Steady-State Simulation
 Reading: Ch. 9 in Law \& Ch. 15 in Handbook of Simulation

Peter J. Haas

CS 590M: Simulation
Spring Semester 2020

Steady-State Simulation

Overview
The Regenerative Method Regenerative processes Regenerative Simulation Delays
The Batch Means Method
Time-average limits Jackknifed Batch Means

Steady-State Simulation

Why do it?

- Quick approximation for cumulative cost $C(t)=\int_{0}^{t} Y(s) d s$
- $Y(s)$ is output process of the simulation, e.g., $Y(t)=f(X(t))$ where $X(t)$ is system state and f is a real-valued function
- If time-average limit $\alpha=\lim _{t \rightarrow \infty}(1 / t) \int_{0}^{t} Y(s) d s$ exists, then $C(t) \approx t \alpha$ for large t
- Avoids arbitrary choice of time horizon
- Avoids arbitrary choice of initial conditions

Appropriate if

- No "natural" termination time for simulation
- No "natural" initial conditions
- Rapid convergence to (quasi-)steady state (e.g., telecom w. nanosecond timescale observed every 5 min .)

Steady-State Performance Measures

The setup for GSMP $(X(t): t \geq 0)$ with state space S

- Output process $Y(t)=f(X(t))$ where f is a real-valued function
- Let $\mu=$ initial distribution of GSMP

A reminder: General notion of convergence in distribution

- Discrete-state case:
discuetc time $\rightarrow X_{n} \Rightarrow X$ if $\lim _{n \rightarrow \infty} P\left(X_{n}=s\right)=P(X=s)$ for all $s \in S$ cont. time $\rightarrow X(t) \Rightarrow X$ if $\lim _{t \rightarrow \infty} P(X(t)=s)=P(X=s)$ for all $s \in S$
- Note: $E[f(X)]=\sum_{s \in S} f(s) \pi(s)$, where $\pi(s)=\lim _{t \rightarrow \infty} P(X(t)=s)=P(X=s)$
- Continuous-state case:
- $Z_{n} \Rightarrow Z$ if $\lim _{n \rightarrow \infty} P\left(Z_{n} \leq x\right)=P(Z \leq x)$ for all x where F_{Z} is continuous
- Ex: $\frac{\sqrt{n}}{\sigma}\left(\bar{X}_{n}-\mu_{x}\right) \Rightarrow N(0,1)$ by CLT

Steady-State Performance Measures, Continued

Time-Average Limit of $Y(t)$ process
α such that $P_{\mu}\left\{\lim _{t \rightarrow \infty}(1 / t) \int_{0}^{t} Y(u) d u=\alpha\right\}=1$ for any μ
Steady-State Mean of $Y(t)$ process
$\alpha=E[f(X)]$, where, for any $\mu, X(t) \Rightarrow X$ and $E[f(X)]$ exists
Limiting Mean of $Y(t)$ process
$\alpha=\lim _{t \rightarrow \infty} E[f(X(t))]$ for any μ

- "for any μ " = for any member of GSMP family indexed by μ (with other building blocks the same)
- $E[f(X)]$ exists if and only if $E[|f(X)|]<\infty$
- If f is bounded or S is finite, then $X(t) \Rightarrow X$ implies $\lim _{t \rightarrow \infty} E[f(X(t))]=E[f(X)]$ (s-s mean $=$ limiting mean)

Steady-State Simulation Challenges

Autocorrelation problem

- For time-average limit,

$$
\alpha=\lim _{t \rightarrow \infty} \bar{Y}(t)=\lim _{t \rightarrow \infty}(1 / t) \int_{0}^{t} Y(u) d u
$$

- Natural estimator of α is $\bar{Y}(t)$ for some large t (obtained from one long observation of system)
- But $Y(t)$ and $Y(t+\Delta t)$ highly correlated if Δt is small
- So estimator is average of autocorrelated observations
- Techniques based on i.i.d. observations don't work

Initial-Transient Problem

- Steady-state distribution unknown, so initial dist'n is not typical of steady-state behavior
- Autocorrelation implies that initial bias will persist
- Very hard to detect "end of initial-transient period"

Estimation Methods

Many alternative estimation methods

- Regenerative method
- Batch-means method
- Autoregressive method
- Standardized-time-series methods
- Integrated-path method
- ...

