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Steady-State Simulation

Why do it?
» Quick approximation for cumulative cost C(t) = fot Y(s)ds
> Y(s) is output process of the simulation, e.g., Y(t) = f(X(t))
where X(t) is system state and f is a real-valued function
> If time-average limit @ = lim,_,o0(1/t) [ Y(s) ds exists, then
C(t) =~ ta for large t

» Avoids arbitrary choice of time horizon

» Avoids arbitrary choice of initial conditions

Appropriate if
» No “natural” termination time for simulation
» No “natural” initial conditions

» Rapid convergence to (quasi-)steady state
(e.g., telecom w. nanosecond timescale observed every 5 min.)
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Steady-State Performance Measures

The setup for GSMP (X(t) : t > 0) with state space S

» Output process Y(t) = f(X(t))
where f is a real-valued function

» Let ;1 = initial distribution of GSMP

A reminder: General notion of convergence in distribution

» Discrete-state case:
drsargle dime> X, = X if lim, oo P(X, =s)=P(X =s) forallse S
» ol fme> X(t) = X iflimo P(X(t) =s) =P(X =s) foralls€ S
> Note: E[f(X)] = > ,cs f(s)n(s), where
7(s) = limisoo P(X(t) =s) = P(X =s)

» Continuous-state case:
> Z, = Z iflim,o. P(Z, < x)=P(Z <x)
for all x where F7 is continuous

> BEx: ¥ (X, — ux) = N(0,1) by CLT
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Steady-State Performance Measures, Continued
Time-Average Limit of Y(t) process
a such that Pﬂ{limt_)oo(l/t) fot Y(u)du = a} =1 for any

Steady-State Mean of Y(t) process
a = E[f(X)], where, for any p, X(t) = X and E[f(X)] exists

Limiting Mean of Y/(t) process
o= limi_s E[f(X(t))] for any p

» “for any " = for any member of GSMP family indexed by p
(with other building blocks the same)

» E[f(X)] exists if and only if E[|f(X)|] < oo

» If f is bounded or S is finite, then X(t) = X implies
lime oo E[f(X(t))] = E[f(X)] (s-s mean = limiting mean)
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Steady-State Simulation Challenges

Autocorrelation problem

> For time-average limit,
a = lime oo Y(t) = limesoc(1/t) [5 Y(u)du
Natural estimator of av is Y(t) for some large t
(obtained from one long observation of system)

But Y(t) and Y(t + At) highly correlated if At is small

So estimator is average of autocorrelated observations

v

v

v

v

Techniques based on i.i.d. observations don't work

Initial-Transient Problem

» Steady-state distribution unknown,
so initial dist'n is not typical of steady-state behavior

» Autocorrelation implies that initial bias will persist
> Very hard to detect “end of initial-transient period”

6
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Estimation Methods

Many alternative estimation methods
» Regenerative method

» Batch-means method

v

Autoregressive method

Standardized-time-series methods

v

v

Integrated-path method

We will focus on:
» Regenerative method: clean and elegant

» Batch means: simple, widely used and the basis for other
methods



Steady-State Simulation

The Regenerative Method

Regenerative processes
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The Regenerative Method

References:
» Shedler [Ch. 2 & 3], Haas [Ch. 5 & 6]
» Recent developments: ACM TOMACS 25(4), 2015

Regenerative Processes
> Intuitively: (X(t): t > 0) is regenerative if process
“probabilistically restarts” infinitely often
> Restart times T(0), T(1),... called regeneration times or

regeneration points
» Regeneration points are random Jervel”
» Must be almost surely (a.s.) finite %@
» Ex: Arrivals to empty GI/G/1 queue

Jueug
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Regenerative Processes: Formal Definition

Definition: Stopping time

A random variable T is a stopping time with respect to

(X(t) : t > 0) if occurrence or non-occurrence of event {T < t} is
completely determined by (X(u) 0<u< t)

v

Definition: Regenerative process

The process (X(t) : t > 0) is regenerative if there exists an infinite
sequence of a.s. finite stopping times (T(k) tk > O) st.fork>1

1. (X(t): t > T(k)) is distributed as (X(t) : t > T(0))
2. (X(t):t> T(k)) is independent of (X(t):t < T(k))

» If T(0) =0, process is non-delayed (else delayed)

» Can drop stopping-time requirement, (more complicated def.)
» {X(t):t>0} regen. = {f(X(t)):t>0} regen.

