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Quantiles

Example: Value-at-Risk
» X = return on investment, want to measure downside risk

» g = return s.t. P(worse return than q) < 0.01

» q is called the 0.01-quantile of X
» “Probabilistic worst case scenario”
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Quantile Definition i

t
L

Definition of p-quantile g,
ap = Fx'(p) (for 0 < p < 1)

» When Fx is continuous and increasing: solve F(q) = p

» In general: Use our generalized definition of F~!
(as in inversion method)

Alternative Definition of p-quantile g,

gp = min{q : Fx(q) > p}
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Example: Robust Statistics

fx(X) «— IQR———>

Qo.25 Go.s Go.75

Median
» Median = qo.5
» Alternative to means as measure of central tendency

» Robust to outliers
Inter-quartile range (IQR)
» Robust measure of dispersion

» IQR = qgo.75 — qo.25
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Quantile Estimation

Point Estimates

20



Point Estimate of Quantile

b Fzy) #K'= %2

Given i.i.d. observations Xi,..., X, ~ F
Natural choice is pth sample quantile: f(ﬂ’) /A[/\/j 2//

A

Qn = ,Tl(P) J

v

v

—_—

v

l.e., generalized inverse of empirical cdf F,, _—

v

Q: Can you ever use the simple (non-generalized) inverse here?

v

Equivalently, sort data as X(1) < Xo) < -+ < X(,;) and set

Qn = X(J)7 Where J: |—np-| J
Ex: qo5 for {6,8,4,2} = ﬁL 2@ fos

Other definitions are possible (e.g., interpolating between f(
values), but we will stick with the above defs L ony] 2]

v Vv
rl

TA
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Quantile Estimation

Confidence Intervals
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Confidence Interval Attempt #1: Direct Use of CLT

CLT for Quantiles (Bahadur Representation)
Suppose that Xi, ..., X, are i.i.d. with pdf fx. Then for large n

2
. p(1—p)
QnRN( ,U—> with o= Y———~
% n fx(ap)

Can derive via Delta Method for stochastic root-finding

» Recall: to find 0 such that E[g(X, )] =0
> Point estimate 0, solves 2 "7 | g(X;,0,) =0
> For large n, we have 0, ~ N(8,c?/n), B
where 02 = Var[g(X, 0)]/c? with ¢ = E[0g(X,0)/06]
» For quantile estimation take g(X,0) = /(X <0)—p
» O =gqpand 0, = Qn, since E[g(X,0)]=P(X <) —p=0

> E[0g(X,0)/06] = OE[g(X,8))/00 = 0(Fx(8)—p) /00 = fx(D)

> Var[g(X,0)] = E[g(X,0)*] = E[I* - 2pl + p?]
= E[l —2pl + p*] = p—2p* + p* = p(1 — p)
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Confidence Interval Attempt #1: Direct Use of CLT

CLT for Quantiles (Bahadur Representation)
Suppose that Xi, ..., X, are i.i.d. with pdf fx. Then for large n

o’ p(1—p)
QnRN( ’7) with o= Y2
s ACH)

» So if we can find an estimator s, of o, then 100(1 — 6)% Cl is

|:Qn 7Qn+

Z§5n Z§S5n :|

VAR

» Problem: Estimating a pdf fx is hard (e.g., need to choose
“bandwidth” for “kernel density estimator”)

» So we want to avoid estimation of o
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Confidence Interval Attempt #2: Sectioning

» Assume that n = mk and divide Xi,..., X, into m sections of
k observations each

v

m is small (around 10-20) and k is large

v

Let Qn(/) be estimator of g, based on data in ith section
Observe that Q,(1),..., Qn(m) are i.i.d.

By prior CLT, each Q,(i) is approx. distributed as N(qp, "72)
For i.i.d. normals, standard 100(1 — )% CI for mean is

[@n —tm-1,6 %7 Qn +tm-1, %}

v

v

v

> Qn=(1/m) X, Qn(i)

m . ~ 2
> Vo= g 2 (Q(i) = Qn)
> tm—_1,6is 1 —(d/2) quantile of Student-t distribution
with m — 1 degrees of freedom
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Sectioning: So What's the Problem?

