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Steady-State Simulation

Why do it?

I Quick approximation for cumulative cost C (t) =
R t
0 Y (s) ds

I Y (s) is output process of the simulation, e.g., Y (t) = f
�
X (t)

�

where X (t) is system state and f is a real-valued function
I If time-average limit ↵ = limt!1(1/t)

R t
0 Y (s) ds exists, then

C (t) ⇡ t↵ for large t

I Avoids arbitrary choice of time horizon

I Avoids arbitrary choice of initial conditions

Appropriate if

I No “natural” termination time for simulation

I No “natural” initial conditions

I Rapid convergence to (quasi-)steady state
(e.g., telecom w. nanosecond timescale observed every 5 min.)
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Steady-State Performance Measures

The setup for GSMP
�
X (t) : t � 0

�
with state space S

I Output process Y (t) = f
�
X (t)

�

where f is a real-valued function

I Let µ = initial distribution of GSMP

A reminder: General notion of convergence in distribution
I Discrete-state case:

I Xn ) X if limn!1 P(Xn = s) = P(X = s) for all s 2 S

I X (t) ) X if limt!1 P
�
X (t) = s

�
= P(X = s) for all s 2 S

I Note: E [f (X )] =
P

s2S f (s)⇡(s), where
⇡(s) = limt!1 P

�
X (t) = s

�
= P(X = s)

I Continuous-state case:
I Zn ) Z if limn!1 P(Zn  x) = P(Z  x)

for all x where FZ is continuous

I Ex:
p
n

�

�
X̄n � µX

�
) N(0, 1) by CLT

4 / 34

discrete time-

cent. time-



Steady-State Performance Measures, Continued

Time-Average Limit of Y (t) process

↵ such that Pµ

n
limt!1(1/t)

R t
0 Y (u) du = ↵

o
= 1 for any µ

Steady-State Mean of Y (t) process

↵ = E [f (X )], where, for any µ, X (t) ) X and E [f (X )] exists

Limiting Mean of Y (t) process

↵ = limt!1 E
⇥
f
�
X (t)

�⇤
for any µ

I “for any µ” = for any member of GSMP family indexed by µ
(with other building blocks the same)

I E [f (X )] exists if and only if E [|f (X )|] < 1
I If f is bounded or S is finite, then X (t) ) X implies

limt!1 E
⇥
f
�
X (t)

�⇤
= E [f (X )] (s-s mean = limiting mean)
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Steady-State Simulation Challenges

Autocorrelation problem

I For time-average limit,
↵ = limt!1 Ȳ (t) = limt!1(1/t)

R t
0 Y (u) du

I Natural estimator of ↵ is Ȳ (t) for some large t

(obtained from one long observation of system)

I But Y (t) and Y (t +�t) highly correlated if �t is small

I So estimator is average of autocorrelated observations

I Techniques based on i.i.d. observations don’t work

Initial-Transient Problem

I Steady-state distribution unknown,
so initial dist’n is not typical of steady-state behavior

I Autocorrelation implies that initial bias will persist

I Very hard to detect “end of initial-transient period”
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Estimation Methods

Many alternative estimation methods

I Regenerative method

I Batch-means method

I Autoregressive method

I Standardized-time-series methods

I Integrated-path method

I . . .

We will focus on:

I Regenerative method: clean and elegant

I Batch means: simple, widely used and the basis for other
methods
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The Regenerative Method

References:

I Shedler [Ch. 2 & 3], Haas [Ch. 5 & 6]

I Recent developments: ACM TOMACS 25(4), 2015

Regenerative Processes

I Intuitively:
�
X (t) : t � 0

�
is regenerative if process

“probabilistically restarts” infinitely often
I Restart times T (0),T (1), . . . called regeneration times or

regeneration points
I Regeneration points are random
I Must be almost surely (a.s.) finite
I Ex: Arrivals to empty GI/G/1 queue
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Regenerative Processes: Formal Definition

Definition: Stopping time

A random variable T is a stopping time with respect to�
X (t) : t � 0

�
if occurrence or non-occurrence of event {T  t} is

completely determined by
�
X (u) : 0  u  t

�

Definition: Regenerative process

The process
�
X (t) : t � 0

�
is regenerative if there exists an infinite

sequence of a.s. finite stopping times
�
T (k) : k � 0

�
s.t. for k � 1

1.
�
X (t) : t � T (k)

�
is distributed as

�
X (t) : t � T (0)

�

2.
�
X (t) : t � T (k)

�
is independent of

�
X (t) : t < T (k)

�

I If T (0) = 0, process is non-delayed (else delayed)
I Can drop stopping-time requirement, (more complicated def.)
I
�
X (t) : t � 0

 
regen. )

�
f
�
X (t)

�
: t � 0

 
regen.