» Analogous definition for discrete-time processes
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Regenerative Processes: Examples

Ex 1: Successive times that CTMC hits a fixed state x
» Formally, 7(0) =0 and Cotart i shabe %)
T(k) =min{t > T(k—1): X(t—) # x and X(t) = x}
> Observe that X (T (k)) = x for all k

» The two regenerative criteria follow from Markov property

Ex 2: Successive times that CTMC leaves a fixed state x
» X(T(k)) distributed according to P(x, -) for each k

» Second criterion follows from Markov property

Q: Is a semi-Markov process regenerative? V{j

same dedinthons as dhamples | v) abovt

oV properdy at
é@wusw{ 4‘3@/]412;@)7%/‘4 folf 7[/4“@
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Regenerative GSMPs

Ex 3: GSMP with a single state
» 5€ Sis a single state if £E(5) = {&} for some € € E
> Regeneration points: successive times that € occurs in §

» Observe that for each k > 1,

» New state s’ at T (k) distributed according to p(-;§, €)
» No old clocks
» Clock for new event €’ distributed as F(-;s’,¢€',5, &)

> Regenerative property follows from Markov property for

((Sn, Cn) in2> 0) [7;, 9 féml\,/’lwkm/ /’Vacw‘}

Ex 4: GI/G/1 queue every stafe is a ;m/&, s »//
» X(t) = number of jobs in system at time ¢t
» (X(t):t>0) is a GSMP
» T (k) = time of kth arrival to empty system (why?)
hecawe € 1% a 7z‘h7/ﬁ - gdale
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Regenerative GSMPs, Continued

Ex 5: Cancellation
» Suppose there exist 5,5 € S and € € E(5) with
p(5';5,€)r(5,€) > 0 such that O(5;5,&) =0

» T(k) = kth time that € occurs in 5 and new state is &’

Ex 6: Exponential clocks v stgn aéédﬂj‘ hj fo
» Suppose that hew 5 ye JSé
» There exists £ C E such that each e € E is:a simple event
with F(x;e) =1 — e e )
» There exists 5€ S and € € E(5) s.t. E(5) —{é} C E
» T(k) = kth time that & occurs in 5§ (memoryless property)
ol] clode wea/,’nj Lo 662.‘/ ,‘54,0(/;/,1(::))
Other (fancier) regeneration point constructions are possible
» E.g., if clock-setting distn’s have heavier-than-exponential
tails or bounded hazard rates h(t) = f(t)/(1 — F(t))
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Steady-State Simulation

The Regenerative Method

Regenerative Simulation
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Regenerative Simulation: Cycles

Y(t)

Y; Y, Y3

AﬁAﬁH”

T(0) T(2)

Regeneration points decompose process into i.i.d. cycles
> kth cycle: (X(t): T(k—1) <t < T(k))
» Length of kth cycle: 7, = T(k) — T(k —1)
> Set Vi =[] V(u) du

» The pairs (Y1,71),(Y2,72),... are i.i.d as (Y, )

Initial transient is not a problem!
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Regenerative Simulation: Time-Average Limits
Y(t)

» Recall: Y(t) = (1/t) fot Y (u) du

7(0) (1) 7(2) 7(3)

Theorem

Suppose that E[|Y1|] < oo and E[71] < co. Then
lim: 00 Y(t) = a a.s., where a = E[Y]/E[7].

» So estimating time-average limit reduces to a ratio-estimation
problem (can use delta method, jackknife, bootstrap)

(Most of) Proof

i 1 T S iy Yde Yy,
Y(T(n) = T(”)/o e = SITH)-TG-1)  Siaw

= nll~>mc>o Y(T(n)) = a as. by SLLN
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Regenerative Simulation: Steady-State Means

Definition

A real-valued random variable 7 is said to be periodic with period
d if d is the largest real number such that, w.p.1, 7 assumes values
in the set {0, d,2d,3d,...}. If no such number exists, then 7 is
aperiodic. (A discrete random variable is aperiodic if d = 1.)

