

Peter J. Haas

CS 590M: Simulation Spring Semester 2020

Definition and Examples

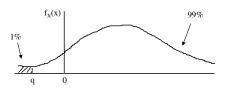
Point Estimates

Confidence Intervals

Further Comments

Checking Normality

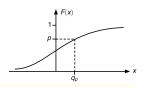
Quantiles



Example: Value-at-Risk

- ightharpoonup X = return on investment, want to measure downside risk
- $q = \text{return s.t. } P(\text{worse return than } q) \leq 0.01$
 - q is called the 0.01-quantile of X
 - "Probabilistic worst case scenario"

Quantile Definition



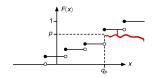
Definition of p-quantile q_p

$$q_p = F_X^{-1}(p)$$
 (for $0)$

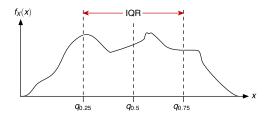
- ▶ When F_X is continuous and increasing: solve F(q) = p
- In general: Use our generalized definition of F⁻¹ (as in inversion method)

Alternative Definition of p-quantile q_p

$$q_p = \min\{q : F_X(q) \ge p\}$$



Example: Robust Statistics



Median

- ▶ Median = $q_{0.5}$
- ▶ Alternative to means as measure of central tendency
- Robust to outliers

Inter-quartile range (IQR)

- ► Robust measure of dispersion
- ► IQR = $q_{0.75} q_{0.25}$

Definition and Examples

Point Estimates

Confidence Intervals

Further Comments

Checking Normality

Point Estimate of Quantile

- ▶ Given i.i.d. observations $X_1, \ldots, X_n \stackrel{\mathsf{D}}{\sim} F$
- ► Natural choice is *p*th sample quantile:

$$F(y) = \#\{K = x\}_n$$

 $F(x) = P(X = x)$

$$Q_n = \hat{F}_n^{-1}(p)$$

- ▶ I.e., generalized inverse of empirical cdf \hat{F}_n
- Q: Can you ever use the simple (non-generalized) inverse here?
- ▶ Equivalently, sort data as $X_{(1)} \le X_{(2)} \le \cdots \le X_{(n)}$ and set

$$Q_n = X_{(j)}, \text{ where } j = \lceil np \rceil$$

• Ex: $q_{0.5}$ for $\{6, 8, 4, 2\} = 4$

- 2,6,8
- Pc.5 4= 11
- Values), but we will stick with the above defs

Definition and Examples

Point Estimates

Confidence Intervals

Further Comments

Checking Normality

Confidence Interval Attempt #1: Direct Use of CLT

CLT for Quantiles (Bahadur Representation)

Suppose that X_1, \ldots, X_n are i.i.d. with pdf f_X . Then for large n

$$Q_n \overset{ extsf{D}}{\sim} N\left(q_p, rac{\sigma^2}{n}
ight) \quad ext{with} \quad \sigma = rac{\sqrt{p(1-p)}}{f_X(q_p)}$$

Can derive via Delta Method for stochastic root-finding

- Recall: to find $\bar{\theta}$ such that $E[g(X,\bar{\theta})] = 0$
 - Point estimate θ_n solves $\frac{1}{n} \sum_{i=1}^n g(X_i, \theta_n) = 0$
 - ► For large n, we have $\theta_n \approx N(\bar{\theta}, \sigma^2/n)$, where $\sigma^2 = \text{Var}[g(X, \bar{\theta})]/c^2$ with $c = E[\partial g(X, \bar{\theta})/\partial \theta]$
- ▶ For quantile estimation take $g(X, \theta) = I(X \le \theta) p$
 - $\bar{\theta} = q_p$ and $\theta_n = Q_n$, since $E[g(X, \bar{\theta})] = P(X \leq \bar{\theta}) p = 0$
 - ► $E[\partial g(X,\bar{\theta})/\partial \theta] = \partial E[g(X,\bar{\theta})]/\partial \theta = \partial (F_X(\bar{\theta})-p)/\partial \theta = f_X(\bar{\theta})$
 - ► $Var[g(X, \bar{\theta})] = E[g(X, \bar{\theta})^2] = E[I^2 2pI + p^2]$ = $E[I - 2pI + p^2] = p - 2p^2 + p^2 = p(1 - p)$