I Analogous definition for discrete-time processes

10 / 34



Regenerative Processes: Examples

Ex 1: Successive times that CTMC hits a fixed state x

I Formally, T (0) = 0 and
T (k) = min{t > T (k � 1) : X (t�) 6= x and X (t) = x}

I Observe that X
�
T (k)

�
= x for all k

I The two regenerative criteria follow from Markov property

Ex 2: Successive times that CTMC leaves a fixed state x

I X
�
T (k)

�
distributed according to P(x , · ) for each k

I Second criterion follows from Markov property

Q: Is a semi-Markov process regenerative?
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Regenerative GSMPs

Ex 3: GSMP with a single state

I s̄ 2 S is a single state if E (s̄) = {ē} for some ē 2 E

I Regeneration points: successive times that ē occurs in s̄

I Observe that for each k � 1,
I New state s

0 at T (k) distributed according to p( · ; s̄, ē)
I No old clocks
I Clock for new event e0 distributed as F ( · ; s 0, e0, s̄, ē)

I Regenerative property follows from Markov property for�
(Sn,Cn) : n � 0

�

Ex 4: GI/G/1 queue

I X (t) = number of jobs in system at time t

I
�
X (t) : t � 0

�
is a GSMP

I T (k) = time of kth arrival to empty system (why?)
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Regenerative GSMPs, Continued

Ex 5: Cancellation

I Suppose there exist s̄ 0, s̄ 2 S and ē 2 E (s̄) with
p(s̄ 0; s̄, ē)r(s̄, ē) > 0 such that O(s̄ 0; s̄, ē) = ;

I T (k) = kth time that ē occurs in s̄ and new state is s̄ 0

Ex 6: Exponential clocks
I Suppose that

I There exists Ẽ ✓ E such that each e 2 Ẽ is a simple event
with F (x ; e) = 1� e

��(e)x

I There exists s̄ 2 S and ē 2 E (s̄) s.t. E (s̄)� {ē} ✓ Ẽ

I T (k) = kth time that ē occurs in s̄ (memoryless property)

Other (fancier) regeneration point constructions are possible

I E.g., if clock-setting distn’s have heavier-than-exponential
tails or bounded hazard rates h(t) = f (t)/

�
1� F (t)

�
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Regenerative Simulation: Cycles

Regeneration points decompose process into i.i.d. cycles

I kth cycle:
�
X (t) : T (k � 1)  t < T (k)

�

I Length of kth cycle: ⌧k = T (k)� T (k � 1)

I Set Yk =
R T (k)
T (k�1) Y (u) du

I The pairs (Y1, ⌧1), (Y2, ⌧2), . . . are i.i.d as (Y , ⌧)

Initial transient is not a problem!
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Regenerative Simulation: Time-Average Limits

I Recall: Ȳ (t) = (1/t)
R t
0 Y (u) du

Theorem

Suppose that E [|Y1|] < 1 and E [⌧1] < 1. Then
limt!1 Ȳ (t) = ↵ a.s., where ↵ = E [Y ]/E [⌧ ].

I So estimating time-average limit reduces to a ratio-estimation
problem (can use delta method, jackknife, bootstrap)

(Most of) Proof

Ȳ
�
T (n)

�
=

1

T (n)

Z T (n)

0
Y (u) du =

Pn
j=1

R T (j)
T (j�1) Y (u) du

Pn
j=1

�
T (j)� T (j � 1)

� =

Pn
j=1 YjPn
j=1 ⌧j

) lim
n!1

Ȳ
�
T (n)

�
= ↵ a.s. by SLLN
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Regenerative Simulation: Steady-State Means

Definition

A real-valued random variable ⌧ is said to be periodic with period
d if d is the largest real number such that, w.p.1, ⌧ assumes values
in the set {0, d , 2d , 3d , . . .}. If no such number exists, then ⌧ is
aperiodic. (A discrete random variable is aperiodic if d = 1.)