We will focus on:

- Regenerative method: clean and elegant
- Batch means: simple, widely used and the basis for other methods

Steady-State Simulation

Overview

The Regenerative Method Regenerative processes
Regenerative Simulation
Delays
The Batch Means Method
Time-average limits
Jackknifed Batch Means

The Regenerative Method

References:

- Shedler [Ch. 2 \& 3], Haas [Ch. 5 \& 6]
- Recent developments: ACM TOMACS 25(4), 2015

Regenerative Processes

- Intuitively: $(X(t): t \geq 0)$ is regenerative if process "probabilistically restarts" infinitely often
- Restart times $T(0), T(1), \ldots$ called regeneration times or regeneration points
- Regeneration points are random
- Must be almost surely (a.s.) finite
- Ex: Arrivals to empty GI/G/1 queue

Regenerative Processes: Formal Definition

Definition: Stopping time
A random variable T is a stopping time with respect to $(X(t): t \geq 0)$ if occurrence or non-occurrence of event $\{T \leq t\}$ is completely determined by $(X(u): 0 \leq u \leq t)$

Definition: Regenerative process
The process $(X(t): t \geq 0)$ is regenerative if there exists an infinite sequence of a.s. finite stopping times $(T(k): k \geq 0)$ s.t. for $k \geq 1$

1. $(X(t): t \geq T(k))$ is distributed as $(X(t): t \geq T(0))$
2. $(X(t): t \geq T(k))$ is independent of $(X(t): t<T(k))$

- If $T(0)=0$, process is non-delayed (else delayed)
- Can drop stopping-time requirement, (more complicated def.)
- $\{X(t): t \geq 0\}$ regen. $\Rightarrow\{f(X(t)): t \geq 0\}$ regen.
- Analogous definition for discrete-time processes

Regenerative Processes: Examples

Ex 1: Successive times that CTMC hits a fixed state x

- Formally, $T(0)=0$ and (start in state x)
$T(k)=\min \{t>T(k-1): X(t-) \neq x$ and $X(t)=x\}$
- Observe that $X(T(k))=x$ for all k
- The two regenerative criteria follow from Markov property

Ex 2: Successive times that CTMC leaves a fixed state x

- X(T(k)) distributed according to $P(x, \cdot)$ for each k
- Second criterion follows from Markov property

Q: Is a semi-Markov process regenerative? Yes
same definitions as examples I +2 above because qP Markov property at
state transition times

Regenerative GSMPs

Ex 3: GSMP with a single state

- $\bar{s} \in S$ is a single state if $E(\bar{s})=\{\bar{e}\}$ for some $\bar{e} \in E$
- Regeneration points: successive times that \bar{e} occurs in \bar{s}
- Observe that for each $k \geq 1$,
- New state s^{\prime} at $T(k)$ distributed according to $p(\cdot ; \bar{s}, \bar{e})$
- No old clocks
- Clock for new event e^{\prime} distributed as $F\left(\cdot ; s^{\prime}, e^{\prime}, \bar{s}, \bar{e}\right)$
- Regenerative property follows from Markov property for

$$
\left(\left(S_{n}, C_{n}\right): n \geq 0\right) \quad \text { (In a semi u Markov process's) }
$$

Ex 4: GI/G/1 queue

 every state is a single state)- $X(t)=$ number of jobs in system at time t
- $(X(t): t \geq 0)$ is a GSMP
- $T(k)=$ time of k th arrival to empty system (why?)
because θ is a single-state

Regenerative GSMPs, Continued

Ex 5: Cancellation

- Suppose there exist $\bar{s}^{\prime}, \bar{s} \in S$ and $\bar{e} \in E(\bar{s})$ with

$$
p\left(\bar{s}^{\prime} ; \bar{s}, \bar{e}\right) r(\bar{s}, \bar{e})>0 \text { such that } O\left(\bar{s}^{\prime} ; \bar{s}, \bar{e}\right)=\emptyset
$$