Confidence Interval Attempt #1: Direct Use of CLT

CLT for Quantiles (Bahadur Representation)

Suppose that X_1, \ldots, X_n are i.i.d. with pdf f_X . Then for large n

$$Q_n \overset{ extsf{D}}{\sim} N\left(q_p, rac{\sigma^2}{n}
ight) \quad ext{with} \quad \sigma = rac{\sqrt{p(1-p)}}{f_X(q_p)}$$

▶ So if we can find an estimator s_n of σ , then $100(1 - \delta)\%$ CI is

$$\left[Q_n-\frac{z_\delta s_n}{\sqrt{n}},Q_n+\frac{z_\delta s_n}{\sqrt{n}}\right]$$

- ▶ Problem: Estimating a pdf f_X is hard (e.g., need to choose "bandwidth" for "kernel density estimator")
- \blacktriangleright So we want to avoid estimation of σ

Confidence Interval Attempt #2: Sectioning

- Assume that n = mk and divide $X_1, ..., X_n$ into m sections of k observations each
- \blacktriangleright m is small (around 10–20) and k is large
- Let $Q_n(i)$ be estimator of q_p based on data in *i*th section
- ▶ Observe that $Q_n(1), \ldots, Q_n(m)$ are i.i.d.
- ▶ By prior CLT, each $Q_n(i)$ is approx. distributed as $N\left(q_p, \frac{\sigma^2}{k}\right)$
- ▶ For i.i.d. normals, standard $100(1-\delta)\%$ CI for mean is

$$\left[\bar{Q}_n - t_{m-1,\delta}\sqrt{\frac{v_n}{m}}, \bar{Q}_n + t_{m-1,\delta}\sqrt{\frac{v_n}{m}}\right]$$

- $\bar{Q}_n = (1/m) \sum_{i=1}^m Q_n(i)$
- $v_n = \frac{1}{m-1} \sum_{i=1}^m (Q_n(i) \bar{Q}_n)^2$
- $t_{m-1,\delta}$ is $1-(\delta/2)$ quantile of Student-t distribution with m-1 degrees of freedom

Sectioning: So What's the Problem?

Can show, as with nonlinear functions of means, that

$$E[Q_n] \approx q_p + \frac{b}{n} + \frac{c}{n^2}$$

▶ It follows that

$$E[Q_n(i)] \approx q_p + \frac{b}{k} + \frac{c}{k^2} = q_p + \frac{mb}{n} + \frac{m^2c}{n^2}$$

So

$$E[\bar{Q}_n] \approx q_p + \frac{mb}{n} + \frac{m^2c}{n^2}$$

▶ Bias of \bar{Q}_n is roughly m times larger than bias of Q_n !

Attempt #3: Sectioning + Jackknifing

Sectioning + Jackknifing: General Algorithm for a Statistic α

- 1. Generate n = mk i.i.d. observations X_1, \ldots, X_n
- 2. Divide observations into m sections, each of size k
- 3. Compute point estimator α_n based on all observations
- 4. For i = 1, 2, ..., m:
 - 4.1 Compute estimator $\tilde{\alpha}_n(i)$ using all observations except those in section i
 - 4.2 Form pseudovalue $\alpha_n(i) = m\alpha_n (m-1)\tilde{\alpha}_n(i)$
- 5. Compute point estimator: $\alpha_n^J = \frac{1}{m} \sum_{i=1}^m \alpha_n(i)$
- 6. Set $v_n^J = \frac{1}{m-1} \sum_{i=1}^m (\alpha_n(i) \alpha_n^J)^2$
- 7. Compute 100(1 δ)% CI: $\left[\alpha_n^J t_{m-1,\delta}\sqrt{\frac{v_n^J}{m}}, \alpha_n^J + t_{m-1,\delta}\sqrt{\frac{v_n^J}{m}}\right]$

Application to Quantile Estimation

- $\tilde{Q}_n(i)$ = quantile estimate ignoring section i
- ▶ Clearly, $\tilde{Q}_n(i)$ has same distribution as $Q_{(m-1)k}$, so

$$E[\tilde{Q}_n(i)] \approx q_p + \frac{b}{(m-1)k} + \frac{c}{(m-1)^2 k^2}$$

▶ It follows that, for pseudovalue $\alpha_n(i)$,

$$E[\alpha_n(i)] = E\left[mQ_n - (m-1)\tilde{Q}_n(i)\right] \approx q_p - \frac{c}{(m-1)mk^2}$$