Theorem

Suppose that
�
X (t) : t � 0

�
is regenerative with finite state space

S and ⌧ is aperiodic with E [⌧ ] < 1. Then X (t) ) X and
E [f (X )] = E [Y1(f )]/E [⌧1] for any real-valued function f on S ,

where Y1(f ) =
R T (1)
T (0) f

�
X (u)

�
du and ⌧1 = T (1)� T (0)

I Under conditions of theorem, time avg limit is also a
steady-state mean (and a limiting mean)
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Regenerative Simulation: Other Performance Measures

Important observation:
Yk and ⌧k can be any quantities determined by a cycle

I Ex 1: Long-run avg rate at which GSMP jumps from s to s
0

I Yk = number of jumps from s to s
0 in kth cycle

I ⌧k = length of kth cycle

I Ex 2: Long-run fraction of jumps from s to s
0

I Yk = number of jumps from s to s
0 in kth cycle

I ⌧k = total number of jumps in kth cycle

I Ex 3: Long-run frac. occurrences of e where new state 2 A

I Yk = number of occurrences of e in kth cycle where s
0 2 A

I ⌧k = total number of occurrences of e in kth cycle
I E.g., frac. ambulance arrivals that find emergency room full
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Validity of Regenerative Method

Usually not hard to show probabilistic restart

But must also show:

I Regeneration points are a.s. finite
(i.e., infinitely many regenerations w.p.1)

I E [⌧ ] < 1
I �2 < 1 for confidence intervals

I If S is finite, su�ces to show that E [⌧ 2] < 1
I Nontrivial!

See my book for techniques to prove validity
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Regenerative Method: Delays

Formal definition of delays in a GSMP

I Sequences of starts (Un : n � 0) and terminations (Vn : n � 0)

I Assume U0  U1  · · · (delays enumerated in start order)

I nth delay is then Dn = Vn � Un

Regular delay sequence
I
�
Dn : n � 0

�
is regular with respect to

�
X (t) : t � 0

�
if

I Occurrence or non-occurrence of event {UN(t)+1 � t  x}
determined by

�
X (t) : t  u  t + x

�

I Occurrence or non-occurrence of event {Vn  Un + v}
determined by

�
X (t) : Un  t  Un + v

�

where N(t) = number of starts in [0, t]

I Intuition: A regular delay sequence is “determined” by�
X (t) : t � 0

�
in a reasonable way
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Delays, Continued

Example of regular delays in a GSMP [Shedler, Sec. 5.5]

I Assume at most one ongoing delay at any time point

I Un = time of nth jump from a state s 2 A1 to a state s
0 2 A2

I Vn = time of nth jump from a state s 2 B1 to a state s
0 2 B2
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Delays, Continued

xxx xx
1 2p

1-p

delay 1
delay 2

Case 1: Delays bounded by regenenerative cycles of GSMP

I GSMP
�
X (t) : t � 0

�
: X (t) = # of jobs at center 1 at time t

I T (k) = kth time GSMP jumps out of a single state s̄ = 0

I For delay 1: at each T (k) a single delay starts
(no other delays in progress)

I Thus every delay starts and ends in the same regen. cycle
Un 2 [T (k � 1),T (k)] ) Vn 2 [T (k � 1),T (k)]

I Sequence of delays is decomposed into i.i.d. cycles
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Delays, Continued

	
T(5)T(2) T(4)

D6

D1
D0

D3
D2

D5
D4

D7

t

0
1
2
3
4
5
6
7

T(1)T(0) T(3)

Regeneration points for (Dn : n � 0):
N0 = 0,N1 = 2,N2 = 4,N3 = 6, and N4 = 7
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Delays, Continued

Ex: Estimate ↵ = long-run fraction of delays � 2 time units

I Set f (x) = 1 if x � 2 and f (x) = 0 otherwise

I By discrete-time version of prior results,

↵
�
= lim

n!1
(1/n)

n�1X

j=0

f (Dj) = E [Y1]/E [⌧1] a.s.

where Yk =
PNk�1

n=Nk�1
f (Dn) and ⌧k = Nk � Nk�1

I In example, Y1 = f (D0) + f (D1) and ⌧1 = 2

I The (Yk , ⌧k) pairs are i.i.d., so use ratio estimation methods
I If ⌧1 has period 1 (i.e., aperiodic in discrete time), then

I Dn ) D

I ↵ = E [f (D)] = steady state probability that a delay is � 2
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Delays, Continued

xxx xx
1 2p

1-p

delay 1
delay 2

Case 2: Delays span regenerative cycles

I Same GSMP as before: X (t) = # of jobs at center 1
(N jobs total)

I Same regeneration points T (k) as before: Jumps out of s̄ = 0

I For delay 2: At each T (k), one delay starts but N � 1 delays
are in progress

I Thus delays span regenerative cycles
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Delays, Continued

	
T(5)T(2) T(4)

D6

D1
D0

D3
D2

D5
D4

D7

t

0
1
2
3
4
5
6
7

T(1)T(0) T(3)