- $T(k)=k$ th time that \bar{e} occurs in \bar{s} and new state is \bar{s}^{\prime}

Ex 6: Exponential clocks

- Suppose that
new state chosen according to
$P(, \bar{s} \bar{e})$
- There exists $\tilde{E} \subseteq E$ such that each $e \in \tilde{E}$ is a simple event with $F(x ; e)=1-e^{-\lambda(e) x}$
- There exists $\bar{s} \in S$ and $\bar{e} \in E(\bar{s})$ s.t. $E(\bar{s})-\{\bar{e}\} \subseteq \tilde{E}$
- $T(k)=k$ th time that \bar{e} occurs in \bar{s} (memoryless property) old clock reading fon et \widetilde{E} is wexp (λ (e))
Other (fancier) regeneration point constructions are possible
- E.g., if clock-setting distn's have heavier-than-exponential tails or bounded hazard rates $h(t)=f(t) /(1-F(t))$

Steady-State Simulation

Overview

The Regenerative Method
Regenerative processes
Regenerative Simulation
Delays
The Batch Means Method
Time-average limits
Jackknifed Batch Means

Regenerative Simulation: Cycles

Regeneration points decompose process into i.i.d. cycles

- kth cycle: $(X(t): T(k-1) \leq t<T(k))$
- Length of k th cycle: $\tau_{k}=T(k)-T(k-1)$
- Set $Y_{k}=\int_{T(k-1)}^{T(k)} Y(u) d u$
- The pairs $\left(Y_{1}, \tau_{1}\right),\left(Y_{2}, \tau_{2}\right), \ldots$ are i.i.d as (Y, τ)

Initial transient is not a problem!

Regenerative Simulation: Time-Average Limits

- Recall: $\bar{Y}(t)=(1 / t) \int_{0}^{t} Y(u) d u$

Theorem
Suppose that $E\left[\left|Y_{1}\right|\right]<\infty$ and $E\left[\tau_{1}\right]<\infty$. Then $\lim _{t \rightarrow \infty} \bar{Y}(t)=\alpha$ a.s., where $\alpha=E[Y] / E[\tau]$.

- So estimating time-average limit reduces to a ratio-estimation problem (can use delta method, jackknife, bootstrap)

(Most of) Proof

$$
\begin{aligned}
& \bar{Y}(T(n))=\frac{1}{T(n)} \int_{0}^{T(n)} Y(u) d u=\frac{\sum_{j=1}^{n} \int_{T(j-1)}^{T(j)} Y(u) d u}{\sum_{j=1}^{n}(T(j)-T(j-1))}=\frac{\sum_{j=1}^{n} Y_{j}}{\sum_{j=1}^{n} \tau_{j}} \\
& \quad \Rightarrow \lim _{n \rightarrow \infty} \bar{Y}(T(n))=\alpha \text { a.s. by SLLN }
\end{aligned}
$$

Regenerative Simulation: Steady-State Means

Definition

A real-valued random variable τ is said to be periodic with period d if d is the largest real number such that, w.p.1, τ assumes values in the set $\{0, d, 2 d, 3 d, \ldots\}$. If no such number exists, then τ is aperiodic. (A discrete random variable is aperiodic if $d=1$.)

Theorem

Suppose that $(X(t): t \geq 0)$ is regenerative with finite state space S and τ is aperiodic with $E[\tau]<\infty$. Then $X(t) \Rightarrow X$ and $E[f(X)]=E\left[Y_{1}(f)\right] / E\left[\tau_{1}\right]$ for any real-valued function f on S, where $Y_{1}(f)=\int_{T(0)}^{T(1)} f(X(u)) d u$ and $\tau_{1}=T(1)-T(0)$

- Under conditions of theorem, time avg limit is also a steady-state mean (and a limiting mean)

$$
\begin{aligned}
& \text { tate mean (and a limiting mean) } \\
& \text { fine avg. limit: } \lim _{6 \rightarrow \infty} E[P(X(6))]
\end{aligned}
$$

Regenerative Simulation: Other Performance Measures

Important observation:

