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Example: Value-at-Risk

I X = return on investment, want to measure downside risk
I q = return s.t. P(worse return than q) ≤ 0.01

I q is called the 0.01-quantile of X
I “Probabilistic worst case scenario”
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Quantile Definition

Definition of p-quantile qp

qp = F−1
X (p) (for 0 < p < 1)

I When FX is continuous and increasing: solve F (q) = p

I In general: Use our generalized definition of F−1

(as in inversion method)

Alternative Definition of p-quantile qp

qp = min {q : FX (q) ≥ p}
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Example: Robust Statistics

IQR

Median

I Median = q0.5

I Alternative to means as measure of central tendency

I Robust to outliers

Inter-quartile range (IQR)

I Robust measure of dispersion

I IQR = q0.75 − q0.25
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Point Estimate of Quantile

I Given i.i.d. observations X1, . . . ,Xn
D∼ F

I Natural choice is pth sample quantile:

Qn = F̂−1
n (p)

I I.e., generalized inverse of empirical cdf F̂n
I Q: Can you ever use the simple (non-generalized) inverse here?

I Equivalently, sort data as X(1) ≤ X(2) ≤ · · · ≤ X(n) and set

Qn = X(j), where j = dnpe

I Ex: q0.5 for {6, 8, 4, 2} =

I Other definitions are possible (e.g., interpolating between
values), but we will stick with the above defs
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Confidence Interval Attempt #1: Direct Use of CLT
CLT for Quantiles (Bahadur Representation)

Suppose that X1, . . . ,Xn are i.i.d. with pdf fX . Then for large n

Qn
D∼ N

(
qp,

σ2

n

)
with σ =

√
p(1− p)

fX (qp)

Can derive via Delta Method for stochastic root-finding

I Recall: to find θ̄ such that E [g(X , θ̄)] = 0
I Point estimate θn solves 1

n

∑n
i=1 g(Xi , θn) = 0

I For large n, we have θn ≈ N(θ̄, σ2/n),
where σ2 = Var[g(X , θ̄)]/c2 with c = E [∂g(X , θ̄)/∂θ]

I For quantile estimation take g(X , θ) = I (X ≤ θ)− p

I θ̄ = qp and θn = Qn, since E [g(X , θ̄)] = P(X ≤ θ̄)− p = 0

I E [∂g(X , θ̄)/∂θ] = ∂E [g(X , θ̄)]/∂θ = ∂
(
FX (θ̄)−p

)
/∂θ = fX (θ̄)

I Var[g(X , θ̄)] = E [g(X , θ̄)2] = E [I 2 − 2pI + p2]

= E [I − 2pI + p2] = p − 2p2 + p2 = p(1− p)
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Confidence Interval Attempt #1: Direct Use of CLT

CLT for Quantiles (Bahadur Representation)

Suppose that X1, . . . ,Xn are i.i.d. with pdf fX . Then for large n

Qn
D∼ N

(
qp,

σ2

n

)
with σ =

√
p(1− p)

fX (qp)

I So if we can find an estimator sn of σ, then 100(1− δ)% CI is[
Qn −

zδsn√
n
,Qn +

zδsn√
n

]
I Problem: Estimating a pdf fX is hard (e.g., need to choose

“bandwidth” for “kernel density estimator”)

I So we want to avoid estimation of σ
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Confidence Interval Attempt #2: Sectioning

I Assume that n = mk and divide X1, . . . ,Xn into m sections of
k observations each

I m is small (around 10–20) and k is large

I Let Qn(i) be estimator of qp based on data in ith section

I Observe that Qn(1), . . . ,Qn(m) are i.i.d.

I By prior CLT, each Qn(i) is approx. distributed as N
(
qp,

σ2

k

)
I For i.i.d. normals, standard 100(1− δ)% CI for mean is[

Q̄n − tm−1,δ

√
vn
m , Q̄n + tm−1,δ

√
vn
m

]
I Q̄n = (1/m)

∑m
i=1 Qn(i)

I vn = 1
m−1

∑m
i=1

(
Qn(i)− Q̄n

)2

I tm−1,δ is 1− (δ/2) quantile of Student-t distribution
with m − 1 degrees of freedom
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Sectioning: So What’s the Problem?