▶ Averaging does not affect bias, so, since n = mk,

$$E[\bar{Q}_n] = q_p + O(1/n^2)$$

General procedure is also called the "delete-k jackknife"

Definition and Examples

Point Estimates

Confidence Intervals

Further Comments

Checking Normality

Further Comments

A confession

- ▶ There exist special-purpose methods for quantile estimation [Sections 2.6.1 and 2.6.3 in Serfling book]
- ▶ We focus on sectioning + jackknife because method is general
- Can also use bias elimination method from prior lecture

Conditioning the data for q_p when $p \approx 1$

- ▶ Fix r > 1 and get n = rmk i.i.d. observations $X_1, ..., X_n$
- Divide data into blocks of size r
- ▶ Set $Y_i = \text{maximum value in } j\text{th block for } 1 \leq j \leq mk$
- ▶ Run quantile estimation procedure on $Y_1, ..., Y_{mk}$
- ► Key observation: $F_Y(q_p) = [F_X(q_p)]^r = p^r$ $F_Y(q_p) = p(\max_i X_i \neq q_p)$ ► So p-quantile for X equals p^r -quantile for Y► Ex: if r = 50, then $q_{0.99}$ for X equals $q_{0.61}$ for Y• Often, reduction in sample size outside.
- Often, reduction in sample size outweighs cost of extra runs

Definition and Examples

Point Estimates

Confidence Intervals

Further Comments

Checking Normality

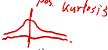
Checking Normality

Undercoverage

- ► E.g., when a "95% confidence interval" for the mean only brackets the mean 70% of the time
- ▶ Due to failure of CLT at finite sample sizes
- Note: If data is truly normal, then no error in CI for the mean

Simple diagnostics

- Skewness (measures symmetry, equals 0 for normal)
 - ▶ Definition: skewness(X) = $\frac{E[(X E(X))^3]}{(\text{var } X)^{3/2}}$
 - ► Estimator: $\frac{n^{-1} \sum_{i=1}^{n} (X_i \bar{X}_n)^3}{\left(n^{-1} \sum_{i=1}^{n} (X_i \bar{X}_n)^2\right)^{3/2}}$



- Kurtosis (measures fatness of tails, equals 0 for normal)
 - ▶ Definition: kurtosis(X) = $\frac{E[(X E(X))^4]}{(\text{var } X)^2} 3$
 - ► Estimator: $\frac{n^{-1} \sum_{i=1}^{n} (X_i \bar{X}_n)^4}{\left(n^{-1} \sum_{i=1}^{n} (X_i \bar{X}_n)^2\right)^2} 3$

Definition and Examples

Point Estimates

Confidence Intervals

Further Comments

Checking Normality

Bootstrap Confidence Intervals

General method works for quantiles (no normality assumptions needed)

Bootstrap Confidence Intervals (Pivot Method)

- 1. Run simulation *n* times to get $\mathcal{D} = \{X_1, \dots, X_n\}$
- 2. Compute $Q_n = \text{sample quantile based on } \mathcal{D}$
- 3. Compute bootstrap sample $\mathcal{D}^* = \{X_1^*, \dots, X_n^*\}$
- 4. Set $Q_n^* = \text{sample quantile based on } \mathcal{D}^*$
- 5. Set pivot $\pi^* = Q_n^* Q_n$ ("bootstrap werld" estimate of "real world" quantity

 6. Repeat Steps 3–5 B times to create π_1^*, \ldots, π_B^* $\mathcal{A}_n \mathcal{A}_p$)

 7. Sort pivots to obtain π_n^*, \ldots, π_n^*
- 7. Sort pivots to obtain $\pi_{(1)}^* \leq \pi_{(2)}^* \leq \cdots \leq \pi_{(B)}^*$
- 8. Set $I = \lceil (1 \delta/2)B \rceil$ and $u = \lceil (\delta/2)B \rceil$
- 9. Return $100(1-\delta)\%$ CI $[Q_n-\pi_{(I)}^*,Q_n-\pi_{(I)}^*]$