Y_{k} and τ_{k} can be any quantities determined by a cycle

- Ex 1: Long-run avg rate at which GSMP jumps from s to s^{\prime}
- $Y_{k}=$ number of jumps from s to s^{\prime} in k th cycle
- $\tau_{k}=$ length of k th cycle
- Ex 2: Long-run fraction of jumps from s to s^{\prime}
- $Y_{k}=$ number of jumps from s to s^{\prime} in k th cycle
- $\tau_{k}=$ total number of jumps in k th cycle
- Ex 3: Long-run frac. occurrences of e where new state $\in A$
- $Y_{k}=$ number of occurrences of e in k th cycle where $s^{\prime} \in A$
- $\tau_{k}=$ total number of occurrences of e in k th cycle
- E.g., frac. ambulance arrivals that find emergency room full

Validity of Regenerative Method

Usually not hard to show probabilistic restart
But must also show:

- Regeneration points are a.s. finite (i.e., infinitely many regenerations w.p.1)
- $E[\tau]<\infty$
- $\sigma^{2}<\infty$ for confidence intervals

$$
\begin{aligned}
& \operatorname{var}[y] \\
& \left.\tau^{2}\right]<\infty
\end{aligned}
$$

- Nontrivial!

$$
\begin{aligned}
& \text { regen. variance } \\
& \text { estimator: }
\end{aligned}
$$

- If S is finite, suffices to show that $E\left[\tau^{2}\right]<\infty$

See my book for techniques to prove validity

Steady-State Simulation

Overview

The Regenerative Method
Regenerative processes
Regenerative Simulation
Delays
The Batch Means Method
Time-average limits
Jackknifed Batch Means

Regenerative Method: Delays

Formal definition of delays in a GSMP

- Sequences of starts $\left(U_{n}: n \geq 0\right)$ and terminations ($\left.V_{n}: n \geq 0\right)$
- Assume $U_{0} \leq U_{1} \leq \cdots$ (delays enumerated in start order)
- nth delay is then $D_{n}=V_{n}-U_{n}$

Regular delay sequence

- $\left(D_{n}: n \geq 0\right)$ is regular with respect to $(X(t): t \geq 0)$ if
- Occurrence or non-occurrence of event $\left\{U_{N(t)+1}-t \leq x\right\}$ determined by $(X(t): t \leq u \leq t+x)$
- Occurrence or non-occurrence of event $\left\{V_{n} \leq U_{n}+v\right\}$ determined by $\left(X(t): U_{n} \leq t \leq U_{n}+v\right)$
where $N(t)=$ number of starts in $[0, t]$
- Intuition: A regular delay sequence is "determined" by $(X(t): t \geq 0)$ in a reasonable way

Delays, Continued

Example of regular delays in a GSMP [Shedler, Sec. 5.5]

- Assume at most one ongoing delay at any time point
- $U_{n}=$ time of nth jump from a state $s \in A_{1}$ to a state $s^{\prime} \in A_{2}$
- $V_{n}=$ time of nth jump from a state $s \in B_{1}$ to a state $s^{\prime} \in B_{2}$

Delays, Continued

Case 1: Delays bounded by regenenerative cycles of GSMP

- GSMP $(X(t): t \geq 0): X(t)=\#$ of jobs at center 1 at time t
- $T(k)=k$ th time GSMP jumps out of a single state $\bar{s}=0$
- For delay 1: at each $T(k)$ a single delay starts (no other delays in progress)
- Thus every delay starts and ends in the same regen. cycle

$$
U_{n} \in[T(k-1), T(k)] \Rightarrow V_{n} \in[T(k-1), T(k)]
$$

- Sequence of delays is decomposed into i.i.d. cycles

Delays, Continued

Regeneration points for ($D_{n}: n \geq 0$):

$$
N_{0}=0, N_{1}=2, N_{2}=4, N_{3}=6, \text { and } N_{4}=7
$$

Delays, Continued

Ex: Estimate $\alpha=$ long-run fraction of delays ≥ 2 time units

- Set $f(x)=1$ if $x \geq 2$ and $f(x)=0$ otherwise
- By discrete-time version of prior results,

$$
\alpha \triangleq \lim _{n \rightarrow \infty}(1 / n) \sum_{j=0}^{n-1} f\left(D_{j}\right)=E\left[Y_{1}\right] / E\left[\tau_{1}\right] \text { a.s. }
$$

where $Y_{k}=\sum_{n=N_{k-1}}^{N_{k}-1} f\left(D_{n}\right)$ and $\tau_{k}=N_{k}-N_{k-1}=$ of delays

