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Nonlinear Functions of Means

Our focus up until now
» Estimate quantities of the form u = E[X]
» E.g., expected win/loss of gambling game

» We'll now focus on more complex quantities

Nonlinear functions of means:
a = g(p, po, . ..
» g is a nonlinear function
g = E[X(i)] for1 <i<d

, ltgd), where

v
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For simplicity, take d = 2 and focus on o = g(ux, py)
px = E[X] and py = E[Y]
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Example: Retail Outlet
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: Estimate o = long-run average revenue per customer
» X; = R; = revenue generated on day i

» Y; = number of customers on day /

Assume that pairs (X1, Y1), (X2, Y2),... are i.i.d.

Set X, = (1/n) >0, X;and Y, = (1/n) 31, Y;

v

v

a= lim 7X1+”.+Xn
n—oo Yi+---+ Y, noxY,

> So a = g(px, pty), where g(x,y) =




Example: Higher-Order Moments

v

Let Ri, R», ... be daily revenues as before
Assume that the R;'s are i.i.d. (Critique?)

v

v

a = Var[R] = variance of daily revenue
Let X =R?and Y =R

v

a:g(MX)MY)a where g(X7y): J
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Delta Method
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Delta Method (Taylor Series)

Assume that function g(x,y) is smooth
» Continuously differentiable in neighborhood of (i, 1ty)
» l.e., g is continuous, as are dg/0x and 0g/dy

Point estimate

» Run simulation n times to get (X1, Y1),...,(Xs, Ys) i.i.d.
Set oy = g()_<,,7 \7,,)
This estimator is biased:

> Elay] = Elg(Xe, Y0)] # g(E[X], E[Y2]) = g(1xs 1ty) = @

» Jensen's inequality: E[a,] = E[g(X,)] > g(ux) =
if g is convex

v

v

v

By SLLN and continuity of g, we have bias — 0 as n — o©
(Estimator «, is asymptotically unbiased)

Delta Method, Continued

Confidence interval
> (Xn, Y») should be “close” to (ux, uuy) for large n by SLLN
> ap = g(Xp, Ya) should be close to g(px, py) = «

ap — = g()_(na Vn) _g(HXalfLY)
. g - og _
= g(ﬂx,uv) (Xp — px) + @(MX?MY) (Yo — py)
=7,

> Zi=c(X; — px) + d(Y; — py) and Z, = (1/n) 2 Zi

> ¢ = E(ux, py) and d = 5 (uux, py)
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Delta Method, Continued

Confidence interval, continued

{Zy:n>1} areiid. as Z =c(X — ux)+d(Y — py)

E[Z] =

By CLT, v/nZ,/o R N(0, 1) approximately for large n

Thus /n(a, — ) /o 14 N(0, 1) approximately for large n
Here 02 = Var[Z] = E[Z2] = E[(c(X — px) + d(Y — py))’]
So asymptotic 100(1 — 6)% Cl is v, & z50/+/n

» z5 is 1 — (6/2) quantile of standard normal distribution
» Estimate ¢, d, and o from data

v

v

v

v

v
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Delta Method, Continued

Delta Method CI Algorithm
1. Simulate to get (X1, Y1),...,(Xn, Yn) iid.
2. ap + g(Xa, Yn)
3. Co ¢ $E(Xn, Ya) and d, + SE(Xn, Vo)
4 sp = (0= 17 Ly (enlXi = Xa) + dn(Y; — V)’
5. Return asymptotic 100(1 — )% Cl:

Z55n Z5Sp
Op — ——,«

vt m

» SLLN and continuity assumptions imply that, with prob. 1,

ch — C, d,,—>d,and5,2,—>c72
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Example: Ratio Estimation: g(x,y) = x/y
Multi-pass method (apply previous algorithm directly)
o= c= @ = a, = Gy = d, =
2=(n-1)" i(cnm LR+ (Y- V)’
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Example: Ratio Estimation: g(x,y) = x/y
Single-pass method
02 = Var[Z] = Var[c(X — ux) + d(Y — py)]
_ Var[X] — 2a Cov[X, Y] + o2 Var[Y]

13

2 sn(1,1) — 20,55(1,2) 4 a2s,(2,2)
3

' (¥n)
> so(1,1) = 23 (X — X,)? Use
> 5n(2,2) = A S (Yi— Ya)? single-pass
> s(1,2) = L 50T (X — Xa) (Y — Vi) formulas
» Set SX=>" X;and SY ="V,

(k= 1Dvic = (k = )vi—1 + (5’51 - (: - 1)X’<) <5ky1 ;(_k; 1) Y

)
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Delta Method for Stochastic Root-Finding

Problem:

Find 6 such that Elg(X, 5)] = 0 (can replace 0 with any fixed constant)

Applications:

» Process control, risk management, finance, quantiles, ...

