

Example: Robust Statistics

Median

- Median = $q_{0.5}$
- Alternative to means as measure of central tendency
- Robust to outliers

Inter-quartile range (IQR)

- Robust measure of dispersion
- ► $IQR = q_{0.75} q_{0.25}$

5 / 20

Point Estimate of Quantile

- Given i.i.d. observations $X_1, \ldots, X_n \stackrel{\mathsf{D}}{\sim} F$
- ► Natural choice is *p*th sample quantile:

 $Q_n = \hat{F}_n^{-1}(p)$

- I.e., generalized inverse of empirical cdf \hat{F}_n
- ▶ Q: Can you ever use the simple (non-generalized) inverse here?
- ▶ Equivalently, sort data as $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$ and set

 $Q_n = X_{(j)}$, where $j = \lceil np \rceil$

- Ex: $q_{0.5}$ for $\{6, 8, 4, 2\} =$
- Other definitions are possible (e.g., interpolating between values), but we will stick with the above defs

Quantile Estimation

Definition and Examples Point Estimates **Confidence Intervals** Further Comments Checking Normality Bootstrap Confidence Interva 6 / 20

Confidence Interval Attempt #1: Direct Use of CLT

CLT for Quantiles (Bahadur Representation)

Suppose that X_1, \ldots, X_n are i.i.d. with pdf f_X . Then for large n

 $Q_n \stackrel{\mathrm{D}}{\sim} N\left(q_p, \frac{\sigma^2}{n}
ight)$ with $\sigma = \frac{\sqrt{p(1-p)}}{f_X(q_p)}$

Can derive via Delta Method for stochastic root-finding

- Recall: to find θ
 [¯] such that E[g(X, θ
 [¯])] = 0
 Point estimate θ_n solves ¹/_n Σⁿ_{i=1} g(X_i, θ_n) = 0
 - For large *n*, we have $\theta_n \approx N(\bar{\theta}, \sigma^2/n)$, where $\sigma^2 = \text{Var}[g(X, \bar{\theta})]/c^2$ with $c = E[\partial g(X, \bar{\theta})/\partial \theta]$
- ▶ For quantile estimation take $g(X, \theta) = I(X \le \theta) p$
 - $\bar{\theta} = q_p$ and $\theta_n = Q_n$, since $E[g(X, \bar{\theta})] = P(X \le \bar{\theta}) p = 0$
 - $E[\partial g(X,\bar{\theta})/\partial \theta] = \partial E[g(X,\bar{\theta})]/\partial \theta = \partial (F_X(\bar{\theta}) p)/\partial \theta = f_X(\bar{\theta})$

► Var[
$$g(X, \overline{\theta})$$
] = $E[g(X, \overline{\theta})^2] = E[l^2 - 2pl + p^2]$
= $E[l - 2pl + p^2] = p - 2p^2 + p^2 = p(1 - p)$

9 / 20

Confidence Interval Attempt #1: Direct Use of CLT

CLT for Quantiles (Bahadur Representation)

Suppose that X_1, \ldots, X_n are i.i.d. with pdf f_X . Then for large n

$$Q_n \stackrel{ ext{D}}{\sim} N\left(q_{
ho}, rac{\sigma^2}{n}
ight) \quad ext{with} \quad \sigma = rac{\sqrt{p(1-p)}}{f_X(q_{
ho})}$$

▶ So if we can find an estimator s_n of σ , then $100(1 - \delta)$ % CI is

$$\left[Q_n-\frac{z_\delta s_n}{\sqrt{n}},Q_n+\frac{z_\delta s_n}{\sqrt{n}}\right]$$

- Problem: Estimating a pdf f_X is hard (e.g., need to choose "bandwidth" for "kernel density estimator")
- \blacktriangleright So we want to avoid estimation of σ

10/20

Confidence Interval Attempt #2: Sectioning

- Assume that n = mk and divide X₁,..., X_n into m sections of k observations each
- m is small (around 10–20) and k is large
- Let $Q_n(i)$ be estimator of q_p based on data in *i*th section
- Observe that $Q_n(1), \ldots, Q_n(m)$ are i.i.d.
- ▶ By prior CLT, each $Q_n(i)$ is approx. distributed as $N(q_p, \frac{\sigma^2}{k})$
- For i.i.d. normals, standard $100(1-\delta)$ % CI for mean is

 $\left[ar{Q}_n - t_{m-1,\delta}\sqrt{rac{v_n}{m}},ar{Q}_n + t_{m-1,\delta}\sqrt{rac{v_n}{m}}
ight]$

- $\bar{Q}_n = (1/m) \sum_{i=1}^m Q_n(i)$
- $v_n = \frac{1}{m-1} \sum_{i=1}^m (Q_n(i) \bar{Q}_n)^2$
- ► $t_{m-1,\delta}$ is $1 (\delta/2)$ quantile of Student-t distribution with m 1 degrees of freedom

Sectioning: So What's the Problem?

• Can show, as with nonlinear functions of means, that

$$E[Q_n] pprox q_p + rac{b}{n} + rac{c}{n^2}$$

It follows that

$$E[Q_n(i)] \approx q_p + \frac{b}{k} + \frac{c}{k^2} = q_p + \frac{mb}{n} + \frac{m^2c}{n^2}$$

So

$$E[\bar{Q}_n] \approx q_p + rac{mb}{n} + rac{m^2c}{n^2}$$

• Bias of \overline{Q}_n is roughly *m* times larger than bias of Q_n !