- In example, $Y_{1}=f\left(D_{0}\right)+f\left(D_{1}\right)$ and $\tau_{1}=2$ in k 第 regen,
- The $\left(Y_{k}, \tau_{k}\right)$ pairs are i.i.d., so use ratio estimation methods cycle
- If τ_{1} has period 1 (i.e., aperiodic in discrete time), then
- $D_{n} \Rightarrow D$
- $\alpha=E[f(D)]=$ steady state probability that a delay is ≥ 2
$=P(1 \geq 2)$

Delays, Continued

Case 2: Delays span regenerative cycles

- Same GSMP as before: $X(t)=\#$ of jobs at center 1 (N jobs total)
- Same regeneration points $T(k)$ as before: Jumps out of $\bar{s}=0$
- For delay 2: At each $T(k)$, one delay starts but $N-1$ delays are in progress
- Thus delays span regenerative cycles

Delays, Continued

Case 2, continued

- Take subset of regeneration points so that delay spans at most two cycles
- $\left(Y_{k}, \tau_{k}\right)$ pairs are now one-dependent
- Variant of regenerative method works [see my book]
- Same point estimate
- CLT variance accounts for dependence between adjacent cycles

Steady-State Simulation

Overview
The Regenerative Method
Regenerative processes
Regenerative Simulation
Delays
The Batch Means Method
Time-average limits
Jackknifed Batch Means

Batch Means

A method for estimating time-average limits when we can't find regeneration points

To estimate $\alpha=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} Y(u) d u$:
Basic Batch Means

1. Choose small integer m and large number v.
2. Set $t_{m-1, \delta}=1-(\delta / 2)$ Student-t quantile, $m-1$ d.o.f.
3. Simulate $(Y(t): t \geq 0)$ up to time $t=m v$
4. Compute batch mean $\bar{Y}_{j}=\frac{1}{v} \int_{(j-1) v}^{j v} Y(u) d u$ for $1 \leq j \leq m$
5. Compute point estimator $\alpha_{m}=(1 / m) \sum_{j=1}^{m} \bar{Y}_{j}$
6. Compute $s_{m}^{2}=\frac{1}{m-1} \sum_{j=1}^{m}\left(\bar{Y}_{j}-\alpha_{m}\right)^{2}$
7. Compute $100(1-\delta) \%$ confidence interval

$$
\left[\alpha_{m}-\frac{t_{m-1, \delta} s_{m}}{\sqrt{m}}, \alpha_{m}+\frac{t_{m-1, \delta} s_{m}}{\sqrt{m}}\right]
$$

Batch Means, Continued Batch means

Why Does Batch Means Work?

- Intuition: Batches look like i.i.d. normal random variables
- See my book for conditions on GSMP ensuring validity

Many variants and generalizations (Handbook of Simulation)

- Overlapping batch means
- Sequential batch means
- Standardized time series
- ...

Comparison to regenerative method

- When both are applicable, regenerative yields shorter Cls when run length is long

Steady-State Simulation

Overview
The Regenerative Method
Regenerative processes
Regenerative Simulation
Delays
The Batch Means Method
Jackknifed Batch Means

Jackknifed Batch Means

Ex: Nonlinear functions of time-average limits

- Estimate $\alpha=g\left(\mu_{1}, \mu_{2}\right)$, where $\mu_{i}=\lim _{t \rightarrow \infty}(1 / t) \int_{0}^{t} f_{i}(X(u)) d u$
- For $i=1,2$ set
- $\bar{Y}_{j}^{(i)}=\frac{1}{v} \int_{(j-1) v}^{j v} f_{i}(X(u)) d u$ for $j=1, \ldots, m$
- $\overline{\bar{Y}}^{(i)}=\operatorname{avg}\left(\bar{Y}_{1}^{(i)}, \ldots, \bar{Y}_{m}^{(i)}\right)$
- $\bar{Y}_{-k}^{(i)}=\operatorname{avg}\left(\bar{Y}_{1}^{(i)}, \ldots, \bar{Y}_{k-1}^{(i)}, \bar{Y}_{k+1}^{(i)}, \ldots, \bar{Y}_{m}^{(i)}\right)$

