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Reading: Ch. 9 in Law & Ch. 15 in Handbook of Simulation
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Steady-State Simulation

Why do it?
» Quick approximation for cumulative cost C(t) = fot Y(s) ds

> Y(s) is output process of the simulation, e.g., Y(t) = f(X(t))

where X(t) is system state and f is a real-valued function
> If time-average limit o = lim_,oo(1/t) [5 Y(s) ds exists, then

C(t) ~ ta for large t
» Avoids arbitrary choice of time horizon
» Avoids arbitrary choice of initial conditions

Appropriate if
» No “natural” termination time for simulation

» No “natural” initial conditions

» Rapid convergence to (quasi-)steady state
(e.g., telecom w. nanosecond timescale observed every 5 min.)
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Steady-State Performance Measures

The setup for GSMP (X(t) : t > 0) with state space S
» Output process Y(t) = f(X(t))
where f is a real-valued function
» Let p = initial distribution of GSMP

A reminder: General notion of convergence in distribution

» Discrete-state case:
» X, = Xiflim,,o P(X, =s)=P(X =5s)forallse S
» X(t) = X if lime oo P(X(t) =s) = P(X =s) forallse€ S
> Note: E[f(X)] = .5 f(s)m(s), where
7(s) = limisoo P(X(t) =) = P(X = 5)

» Continuous-state case:
> Z, = Ziflim,o P(Z, < x) = P(Z < x)
for all x where F7 is continuous

I (X, — pix) = N(0,1) by CLT

» Ex: -
o
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Steady-State Performance Measures, Continued
Time-Average Limit of Y(t) process
« such that PM{Iimt_wo(l/t) Jo Y (u)du = a} =1 for any

Steady-State Mean of Y(t) process
a = E[f(X)], where, for any p, X(t) = X and E[f(X)] exists

Limiting Mean of Y(t) process
a = limi0 E[f(X(t))] for any p

> “for any p" = for any member of GSMP family indexed by p
(with other building blocks the same)

» E[f(X)] exists if and only if E[|f(X)|] < co

» If f is bounded or S is finite, then X(t) = X implies
limeoe E[f(X(t))] = E[f(X)] (s-s mean = limiting mean)

Steady-State Simulation Challenges

Autocorrelation problem

» For time-average limit,
a = limy oo Y(t) = limesoo(1/t) fo Y (u) du
Natural estimator of av is Y (t) for some large t
(obtained from one long observation of system)

But Y(t) and Y(t + At) highly correlated if At is small

So estimator is average of autocorrelated observations

v

v

v

v

Techniques based on i.i.d. observations don't work

Initial-Transient Problem

» Steady-state distribution unknown,
so initial dist'n is not typical of steady-state behavior

» Autocorrelation implies that initial bias will persist

» Very hard to detect “end of initial-transient period”
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Estimation Methods

Many alternative estimation methods
» Regenerative method
» Batch-means method
» Autoregressive method

Standardized-time-series methods

v

> Integrated-path method

> ..

We will focus on:
> Regenerative method: clean and elegant

» Batch means: simple, widely used and the basis for other
methods

Steady-State Simulation

The Regenerative Method

Regenerative processes
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The Regenerative Method

References:
» Shedler [Ch. 2 & 3], Haas [Ch. 5 & 6]
» Recent developments: ACM TOMACS 25(4), 2015

Regenerative Processes
> Intuitively: (X(t): t > 0) is regenerative if process
“probabilistically restarts” infinitely often

» Restart times T(0), T(1),... called regeneration times or
regeneration points
> Regeneration points are random
» Must be almost surely (a.s.) finite
» Ex: Arrivals to empty GI/G/1 queue
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Regenerative Processes: Formal Definition

Definition: Stopping time

A random variable T is a stopping time with respect to

(X(t) : t > 0) if occurrence or non-occurrence of event {T < t} is
completely determined by (X(u) :0<u<t)

v

Definition: Regenerative process

The process (X(t) : t > 0) is regenerative if there exists an infinite
sequence of a.s. finite stopping times (T (k) : k > 0) s.t. for k > 1