Ao
~ };7«‘
» Can show, as with nonlinear functions of means, that
b c
E[Q,] = -+ —
[Q ] Gp + = + o )
» It follows that
. b ¢ mb  m?c
E[Qn(l)]%qp-i-z—i-p:qp—i-T—i—? |
» So
~ mb  mPc
E[Q,] = —_— 4 —
[Q ] qP + n + n2 )
» Bias of Q, is roughly m times larger than bias of Q,!
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Attempt #3: Sectioning + Jackknifing

Sectioning + Jackknifing: General Algorithm for a Statistic «

1. Generate n = mk i.i.d. observations Xi,..., X,
. Divide observations into m sections, each of size k

2
3. Compute point estimator «, based on all observations
4. Fori=1,2,...,m:

4.1 Compute estimator &,(i) using all observations

except those in section i
4.2 Form pseudovalue ov,(i) = ma, — (m — 1)é,(i)
m
. . ) 1 .
5. Compute point estimator: o = - > on(i)

6. Set v/ = =11 3" (an(i) — a?)

m—

—

7. Compute 100(1 — )% Cl: {a# = l'm,175\/g,a# e tml,g\/g}

v
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Application to Quantile Estimation

» Qn(i) = quantile estimate ignoring section i
» Clearly, Q,(i) has same distribution as Q(m—1)k» SO
~ b c
EIQ(01 = 4 + oy * (1 J
> It follows that, for pseudovalue a,(i),
. X c
Elon = E @~ (m =000 ~ %~ gy |

v

Averaging does not affect bias, so, since n = mk,

E[Qn] = g5 + O(1/n%) J

v

General procedure is also called the “delete-k jackknife”
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Quantile Estimation

Further Comments
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Further Comments

A confession

> There exist special-purpose methods for quantile estimation
[Sections 2.6.1 and 2.6.3 in Serfling book]

» We focus on sectioning + jackknife because method is general

» Can also use bias elimination method from prior lecture

Conditioning the data for g, when p~ 1
» Fix r > 1 and get n = rmk i.i.d. observations Xi,..., X,

Divide data into blocks of size r

v

v

Set Y; = maximum value in jth block for 1 < j < mk

v

Run quantile estimation procedure on Yi,..., Yk )
ion: F —[F r__ ar ’_P{M‘*VX,'falf
Key observation: Fy(qp) = [Fx(gp)]" = p" Fy(4p) ; P
» So p-quantile for X equals p"-quantile for Y - f()(,/\(v.--/)(ré‘f/p)
» Ex: if r =50, then qg.99 for X equals go61 for Y /,/,(Iéif}r

v

v

Often, reduction in sample size outweighs cost of extra runs
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Quantile Estimation

Checking Normality
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Checking Normality
Undercoverage
» E.g., when a “95% confidence interval” for the mean only
brackets the mean 70% of the time
» Due to failure of CLT at finite sample sizes
» Note: If data is truly normal, then no error in Cl for the mean
¢
Simple diagnostics A -%’ 4"
> Skewness (measures symmetry, equals 0 for normal)”kw P dhew

» Definition: skewness(X) = E[(()\;:i)f)g)fm
n , >
nt ;(X: - Xa)* WVM., P kW‘/U/‘j

» Estimator:

n 3/2
(1200 - %)

i=1
» Kurtosis (measures fatness of tails, equals 0 for normal)

» Definition: kurtosis(X) = E[()zv;i’;());))“] -3

nYS (X — X!
» Estimator: o s — 3
<n IS (X — >‘<,,)2)
i=1
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Quantile Estimation

Bootstrap Confidence Intervals
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Bootstrap Confidence Intervals

General method works for quantiles
(no normality assumptions needed)

Bootstrap Confidence Intervals (Pivot Method)

1. Run simulation n times to get D = {X,..., X,}

Compute @, = sample quantile based on D
Compute bootstrap sample D* = {X{, ..., X}}
Set Q} = sample quantile based on D*

Set pivot ™ = Q} — Qn  ( "joststp WW’J '“é'
Repeat Steps 3-5 B times to create 7], ..., 7g
Sort pivots to obtain 772‘1) < W{z) <... < WZ‘B)
Set | =[(1—46/2)B] and u = [(6/2)B]

Return 100(1 — )% CI [Q, — 7/ 0L ,Qn — 7T )]

{OFCORES I ARG GO

Mo‘k ”(’ W,a‘

wov [} ‘f"ﬁwu)
An~ 1,/,)
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