clocks

- Suppose that
 - There exists *Ẽ* ⊆ *E* such that each *e* ∈ *Ẽ* is a simple event with *F*(*x*; *e*) = 1 − *e*^{−λ(*e*)x}
 - There exists $\bar{s} \in S$ and $\bar{e} \in E(\bar{s})$ s.t. $E(\bar{s}) \{\bar{e}\} \subseteq \tilde{E}$
- T(k) = kth time that \bar{e} occurs in \bar{s} (memoryless property)

Other (fancier) regeneration point constructions are possible

► E.g., if clock-setting distn's have heavier-than-exponential tails or bounded hazard rates h(t) = f(t)/(1 - F(t))

13/34

• The pairs $(Y_1, \tau_1), (Y_2, \tau_2), \ldots$ are i.i.d as (Y, τ)

Initial transient is not a problem!

Regenerative Simulation: Time-Average Limits • Recall: $\bar{Y}(t) = (1/t) \int_0^t Y(u) du$

Theorem

Suppose that $E[|Y_1|] < \infty$ and $E[\tau_1] < \infty$. Then $\lim_{t\to\infty} \overline{Y}(t) = \alpha$ a.s., where $\alpha = E[Y]/E[\tau]$.

 So estimating time-average limit reduces to a ratio-estimation problem (can use delta method, jackknife, bootstrap)

(Most of) Proof

$$\bar{Y}(T(n)) = \frac{1}{T(n)} \int_0^{T(n)} Y(u) \, du = \frac{\sum_{j=1}^n \int_{T(j-1)}^{T(j)} Y(u) \, du}{\sum_{j=1}^n (T(j) - T(j-1))} = \frac{\sum_{j=1}^n Y_j}{\sum_{j=1}^n \tau_j}$$

$$\Rightarrow \lim_{n \to \infty} \bar{Y}(T(n)) = \alpha \text{ a.s. by SLLN}$$

15 / 34

Regenerative Simulation: Steady-State Means

Definition

A real-valued random variable τ is said to be periodic with period d if d is the largest real number such that, w.p.1, τ assumes values in the set $\{0, d, 2d, 3d, \ldots\}$. If no such number exists, then τ is aperiodic. (A discrete random variable is aperiodic if d = 1.)

Theorem

Suppose that $(X(t): t \ge 0)$ is regenerative with finite state space S and τ is aperiodic with $E[\tau] < \infty$. Then $X(t) \Rightarrow X$ and $E[f(X)] = E[Y_1(f)]/E[\tau_1]$ for any real-valued function f on S, where $Y_1(f) = \int_{T(0)}^{T(1)} f(X(u)) du$ and $\tau_1 = T(1) - T(0)$

 Under conditions of theorem, time avg limit is also a steady-state mean (and a limiting mean)

17 / 34

Regenerative Simulation: Other Performance Measures

Important observation:

 Y_k and τ_k can be any quantities determined by a cycle

- Ex 1: Long-run avg rate at which GSMP jumps from s to s'
 - Y_k = number of jumps from *s* to *s'* in *k*th cycle
 - $\tau_k = \text{length of } k \text{th cycle}$
- Ex 2: Long-run fraction of jumps from s to s'
 - Y_k = number of jumps from *s* to *s'* in *k*th cycle
 - $\tau_k = \text{total number of jumps in } k\text{th cycle}$
- ▶ Ex 3: Long-run frac. occurrences of *e* where new state $\in A$
 - Y_k = number of occurrences of e in kth cycle where $s' \in A$
 - $\tau_k = \text{total number of occurrences of } e \text{ in } k\text{th cycle}$
 - E.g., frac. ambulance arrivals that find emergency room full

Regenerative Method: Delays

Formal definition of delays in a GSMP

- Sequences of starts $(U_n : n \ge 0)$ and terminations $(V_n : n \ge 0)$
- Assume $U_0 \leq U_1 \leq \cdots$ (delays enumerated in start order)
- *n*th delay is then $D_n = V_n U_n$