Case 2, continued

I Take subset of regeneration points so that
delay spans at most two cycles

I (Yk , ⌧k) pairs are now one-dependent
I Variant of regenerative method works [see my book]

I Same point estimate
I CLT variance accounts for dependence between adjacent cycles
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Batch Means

A method for estimating time-average limits when we can’t
find regeneration points

To estimate ↵ = limt!1
1
t

R t
0 Y (u) du:

Basic Batch Means

1. Choose small integer m and large number v .

2. Set tm�1,� = 1� (�/2) Student-t quantile, m � 1 d.o.f.

3. Simulate
�
Y (t) : t � 0

�
up to time t = mv

4. Compute batch mean Ȳj =
1
v

R jv
(j�1)v Y (u) du for 1  j  m

5. Compute point estimator ↵m = (1/m)
Pm

j=1 Ȳj

6. Compute s
2
m = 1

m�1

Pm
j=1(Ȳj � ↵m)2

7. Compute 100(1� �)% confidence intervalh
↵m � tm�1,�smp

m
,↵m +

tm�1,�smp
m

i

29 / 34



Batch Means, Continued

Why Does Batch Means Work?
I Intuition: Batches look like i.i.d. normal random variables
I See my book for conditions on GSMP ensuring validity

	

Many variants and generalizations (Handbook of Simulation)
I Overlapping batch means
I Sequential batch means
I Standardized time series
I . . .

Comparison to regenerative method
I When both are applicable, regenerative yields shorter CIs

when run length is long
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Jackknifed Batch Means

Ex: Nonlinear functions of time-average limits
I Estimate ↵ = g(µ1, µ2), where µi = limt!1(1/t)

R t
0 fi

�
X (u)

�
du

I For i = 1, 2 set
I Ȳ

(i)
j = 1

v

R jv
(j�1)v fi

�
X (u)

�
du for j = 1, . . . ,m

I ¯̄
Y

(i) = avg(Ȳ (i)
1 , . . . , Ȳ (i)

m )
I ¯̄

Y
(i)
�k = avg(Ȳ (i)

1 , . . . , Ȳ (i)
k�1, Ȳ

(i)
k+1, . . . , Ȳ

(i)
m )

Jackknifed Batch Means (JBM)

1. Simulate
�
X (t) : t � 0

�
up to time t = mv

2. Compute batch means Ȳ (i)
1 , . . . , Ȳ (i)

m for i = 1, 2

3. For 1  k  m, compute pseudovalue

↵m(k) = mg( ¯̄Y (1), ¯̄Y (2))� (m � 1)g( ¯̄Y (1)
�k ,

¯̄
Y

(2)
�k )

4. Compute point estimator ↵J
m = (1/m)

Pm
k=1 ↵m(k)

5. Compute 100(1� �) CIh
↵J
m � tm�1,�(vm/m)1/2,↵J

m + tm�1,�(vm/m)1/2
i

where vm = sample variance of ↵m(1), . . . ,↵m(m)
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Jackknifed Batch Means, Continued

Can apply JBM to obtain low-bias estimator for ordinary
time-average limits in a GSMP

I Goal: Estimate ↵ = limt!1(1/t)
R t
0 f

�
X (u)

�
du

I Can show that ↵ = g(µ1, µ2), where g(x , y) = x/y and
I µ1 = limn!1(1/n)

Pn�1
i=0 f (Sn)t⇤(Sn,Cn)

I µ2 = limn!1(1/n)
Pn�1

i=0 t
⇤(Sn,Cn)

where
�
(Sn,Cn) : n � 0

�
is underlying GSSMC of GSMP and

t
⇤ is holding time function

I Partial proof: 1
⇣n

R ⇣n
0 f

�
X (u)

�
du =

Pn�1
i=0 f (Sn)t⇤(Sn,Cn)Pn�1

i=0 t⇤(Sn,Cn)
! µ1

µ2

I So can apply discrete-time version of JBM with batches:
I Ȳ

(1)
j = (1/v)

Pjv�1
i=(j�1)v f (Si )t

⇤(Si ,Ci )

I Ȳ
(2)
j = (1/v)

Pjv�1
i=(j�1)v t

⇤(Si ,Ci )

for j = 1, . . . ,m
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Jackknifed Batch Means, Continued

	
Can apply discrete-time version of JBM to analyze delays

I To estimate ↵ = limn!1(1/n)
Pn�1

j=0 f (Dj)

I Simulate D1,D2, . . . ,Dvm (here v is an integer)

I Batch means: Ȳj = (1/v)
Pjv�1

i=(j�1)v f (Di ) for j = 1, . . . ,m

I Ex: Cyclic queues with multiple servers per station
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