1. (X(t):t> T(k)) is distributed as (X(t): t > T(0))
2. (X(t):t > T(k)) is independent of (X(t):t < T(k))

v

If T(0) =0, process is non-delayed (else delayed)

Can drop stopping-time requirement, (more complicated def.)
{X(t): t >0} regen. = {f(X(t)) : t >0} regen.
Analogous definition for discrete-time processes

v

v

v
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Regenerative Processes: Examples

Ex 1: Successive times that CTMC hits a fixed state x
» Formally, 7(0) =0 and
T(k) =min{t > T(k—1): X(t—) # x and X(t) = x}
» Observe that X (T (k)) = x for all k

» The two regenerative criteria follow from Markov property

Ex 2: Successive times that CTMC leaves a fixed state x
» X(T(k)) distributed according to P(x, -) for each k

» Second criterion follows from Markov property

Q: Is a semi-Markov process regenerative?
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Regenerative GSMPs

Ex 3: GSMP with a single state
» 5€ Sis asingle state if E(5) = {&} for some € € E

v

Regeneration points: successive times that € occurs in §

Observe that for each k > 1,
» New state s’ at T (k) distributed according to p(-; 5, &)
» No old clocks
» Clock for new event €’ distributed as F(-;s’, €', 5, €)

v

v

Regenerative property follows from Markov property for
((Sn,Cn) :n>0)

Ex 4: GI/G/1 queue
» X(t) = number of jobs in system at time t
» (X(t):t>0)is a GSMP
» T(k) = time of kth arrival to empty system (why?)
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Regenerative GSMPs, Continued

Ex 5: Cancellation
» Suppose there exist §,5 € S and € € E(3) with
p(5';5,8)r(5, &) > 0 such that O(5;5,8) =0

» T(k) = kth time that € occurs in 5 and new state is §

Ex 6: Exponential clocks
» Suppose that

» There exists £ C E such that each e € E is a simple event
with F(x;e) =1 — e Ae)x .
» There exists 5 € S and é € E(5) s.t. E(5) —{é} C E

» T(k) = kth time that & occurs in 5§ (memoryless property)

Other (fancier) regeneration point constructions are possible

» E.g., if clock-setting distn’s have heavier-than-exponential
tails or bounded hazard rates h(t) = f(t)/(1 — F(t))

Steady-State Simulation

The Regenerative Method

Regenerative Simulation
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Regenerative Simulation: Cycles
Y(t)
A
)%l Y, Y3
47714+7724+77'34>| >
T(0) T(1) T(2) T(3)
Regeneration points decompose process into i.i.d. cycles
> kth cycle: (X(t) Tk—1)<t< T(k))
» Length of kth cycle: 7 = T(k) — T(k —1)
> Set Vi = [/} Y(u) du
» The pairs (Y1,71),(Y2,72),... are i.i.d as (Y, 7)
Initial transient is not a problem!
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Regenerative Simulation: Time-Average Limits
Y(t)

> Recall: Y(t) = (1/t) [y Y(u)du

Yy Y, Y3
t
b
) 7(2) (3

7(0) (1 )
Theorem

Suppose that E[|Y1|] < co and E[r1] < co. Then
lim:— oo Y(t) = « a.s., where a = E[Y]/E|[7].

» So estimating time-average limit reduces to a ratio-estimation
problem (can use delta method, jackknife, bootstrap)

(Most of) Proof

_ 1 T(n) Iy 72—(5]21) Y (u) du Y Y
PO = ) YO S ) - S
= lim_ Y(T(n)) = a a.s. by SLLN
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Regenerative Simulation: Steady-State Means

Definition

A real-valued random variable 7 is said to be periodic with period
d if d is the largest real number such that, w.p.1, 7 assumes values
in the set {0,d,2d,3d,...}. If no such number exists, then 7 is
aperiodic. (A discrete random variable is aperiodic if d = 1.)