Regular delay sequence

- $(D_n : n \ge 0)$ is regular with respect to $(X(t) : t \ge 0)$ if
 - Cccurrence or non-occurrence of event {U_{N(t)+1} − t ≤ x} determined by (X(t): t ≤ u ≤ t + x)
 - ► Occurrence or non-occurrence of event {V_n ≤ U_n + v} determined by (X(t) : U_n ≤ t ≤ U_n + v)
 - where N(t) = number of starts in [0, t]
- Intuition: A regular delay sequence is "determined" by (X(t) : t ≥ 0) in a reasonable way

Delays, Continued

Example of regular delays in a GSMP [Shedler, Sec. 5.5]

- Assume at most one ongoing delay at any time point
- ▶ U_n = time of *n*th jump from a state $s \in A_1$ to a state $s' \in A_2$
- V_n = time of *n*th jump from a state $s \in B_1$ to a state $s' \in B_2$

21/34

Sequence of delays is decomposed into i.i.d. cycles

23 / 34

Delays, Continued

Ex: Estimate $\alpha =$ long-run fraction of delays ≥ 2 time units

- Set f(x) = 1 if $x \ge 2$ and f(x) = 0 otherwise
- By discrete-time version of prior results,

 $\alpha \stackrel{\Delta}{=} \lim_{n \to \infty} (1/n) \sum_{j=0}^{n-1} f(D_j) = E[Y_1]/E[\tau_1] \text{ a.s.}$

where $Y_{k} = \sum_{n=N_{k-1}}^{N_{k}-1} f(D_{n})$ and $\tau_{k} = N_{k} - N_{k-1}$

- In example, $Y_1 = f(D_0) + f(D_1)$ and $\tau_1 = 2$
- The (Y_k, τ_k) pairs are i.i.d., so use ratio estimation methods
- \blacktriangleright If τ_1 has period 1 (i.e., aperiodic in discrete time), then
 - $D_n \Rightarrow D$
 - $\alpha = E[f(D)] =$ steady state probability that a delay is ≥ 2

25 / 34

Case 2: Delays span regenerative cycles

Delays, Continued

- Same GSMP as before: X(t) = # of jobs at center 1 (N jobs total)
- Same regeneration points T(k) as before: Jumps out of $\bar{s} = 0$
- For delay 2: At each T(k), one delay starts but N 1 delays are in progress
- Thus delays span regenerative cycles

26 / 34

Case 2, continued

- Take subset of regeneration points so that delay spans at most two cycles
- (Y_k, τ_k) pairs are now one-dependent
- Variant of regenerative method works [see my book]
 - Same point estimate
 - CLT variance accounts for dependence between adjacent cycles

Batch Means

A method for estimating time-average limits when we can't find regeneration points

To estimate $\alpha = \lim_{t\to\infty} \frac{1}{t} \int_0^t Y(u) du$:

Basic Batch Means

- 1. Choose small integer m and large number v.
- 2. Set $t_{m-1,\delta} = 1 (\delta/2)$ Student-t quantile, m 1 d.o.f.
- 3. Simulate $(Y(t): t \ge 0)$ up to time t = mv
- 4. Compute batch mean $\bar{Y}_j = \frac{1}{v} \int_{(j-1)v}^{jv} Y(u) du$ for $1 \le j \le m$
- 5. Compute point estimator $\alpha_m = (1/m) \sum_{j=1}^m \bar{Y}_j$
- 6. Compute $s_m^2 = \frac{1}{m-1} \sum_{j=1}^m (\bar{Y}_j \alpha_m)^2$
- 7. Compute 100(1 δ)% confidence interval $\left[\alpha_m \frac{t_{m-1,\delta}s_m}{\sqrt{m}}, \alpha_m + \frac{t_{m-1,\delta}s_m}{\sqrt{m}}\right]$

29 / 34

Batch Means, Continued

Why Does Batch Means Work?

- Intuition: Batch means look like i.i.d. normal random variables
- See my book for conditions on GSMP ensuring validity

Many variants and generalizations (Handbook of Simulation)

- Overlapping batch means
- Sequential batch means
- Standardized time series
- ▶ ...