Jackknifed Batch Means (JBM)

1. Simulate $(X(t): t \geq 0)$ up to time $t=m v$
2. Compute batch means $\bar{Y}_{1}^{(i)}, \ldots, \bar{Y}_{m}^{(i)}$ for $i=1,2$
3. For $1 \leq k \leq m$, compute pseudovalue

$$
\alpha_{m}(k)=m g\left(\overline{\bar{Y}}^{(1)}, \overline{\bar{Y}}^{(2)}\right)-(m-1) g\left(\overline{\bar{Y}}_{-k}^{(1)}, \overline{\bar{Y}}_{-k}^{(2)}\right)
$$

4. Compute point estimator $\alpha_{m}^{J}=(1 / m) \sum_{k=1}^{m} \alpha_{m}(k)$
5. Compute $100(1-\delta) \mathrm{Cl}$

$$
\left[\alpha_{m}^{J}-t_{m-1, \mathfrak{S}}\left(v_{m} / m\right)^{1 / 2}, \alpha_{m}^{J}+t_{m-1, \delta}\left(v_{m} / m\right)^{1 / 2}\right]
$$

where $v_{m}=$ sample variance of $\alpha_{m}(1), \ldots, \alpha_{m}(m)$

Jackknifed Batch Means, Continued

Can apply JBM to obtain low-bias estimator for ordinary time-average limits in a GSMP

- Goal: Estimate $\alpha=\lim _{t \rightarrow \infty}(1 / t) \int_{0}^{t} f(X(u)) d u$
- Can show that $\alpha=g\left(\mu_{1}, \mu_{2}\right)$, where $g(x, y)=x / y$ and
- $\mu_{1}=\lim _{n \rightarrow \infty}(1 / n) \sum_{i=0}^{n-1} f\left(S_{n}\right) t^{*}\left(S_{n}, C_{n}\right)$
- $\mu_{2}=\lim _{n \rightarrow \infty}(1 / n) \sum_{i=0}^{n-1} t^{*}\left(S_{n}, C_{n}\right)$

where $\left(\left(S_{n}, C_{n}\right): n \geq 0\right)$ is underlying GSSMC of GSMP and t^{*} is holding time function
- Partial proof: $\frac{1}{\zeta_{n}} \int_{0}^{\zeta_{n}} f(X(u)) d u=\frac{\sum_{i=0}^{n-1} f\left(S_{n}\right) t^{*}\left(S_{n}, C_{n}\right)}{\sum_{i=0}^{n-1} t^{*}\left(S_{n}, C_{n}\right)} \rightarrow \frac{\mu_{1}}{\mu_{2}}$
- So can apply discrete-time version of JBM with batches:
- $\bar{Y}_{j}^{(1)}=(1 / v) \sum_{\substack{i=(j-1) v}}^{j v-1} f\left(S_{i}\right) t^{*}\left(S_{i}, C_{i}\right)$
- $\bar{Y}_{j}^{(2)}=(1 / v) \sum_{i=(j-1) v}^{j v-1} t^{*}\left(S_{i}, C_{i}\right)$
for $j=1, \ldots, m$

Jackknifed Batch Means, Continued

Can apply discrete-time version of JBM to analyze delays

- To estimate $\alpha=\lim _{n \rightarrow \infty}(1 / n) \sum_{j=0}^{n-1} f\left(D_{j}\right) \quad m$ batches $\quad v$ delays per batch
- Simulate $D_{1}, D_{2}, \ldots, D_{v m}$ (here v is an integer)
- Batch means: $\bar{Y}_{j}=(1 / v) \sum_{i=(j-1) v}^{j v-1} f\left(D_{i}\right)$ for $j=1, \ldots, m$
- Ex: Cyclic queues with multiple servers per station