Theorem

Suppose that (X(t) it > 0) is regenerative with finite state space
S and 7 is aperiodic with E[7] < co. Then X(t) = X and
E[f(X)] = E[Yl( )]/E[Tl] for any real-valued function f on S,

where Yi(f fT(O) (X(u ) duand 11 = T(1) — T(0)

» Under conditions of theorem, time avg limit is also a

steady-state mean (and a limiting m
7L/MC auj' /)MI{ /M'I Eﬂ?}(/\/ﬁ))j
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Regenerative Simulation: Other Performance Measures

Important observation:
Yy and 74 can be any quantities determined by a cycle

» Ex 1: Long-run avg rate at which GSMP jumps from s to s’

» Yy, = number of jumps from s to s’ in kth cycle
» 74 = length of kth cycle

» Ex 2: Long-run fraction of jumps from s to s’
» Y = number of jumps from s to s’ in kth cycle
» 74 = total number of jumps in kth cycle

> Ex 3: Long-run frac. occurrences of e where new state € A

» Y} = number of occurrences of e in kth cycle where s’ € A
» 7, = total number of occurrences of e in kth cycle
» E.g., frac. ambulance arrivals that find emergency room full
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Validity of Regenerative Method

Usually not hard to show probabilistic restart Ve B[_lf;l
LI\
But must also show:
. . .. e I
» Regeneration points are a.s. finite /M" Varignee
(i.e., infinitely many regenerations w.p.1) s ’Ma‘/ﬂk :
» E[1] < o0

A
A
; o Varly]-or cou
» o° < oo for confidence intervals g

A 2,1
» If S is finite, suffices to show that E[7?] <:o-/\_,

2
» Nontrivial!

See my book for techniques to prove validity

19/34



Steady-State Simulation

The Regenerative Method

Delays
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Regenerative Method: Delays

Formal definition of delays in a GSMP
» Sequences of starts (U, : n > 0) and terminations (V,, : n > 0)
» Assume Uy < U; < --- (delays enumerated in start order)
» nth delay is then D, = V,, — U,

Regular delay sequence
» (Dy: n>0) is regular with respect to (X(t): t > 0) if
» Occurrence or non-occurrence of event { Uy )11 —t < x}
determined by (X(t) t<u<t +x)
» Occurrence or non-occurrence of event {V, < U, + v}
determined by (X(t): U, <t < U, +v)
where N(t) = number of starts in [0, t]

> Intuition: A regular delay sequence is “determined” by
(X(t): t >0) in a reasonable way
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Delays, Continued

Example of regular delays in a GSMP [Shedler, Sec. 5.5]
» Assume at most one ongoing delay at any time point
» U, = time of nth jump from a state s € A; to astate s’ € A,

» V,, = time of nth jump from a state s € B; to a state s’ € B,



Delays, Continued

1 |p 2

KX+ X
1-p

e (lE]QY 1 —
P delay 2 ——

Case 1: Delays bounded by regenenerative cycles of GSMP
» GSMP (X(t):t > 0): X(t) = # of jobs at center 1 at time ¢
» T(k) = kth time GSMP jumps out of a single state 5 =0

» For delay 1: at each T(k) a single delay starts
(no other delays in progress)
» Thus every delay starts and ends in the same regen. cycle

> Sequence of delays is decomposed into i.i.d. cycles
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Delays, Continued

D7

Dy

D3

t

T(0) (1) T(2) T@3) T(4) T(5)

Regeneration points for (D, : n > 0):
NoZO,N1:2,N2:4,N3:6, and N4:7
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Delays, Continued

Ex: Estimate o = long-run fraction of delays > 2 time units
» Set f(x) =1if x > 2 and f(x) = 0 otherwise

> By discrete-time version of prior results,

n—1
a? fim (1/n) Z; £(D;) = E[V1]/E[r] ass. J
=
where Yj = SN F(D,) and 7y = Ny — Nj_y = #af;/:/ep
> In example, Y1 = f(Dy) + f(D1) and 74 =2 AN "¢ gen,

» The (Y, 7x) pairs are i.i.d., so use ratio estimation methods ¢Ycl-
» If 74 has period 1 (i.e., aperiodic in discrete time), then

» D,= D

» « = E[f(D)] = steady state probability that a delay is > 2

= /0(031)
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Delays, Continued

1 |p 2

@l 30
1o

| e N G VR R |
— ey 2 —

Case 2: Delays span regenerative cycles

» Same GSMP as before: X(t) = # of jobs at center 1
(N jobs total)