Comparison to regenerative method

When both are applicable, regenerative yields shorter CIs when run length is long

30 / 34

/ 34

Steady-State Simulation

Overview The Regenerative Method Regenerative processes Regenerative Simulation Delays

The Batch Means Method

Time-average limits Jackknifed Batch Means

Jackknifed Batch Means

Ex: Nonlinear functions of time-average limits

- Estimate $\alpha = g(\mu_1, \mu_2)$, where $\mu_i = \lim_{t \to \infty} (1/t) \int_0^t f_i(X(u)) du$
- ▶ For *i* = 1, 2 set

•
$$\bar{Y}_{i}^{(i)} = \frac{1}{v} \int_{(i-1)v}^{jv} f_i(X(u)) du$$
 for $j = 1, ..., m$

$$\bar{\bar{Y}}^{(i)} = \operatorname{avg}(\bar{Y}_1^{(i)}, \dots, \bar{Y}_m^{(i)})$$

• $\bar{\bar{Y}}_{-k}^{(i)} = \operatorname{avg}(\bar{Y}_1^{(i)}, \dots, \bar{Y}_{k-1}^{(i)}, \bar{Y}_{k+1}^{(i)}, \dots, \bar{Y}_m^{(i)})$

Jackknifed Batch Means (JBM)

- 1. Simulate $(X(t): t \ge 0)$ up to time t = mv
- 2. Compute batch means $\bar{Y}_1^{(i)}, \ldots, \bar{Y}_m^{(i)}$ for i = 1, 2
- 3. For $1 \le k \le m$, compute pseudovalue

$$\alpha_m(k) = mg(\bar{\bar{Y}}^{(1)}, \bar{\bar{Y}}^{(2)}) - (m-1)g(\bar{\bar{Y}}^{(1)}_{-k}, \bar{\bar{Y}}^{(2)}_{-k})$$

4. Compute point estimator
$$\alpha_m^J = (1/m) \sum_{k=1}^m \alpha_m(k)$$

5. Compute $100(1-\delta)$ Cl

 $\begin{bmatrix} \alpha_m^J - t_{m-1,\delta} (v_m/m)^{1/2}, \alpha_m^J + t_{m-1,\delta} (v_m/m)^{1/2} \end{bmatrix}$ where v_m = sample variance of $\alpha_m(1), \ldots, \alpha_m(m)$

Jackknifed Batch Means, Continued

Can apply JBM to obtain low-bias estimator for ordinary time-average limits in a GSMP

- Goal: Estimate $\alpha = \lim_{t \to \infty} (1/t) \int_0^t f(X(u)) du$
- Can show that $\alpha = g(\mu_1, \mu_2)$, where g(x, y) = x/y and
 - $\mu_1 = \lim_{n \to \infty} (1/n) \sum_{i=0}^{n-1} f(S_n) t^*(S_n, C_n)$ $\mu_2 = \lim_{n \to \infty} (1/n) \sum_{i=0}^{n-1} t^*(S_n, C_n)$

where $((S_n, C_n) : n \ge 0)$ is underlying GSSMC of GSMP and t^* is holding time function

- Partial proof: $\frac{1}{\zeta_n} \int_0^{\zeta_n} f(X(u)) du = \frac{\sum_{i=0}^{n-1} f(S_n) t^*(S_n, C_n)}{\sum_{i=0}^{n-1} t^*(S_n, C_n)} \rightarrow \frac{\mu_1}{\mu_2}$
- ► So can apply discrete-time version of JBM with batches:
 - $\bar{Y}_{j}^{(1)} = (1/\nu) \sum_{i=(j-1)\nu}^{j\nu-1} f(S_i) t^*(S_i, C_i)$ $\bar{Y}_{j}^{(2)} = (1/\nu) \sum_{i=(j-1)\nu}^{j\nu-1} t^*(S_i, C_i)$

for j = 1, ..., m

33 / 34

Jackknifed Batch Means, Continued

Can apply discrete-time version of JBM to analyze delays

- To estimate $\alpha = \lim_{n \to \infty} (1/n) \sum_{i=0}^{n-1} f(D_i)$
- Simulate D_1, D_2, \ldots, D_{vm} (here v is an integer)
- Batch means: $\bar{Y}_j = (1/v) \sum_{i=(j-1)v}^{jv-1} f(D_i)$ for $j = 1, \dots, m$
- Ex: Cyclic queues with multiple servers per station