Theorem

Suppose that (X(t) : t > 0) is regenerative with finite state space
S and 7 is aperiodic with E[7] < co. Then X(t) = X and
E[f(X)] = E[Yi1(f)]/E[r1] for any real-valued function f on S,
where Y1(f) = [ () f(X(u)) du and 71 = T(1) — T(0)

» Under conditions of theorem, time avg limit is also a
steady-state mean (and a limiting mean)
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Regenerative Simulation: Other Performance Measures

Important observation:
Yy and 7, can be any quantities determined by a cycle

» Ex 1: Long-run avg rate at which GSMP jumps from s to s’

» Y} = number of jumps from s to s’ in kth cycle
» 7 = length of kth cycle

» Ex 2: Long-run fraction of jumps from s to s’

» Y\ = number of jumps from s to s’ in kth cycle
» 7, = total number of jumps in kth cycle

» Ex 3: Long-run frac. occurrences of e where new state € A
» Yi = number of occurrences of e in kth cycle where s’ € A
» 7, = total number of occurrences of e in kth cycle
» E.g., frac. ambulance arrivals that find emergency room full

Validity of Regenerative Method

Usually not hard to show probabilistic restart

But must also show:

» Regeneration points are a.s. finite
(i.e., infinitely many regenerations w.p.1)
» E[1] < o0
» 02 < oo for confidence intervals
» If S is finite, suffices to show that E[72] < oo

» Nontriviall

See my book for techniques to prove validity
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Steady-State Simulation
The Regenerative Method
Delays
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Regenerative Method: Delays

Formal definition of delays in a GSMP
» Sequences of starts (U, : n > 0) and terminations (V, : n > 0)
» Assume Uy < U; < --- (delays enumerated in start order)
» nth delay is then D, = V,, — U,

Regular delay sequence
» (D, : n>0) is regular with respect to (X(t): t > 0) if
» Occurrence or non-occurrence of event { Uy ;)11 — t < x}
determined by (X(t):t <u <t+x)
» Occurrence or non-occurrence of event {V,, < U, + v}
determined by (X(t): U, <t < U, +v)
where N(t) = number of starts in [0, t]

> Intuition: A regular delay sequence is “determined” by
(X(t) : t > 0) in a reasonable way
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Delays, Continued

Example of regular delays in a GSMP [Shedler, Sec. 5.5]
» Assume at most one ongoing delay at any time point
» U, = time of nth jump from a state s € A; to astates’ € A,

» V), = time of nth jump from a state s € By to a state s’ € B,
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Delays, Continued

1 1% 2
o 2}
1-p
delay 1 |

delay 2

Case 1: Delays bounded by regenenerative cycles of GSMP
GSMP (X(t):t >0): X(t) = # of jobs at center 1 at time t
T (k) = kth time GSMP jumps out of a single state 5 = 0

v

v

v

For delay 1: at each T (k) a single delay starts
(no other delays in progress)

v

Thus every delay starts and ends in the same regen. cycle
Upe[T(k—1), T(k)]= V,e[T(k—-1), T(k)]

Sequence of delays is decomposed into i.i.d. cycles

v
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Delays, Continued

A
7. bz
64 ; 1Ds
51 b
44 5 4
34 5 =3
2+ R 2
", by
0- 0
T(0) ™ T(2) T3 T4 () t

Regeneration points for (D, : n > 0):
N():O,N1:2,N2:4,N3:6, and N4:7

24 /34




Delays, Continued

Ex: Estimate o = long-run fraction of delays > 2 time units
» Set f(x) =1if x > 2 and f(x) = 0 otherwise

» By discrete-time version of prior results,

al lim (1/n) Z_: f(D;) = E[Y4]/E[m] ass.
j=0

where Y, = SNt £(D)) and 7 = Ny — Ni_y

n=Ny_1
» In example, Y1 = f(Dy) + f(D1) and 71 = 2
» The (Yk, 7x) pairs are i.i.d., so use ratio estimation methods
» If 71 has period 1 (i.e., aperiodic in discrete time), then

» D,= D
» o = E[f(D)] = steady state probability that a delay is > 2
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Delays, Continued

1 p 2
(045 X
1-p
E delay 1 |
E delay 2 |

Case 2: Delays span regenerative cycles

» Same GSMP as before: X(t) = # of jobs at center 1
(N jobs total)