» Stochastic optimization: ming E[h(X, 6)]
» Optimality condition: %E[h(X,G)] =0
> Can often show that 2 E[h(X,0)] = E[a% h(x,e)}

> So take g(X,0) = Zh(X,0)

Point Estimate (Stochastic Average Approximation)
» Generate X1,...,X, i.i.d. as X
» Find 6, s.t. %27:1 g(Xi,0,) =0 (deterministic problem)

J
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Delta Method for Stochastic Root-Finding

Problem:
Find 6 such that E[g(X,)] =0

Point Estimate (Stochastic Average Approximation)
> Generate Xi,..., X, i.i.d. as X
> Find 0, s.t. 1377 1 g(X;,0,) =0

How to find a confidence interval for 67
> Taylor series: g(X;,0,) ~ g(X:,0) + %(X;,0)(0, — 9)

» Implies: % S 18(Xi,0,) ~ % S 8(Xi, 0_) — cn(g —6p)
> where ¢, = 237, 55(X:,0) ~ E[36(X,0)]
> Implies: 0 — 0, ~ 21577 | g(X;,0)

» Implies: 6, — 8 ~ N(0,02/n), where
0% = Varlg(X,0)]/c; = E[g(X,0)*]/<;
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Delta Method for Stochastic Root-Finding

Algorithm

Simulate to get Xi,..., X, i.i.d.
Find 0, s.t. 37, g(X;,0,) =0
& 1500 98(X;,0,)

Sp 5 i1 (X 00/ 6

Return asymptotic 100(1 — 6)% ClI:

[Hn— 0+

gl @ =

Z5Sn

o

Z5Sn:|

NG

» Can use pilot runs, etc. in the usual way
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Jackknife Method
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Jackknife Method

Overview
» Goal: estimate o = g(fix, fty)
» Naive point estimator a, = g(X,, Y,) is biased

Jackknife estimator has lower bias

v

v

Avoids need to compute partial derivatives as in Delta method

v

More computationally intensive
Starting point: Taylor series 4+ expectation

b ¢
En: _— —_— ...
[an] =t —+ = + J

» Thus bias is O(n™!)
» Estimate b and adjust? o, = o, — %
» Messy partial derivative calculation, adds noise
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Jackknife, Continued

» Observe that

b c
E(an):a‘f‘E‘F?‘F"'
b " c
n—1 " (n—1)

E(ap_1)= a+

» and so

1 1 c
Elna, — (n—1)an1] =a+c (n—n_1>+~~-—a—n+

» Bias reduced to O(n~?)!
» Q: What is special about deleting the nth data point?
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Jackknife, Continued

» Delete each data point in turn to get a low-bias estimator
> Average the estimators to reduce variance

Jackknife ClI Algorithm for o = g(pux, piy)
1. Choose n and 0, and set zs = 1 — (0/2) quantile of N(0,1)
2. Simulate to get (X1, Y1), ..., (Xp, Yn) i.id.
3. ap < g()_(m Vn)
4. Fori=1ton

1 n
41 o eg( Z _1ZYJ-> (leave out X;)
j=1

J#l ] J#i
4.2 ap(i) + nay — (n —1)a!,  (ith pseudovalue)

5. Point estimator: o < (1/n) Y7, an(i)
2
6. vy = 753 Xita (an(i) — a7)

(i
7. 100(1 — 86)% Cl: [oz;{ \/v,{/n,oz;{%—zm/v,{/n}
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Jackknife, Continued

Observations
» Not obvious that Cl is correct (why?)

v

Substitutes computational brute force for analytical complexity

» Not a one-pass algorithm

v

Basic jackknife breaks down for “non-smooth” statistics like
quantiles, maximum (but can fix—see next lecture)
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Estimating Nonlinear Functions of Means

Bootstrap Confidence Intervals
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Bootstrap Confidence Intervals

Another brute force method
> Key idea: analyze variability of estimator using samples of
original data

» More general than jackknife (estimates entire sampling
distribution of estimator, not just mean and variance)

» Jackknife is somewhat better empirically at variance estimates
> “Non-repeatable”, unlike jackknife
» OK for quantiles, still breaks down for maximum

Bootstrap Samples

» Given data X = (Xy,...,X,): i.i.d. samples from cdf F

» Bootstrap sample X* = (X;, ..., X}): i.i.d. samples from F
» Recall: empirical distribution F,(x) = (1/n)(# obs < x)
» Same as n i.i.d. samples with replacement from {Xi,..., X,}

Creating a Bootstrap Sample X* from X = (Xi,...,X,)