Attempt #3: Sectioning + Jackknifing

Sectioning + Jackknifing: General Algorithm for a Statistic α

- 1. Generate n = mk i.i.d. observations X_1, \ldots, X_n
- 2. Divide observations into m sections, each of size k
- 3. Compute point estimator α_n based on all observations
- 4. For i = 1, 2, ..., m:
 - 4.1 Compute estimator $\tilde{\alpha}_n(i)$ using all observations except those in section i
 - 4.2 Form pseudovalue $\alpha_n(i) = m\alpha_n (m-1)\tilde{\alpha}_n(i)$
- 5. Compute point estimator: $\alpha_n^J = \frac{1}{m} \sum_{i=1}^m \alpha_n(i)$
- 6. Set $v_n^J = \frac{1}{m-1} \sum_{i=1}^m (\alpha_n(i) \alpha_n^J)^2$
- 7. Compute 100(1 δ)% CI: $\left[\alpha_n^J t_{m-1,\delta}\sqrt{\frac{v_n^J}{m}}, \alpha_n^J + t_{m-1,\delta}\sqrt{\frac{v_n^J}{m}}\right]$

13 / 20

Application to Quantile Estimation

- $\tilde{Q}_n(i) =$ quantile estimate ignoring section *i*
- Clearly, $\tilde{Q}_n(i)$ has same distribution as $Q_{(m-1)k}$, so

$$E[ilde{Q}_n(i)] pprox q_p + rac{b}{(m-1)k} + rac{c}{(m-1)^2k^2}$$

• It follows that, for pseudovalue $\alpha_n(i)$,

$$E[\alpha_n(i)] = E\left[mQ_n - (m-1)\tilde{Q}_n(i)\right] \approx q_p - \frac{c}{(m-1)mk^2}$$

• Averaging does not affect bias, so, since n = mk,

$$E[\bar{Q}_n] = q_p + O(1/n^2)$$

▶ General procedure is also called the "delete-k jackknife"

14 / 20

Quantile Estimation

Definition and Examples Point Estimates Confidence Intervals

Further Comments

Checking Normality Bootstrap Confidence Intervals

Further Comments

A confession

- There exist special-purpose methods for quantile estimation [Sections 2.6.1 and 2.6.3 in Serfling book]
- ▶ We focus on sectioning + jackknife because method is general
- > Can also use bias elimination method from prior lecture

Conditioning the data for $q_{\rm p}$ when $p\approx 1$

- Fix r > 1 and get n = rmk i.i.d. observations X_1, \ldots, X_n
- Divide data into blocks of size r
- Set Y_j = maximum value in *j*th block for $1 \le j \le mk$
- Run quantile estimation procedure on Y_1, \ldots, Y_{mk}
- Key observation: $F_Y(q_p) = [F_X(q_p)]^r = p^r$
 - So *p*-quantile for X equals p^r -quantile for Y
 - Ex: if r = 50, then $q_{0.99}$ for X equals $q_{0.61}$ for Y
- > Often, reduction in sample size outweighs cost of extra runs

Quantile Estimation

Definition and Examples Point Estimates Confidence Intervals Further Comments

Checking Normality Bootstrap Confidence Interv

Checking Normality

Undercoverage

- E.g., when a "95% confidence interval" for the mean only brackets the mean 70% of the time
- Due to failure of CLT at finite sample sizes
- ▶ Note: If data is truly normal, then no error in CI for the mean

Simple diagnostics

• Definition: skewness(X) = $\frac{E[(X - E(X))^3]}{(\operatorname{var} X)^{3/2}}$ $n^{-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^3$

$$\blacktriangleright \text{ Estimator: } \frac{\sum_{i=1}^{n-1} \left(n^{-1} \sum_{i=1}^{n} \left(X_i - \bar{X}_n \right)^2 \right)^{3/2}}{\left(n^{-1} \sum_{i=1}^{n} \left(X_i - \bar{X}_n \right)^2 \right)^{3/2}}$$

- Kurtosis (measures fatness of tails, equals 0 for normal)
 - Definition: kurtosis(X) = $\frac{E[(X E(X))^4]}{(\text{var } X)^2} 3$

• Estimator:
$$\frac{n^{-1}\sum\limits_{i=1}^{n} (X_i - \bar{X}_n)^4}{\left(n^{-1}\sum\limits_{i=1}^{n} (X_i - \bar{X}_n)^2\right)^2} - \frac{1}{2}$$

17 / 20

Quantile Estimation

Definition and Examples Point Estimates Confidence Intervals Further Comments Checking Normality Bootstrap Confidence Intervals

Bootstrap Confidence Intervals

General method works for quantiles (no normality assumptions needed)

Bootstrap Confidence Intervals (Pivot Method)

- 1. Run simulation *n* times to get $\mathcal{D} = \{X_1, \ldots, X_n\}$
- 2. Compute Q_n = sample quantile based on \mathcal{D}
- 3. Compute bootstrap sample $\mathcal{D}^* = \{X_1^*, \dots, X_n^*\}$
- 4. Set $Q_n^* =$ sample quantile based on \mathcal{D}^*
- 5. Set pivot $\pi^* = Q_n^* Q_n$
- 6. Repeat Steps 3–5 *B* times to create π_1^*, \ldots, π_B^*
- 7. Sort pivots to obtain $\pi^*_{(1)} \leq \pi^*_{(2)} \leq \cdots \leq \pi^*_{(B)}$
- 8. Set $I = \lceil (1 \delta/2)B \rceil$ and $u = \lceil (\delta/2)B \rceil$
- 9. Return 100(1 δ)% CI $[Q_n \pi^*_{(l)}, Q_n \pi^*_{(l)}]$

18/20