» Same regeneration points T (k) as before: Jumps out of 5 =10

» For delay 2: At each T(k), one delay starts but N — 1 delays
are in progress

» Thus delays span regenerative cycles

Delays, Continued

A

D7

D5
Dy

Dy

D4

-y

T(0) TN T(2) T(3) T(4) T(5)

Case 2, continued
> Take subset of regeneration points so that
delay spans at most two cycles
> (Yk, Tk) pairs are now one-dependent
» Variant of regenerative method works [see my book]

» Same point estimate
» CLT variance accounts for dependence between adjacent cycles
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Steady-State Simulation
The Batch Means Method
Time-average limits
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Batch Means

A method for estimating time-average limits when we can’t
find regeneration points

To estimate o = limy—, % fot Y (u) du:

Basic Batch Means
1. Choose small integer m and large number v.
. Set ty_15 =1—(0/2) Student-t quantile, m — 1 d.o.f.
. Simulate ( it > 0) up to time t = mv
u)duforl <j<m
. Compute point estimator «,;, = (1/m) ijzl Y;

2 _ 1 m (v 2
. Compute s;, = =5 > 04 (Y; — am)

. Compute 100(1 — §)% confidence interval

tm—l,ﬁsm tm—1, Osm:|

Jm o Cm T

2
3
4. Compute batch mean Y; = [
5
6
7

Oy —

Batch Means, Continued
Why Does Batch Means Work?
» Intuition: Batch means look like i.i.d. normal random variables
» See my book for conditions on GSMP ensuring validity

[«— batch 1 ———>»€«———batch2 ———

R

f f |
0 \ 2v

Many variants and generalizations (Handbook of Simulation)
» Overlapping batch means
» Sequential batch means
» Standardized time series
| 4

Comparison to regenerative method

» When both are applicable, regenerative yields shorter Cls
when run length is long
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Steady-State Simulation
The Batch Means Method
Jackknifed Batch Means
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Jackknifed Batch Means

Ex: Nonlinear functions of time-average limits
» Estimate a = g(u1, p2), where p; = lim;,(1/t) fot fi(X(u)) du
» Fori=1,2set
> Yj(') =10 )Vf,-(X(u)) duforj=1,...,m

) __
» Y0 =avg(Y, ... Vi
> Y9 —avg(Y, . Y Y vy

Jackknifed Batch Means (JBM)
1. Simulate (X(t): t > 0) up to time t = mv
v\ for i =1,2

3. For 1 < k < m, compute pseudovalue

2. Compute batch means Vl(i), ey

(k) = mg(YD), YD) — (m — 1)g(VY. V)
4. Compute point estimator o, = (1/m) >, cm(k)
5. Compute 100(1 — ¢) CI

[0 = b )2, 0+t )]

where v, = sample variance of a,(1),...,am(m)
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Jackknifed Batch Means, Continued

Can apply JBM to obtain low-bias estimator for ordinary
time-average limits in a GSMP
> Goal: Estimate o = lim_o(1/t) [5 f(X(u)) du
» Can show that o = g(p1, p2), where g(x,y) = x/y and
> 1 = limye0(1/n) 27;01 £(Sn)t*(Sn, Cn)
> iz = limpy00(1/n) 27;01 t*(Sn, Cn)
where ((Sp, G5) : n > 0) is underlying GSSMC of GSMP and
t* is holding time function

- *Cn n:lf Sn t* 5n7Cn ’
» Partial proof: éin Jo" f(X(u)) du = ZSEOS t*)(Sn(,Cn) N o

» So can apply discrete-time version of JBM with batches:
YV = (1) X, F(S)E(SL G)
(2 jv—1 %
s VP = () ), (S 6)
forj=1,....,m
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Jackknifed Batch Means, Continued

1-p

delay

Can apply discrete-time version of JBM to analyze delays
> To estimate o = lim,_o(1/n) Y77 £(D;)

» Simulate Dy, Dy, ..., Dy (here v is an integer)
» Batch means: Y; = (1/v) Z{:V:_(J-l,l)v f(D)forj=1,...,m
» Ex: Cyclic queues with multiple servers per station
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