Fori=1to n:
1. Generate U R Uniform(0, 1)
2. Set J=[nU] //Random integer between 1 and n
3. Add X to X*

Data |4 2 7 6 8 3
Samplel |6 2 2 8 7 6
Sample2 |3 8 8 8 2 4

23 /30
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Bootstrap “Imitates” the Real World
RNt
X
estimator from .~ observations
orig. data Z:ztms;r:)pr <
X*
bootstrap oo Real World
observations
Bootstrap World
» Boostrap world approaches real world as n — oo
» Glivenko-Cantelli: sup, |Fn(x) — F(x)| = 0 wpl as n — oo
» So distribution of o] — «, approximates distribution of o, — «v
» For small n, better than dist'n of o approximates dist'n of «,
» Hence pivot method instead of direct “percentile method”
» Can estimate distribution of o — «, by sampling from it
24 /30




Bootstrap Confidence Intervals: Pivot Method

Distribution of X,, — u is approx. N(0,¢%/n) by CLT

6=0.10
Z20.95 = 0.95

quantile of N(0,1)

T T T
q0.05 0 q0.95

Revisit usual 90% confidence interval for the mean
P(go.0s < X — 11 < go.05) ~ 0.9
= P(Xn — go.os < 1t < Xy — qo.05) ~ 0.9
= 90% Cl = [X, — qo.95, X» — Go.05]

To recover usual formulas, observe that gg05 = —qgo.95 and
do.os = (0/+/n)z0.05 because P(% < z0.95) = P(Xp — 11 < qo.os)

90% Cl= [)_<n — Z().g50'/\/ﬁ7 )_(n + 20.950'/\/E] J
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Bootstrap Confidence Intervals: Pivot Method

Distribution of X — X,

Bootstrap approach for mean (no normality assumption)
> 90% Cl = [X, — g5.95, Xn — 45.05]
» Approximate quantiles of X,, — 1 by quantiles of 7% = X* — X,
» Generate many replicates of 7* to estimate the latter quantiles

» Technique applies to other statistics such as oo = g(ux, py)
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Pivot Method for Nonlinear Functions of Means

Bootstrap Confidence Intervals (Pivot Method)
1. Run simulation n times to get (X1, Y1), ..., (Xa, Ya)
Compute o = g()_(,,, \7,,)
Compute bootstrap sample (X7, Y{), ..., (X}, Yy)
Set aj, = g(X;, Yi)
Set pivot T = aj, — ap
Repeat Steps 3-5 B times to create 7],...,7g
Sort pivots to obtain ﬂ'ikl) < 7TE<2) <...< 7rE"B)
Set I =[(1—46/2)B] and u = [(6/2)B]
Return 100(1 — 6)% ClI [ov,, — Ty 0n = (]

© o N o o A WD

> Example: For B =100, 90% Cl is [an — 7(g5), otn — 7(5)]
» Improvements include BCa bootstrap confidence interval
[See Efron & Tibshirani book]
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Complete Bias Elimination
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Complete Bias Elimination [Blanchet et al. 2015]

Idea: Construct X* such that E[X*] = g(ux)
» Then can use usual estimation methods

» Assumes simulation cost not too expensive

Algorithm for Generating a Sample of X*

1. Set p=1—(1/2)*? ~ 0.65 and no = 10
2. Generate N s.t. p(k) &f P(N = k) = p(1 — p)k=" for k > no

3. Generate X1, Xo, ..., Xons i.i.d. copies of X and set

= X X coo - Xonsr
Xgga = X BT T I g Keyen =

Seven Xo+ Xg+ -+ Xonia

2l 2

4. Return

_ 8(Xomin) — (8(XGW) + 8(X5)) /2

X p(N)

+ g(Xom)
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Unbiasedness of B-E Estimator
Since E[g(X58)] = E[g(X5v*")] = E[g(X2n)], for all n > 1, we have

E[g(Xor1) — (8(X6") + £(X55™) /2] = Elg(Xn)] — Elg(Xer)], 0> 1

and
g(Xom1) — (6(X5H) + g(X5v™)) /2
E[ i p(N) i _]
=S E[g(Xw) — (&( pz(nn)) +g(X5")) /2 W= 1] % p(n)
= Z E[g(Xor) — (8(X5) + g(X5™")) /2] = Y Elg(Xon1)] — Elg(Xer)]

Il
m m

[g(Xo=)] — Elg(Xero )] = g(11x) — Elg(Xer)]

g(Xons1) — (g(X58) + g(X5i"
E[ p(N)

Can also show Var[X*] < co and E[simulation cost] < co

)/ + &(Xano )] = g(px)

[6(Xano+1)] — Elg(Xoro)] + Elg(Xono+2)] — Elg(Xong1)] + Elg(Xgng3)] — -+
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