» Same regeneration points T (k) as before: Jumps out of 5 =0

» For delay 2: At each T(k), one delay starts but N — 1 delays
are in progress

» Thus delays span regenerative cycles

26

34



Delays, Continued

A
D7

1%
Ds
Dy

Dy
D,

D4

T0) ™) ™ 1@ T4 16 t

Case 2, continued
> Take subset of regeneration points so that
delay spans at most two cycles
» (Y, Tk) pairs are now one-dependent
» Variant of regenerative method works [see my book]

» Same point estimate
» CLT variance accounts for dependence between adjacent cycles
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Steady-State Simulation

The Batch Means Method

Time-average limits
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Batch Means

A method for estimating time-average limits when we can’t

find regeneration points

To estimate o = lims_s o0 % fot Y (u) du:

Basic Batch Means

1.

Choose small integer m and large number v.

2. Set tp_15 =1 —(6/2) Student-t quantile, m — 1 d.o.f.
3. Simulate (Y(t): t > 0) up to time t = mv

4.
5
6
7

Compute batch mean Y; = f(J 1y Y(u)dufor1<j<m
. Compute point estimator «,, = (1/m) Zj’ll Y
. Compute 57, = -1 > 71 (V) — am)?

. Compute 100(1 — 0)% confidence interval

tm—1,65m

t—1.65m
am — = , Om + m\/'ﬁ }
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Batch Means, Continued Bodh mean’

Why Does Batch er?
» Intuition: Batch@és look like i.i.d. normal random variables

» See my book for conditions on GSMP ensuring validity

«— batch1———>»<«———batch2———»

L“W

I I |
0 \ 2v

Many variants and generalizations (Handbook of Simulation)
» Overlapping batch means
» Sequential batch means

» Standardized time series
> ...

Comparison to regenerative method
> When both are applicable, regenerative yields shorter Cls
when run length is long
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Steady-State Simulation

The Batch Means Method

Jackknifed Batch Means
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Jackknifed Batch Means

Ex: Nonlinear functions of time-average limits

> Estimate a = g(p1, j12), where p; = lim; o (1/t) fot f,-(X(u)) du
» Fori=1,2set

> Z/j(') =1 (jj"il)‘v f,(X(il)) dufor j=1,.
> )_/(r) g(Y]_(I)7"'7YI$’II))
> (’,)( g(yl(’),...,ylfil, 15217_“5\/,57’))

Jackknifed Batch Means (JBM)
1. Simulate (X(t):t>0) up to time t = mv
2. Compute batch means \71(i), e 7,5,0 fori=1,2
3. For 1 < k < m, compute pseudovalue
(k) = mg(YD, V@) — (m — 1)g(V), Y1)
4. Compute point estimator a7, = (1/m) > (k)
5. Compute 100(1 — ¢) CI

[ = b v/ 2,05+t s )]
where v,,, = sample variance of ap(1),...,am(m)
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Jackknifed Batch Means, Continued

Can apply JBM to obtain low-bias estimator for ordinary
time-average limits in a GSMP
> Goal: Estimate o = lim;oo(1/¢) [y £(X(u)) du
» Can show that a = g(pu1, 12), where g(x,y) = x/y and
> p1 = limpe0(1/n )27701 £(Sn)t*(Sn, Cn) m
> 2 = limpoo(1/) Y00 (S0, o) -
where ((Sn, Gy) : n > 0) is underlying GSSMC of GSMP and

t* is holding time function

» Partial proof: é ( OC” f(X(u)) du = leonigt*)(tsn(,in)cn) —

» So can apply discrete-time version of JBM with batches:
> Y = (1/v) T, F(S)E (S G)
> v (1/\/)2” t*(Si, Gi)
forj=1,.
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Jackknifed Batch Means, Continued

X X X

I delay |

Can apply discrete-time version of JBM to analyze delays
» To estimate o = lim,,(1/n) Zj;ol f(Dj) M\/L:,&/f‘.e} o I,JJ\
» Simulate D1, Dy, ..., Dym (here v is an integer) ehls T
» Batch means: Y; = (1/v) Z{:‘/:_(J.lfl)v f(Dj) forj=1,...,m
» Ex: Cyclic queues with multiple servers per station
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