I Can show, as with nonlinear functions of means, that

E [Qn] ≈ qp +
b

n
+

c

n2

I It follows that

E [Qn(i)] ≈ qp +
b

k
+

c

k2
= qp +

mb

n
+

m2c

n2

I So

E [Q̄n] ≈ qp +
mb

n
+

m2c

n2

I Bias of Q̄n is roughly m times larger than bias of Qn!
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Attempt #3: Sectioning + Jackknifing

Sectioning + Jackknifing: General Algorithm for a Statistic α

1. Generate n = mk i.i.d. observations X1, . . . ,Xn

2. Divide observations into m sections, each of size k

3. Compute point estimator αn based on all observations

4. For i = 1, 2, . . . ,m:

4.1 Compute estimator α̃n(i) using all observations
except those in section i

4.2 Form pseudovalue αn(i) = mαn − (m − 1)α̃n(i)

5. Compute point estimator: αJ
n = 1

m

m∑
i=1

αn(i)

6. Set v J
n = 1

m−1

m∑
i=1

(αn(i) − αJ
n)

2

7. Compute 100(1− δ)% CI:

[
αJ
n − tm−1,δ

√
v J
n

m , α
J
n + tm−1,δ

√
v J
n

m

]
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Application to Quantile Estimation

I Q̃n(i) = quantile estimate ignoring section i

I Clearly, Q̃n(i) has same distribution as Q(m−1)k , so

E [Q̃n(i)] ≈ qp +
b

(m − 1)k
+

c

(m − 1)2k2

I It follows that, for pseudovalue αn(i),

E [αn(i)] = E
[
mQn − (m − 1)Q̃n(i)

]
≈ qp −

c

(m − 1)mk2

I Averaging does not affect bias, so, since n = mk ,

E [Q̄n] = qp + O(1/n2)

I General procedure is also called the “delete-k jackknife”
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Further Comments
A confession

I There exist special-purpose methods for quantile estimation
[Sections 2.6.1 and 2.6.3 in Serfling book]

I We focus on sectioning + jackknife because method is general

I Can also use bias elimination method from prior lecture

Conditioning the data for qp when p ≈ 1

I Fix r > 1 and get n = rmk i.i.d. observations X1, . . . ,Xn

I Divide data into blocks of size r

I Set Yj = maximum value in jth block for 1 ≤ j ≤ mk

I Run quantile estimation procedure on Y1, . . . ,Ymk

I Key observation: FY (qp) = [FX (qp)]r = pr

I So p-quantile for X equals pr -quantile for Y
I Ex: if r = 50, then q0.99 for X equals q0.61 for Y

I Often, reduction in sample size outweighs cost of extra runs

16 / 20



Quantile Estimation
Definition and Examples
Point Estimates
Confidence Intervals
Further Comments
Checking Normality
Bootstrap Confidence Intervals

17 / 20

Checking Normality
Undercoverage

I E.g., when a “95% confidence interval” for the mean only
brackets the mean 70% of the time

I Due to failure of CLT at finite sample sizes
I Note: If data is truly normal, then no error in CI for the mean

Simple diagnostics
I Skewness (measures symmetry, equals 0 for normal)

I Definition: skewness(X ) = E [(X − E(X ))3]

(var X )3/2

I Estimator:
n−1

n∑
i=1

(Xi − X̄n)
3

(
n−1

n∑
i=1

(Xi − X̄n)
2
)3/2

I Kurtosis (measures fatness of tails, equals 0 for normal)
I Definition: kurtosis(X ) = E [(X − E(X ))4]

(var X )2 − 3

I Estimator:
n−1

n∑
i=1

(Xi − X̄n)
4

(
n−1

n∑
i=1

(Xi − X̄n)
2
)2 − 3
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Bootstrap Confidence Intervals

General method works for quantiles
(no normality assumptions needed)

Bootstrap Confidence Intervals (Pivot Method)

1. Run simulation n times to get D = {X1, . . . ,Xn}
2. Compute Qn = sample quantile based on D
3. Compute bootstrap sample D∗ = {X ∗

1 , . . . ,X
∗
n }

4. Set Q∗
n = sample quantile based on D∗

5. Set pivot π∗ = Q∗
n − Qn

6. Repeat Steps 3–5 B times to create π∗1, . . . , π
∗
B

7. Sort pivots to obtain π∗(1) ≤ π
∗
(2) ≤ · · · ≤ π

∗
(B)

8. Set l = d(1− δ/2)Be and u = d(δ/2)Be
9. Return 100(1− δ)% CI [Qn − π∗(l),Qn − π∗(u)]
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