Estimating Nonlinear Functions of Means

Peter J. Haas

CS 590M: Simulation Spring Semester 2020

Estimating Nonlinear Functions of Means

Overview

Delta Method

Jackknife Method

Bootstrap Confidence Intervals

Complete Bias Elimination

1/30

2 / 30

Nonlinear Functions of Means

Our focus up until now

- Estimate quantities of the form $\mu = E[X]$
- ► E.g., expected win/loss of gambling game
- ▶ We'll now focus on more complex quantities

Nonlinear functions of means:

$$\alpha = g(\mu_1, \mu_2, \dots, \mu_d)$$
, where

- ▶ g is a nonlinear function
- $\mu_i = E[X^{(i)}]$ for $1 \le i \le d$
- ▶ For simplicity, take d=2 and focus on $\alpha=g(\mu_X,\mu_Y)$
- $\blacktriangleright \mu_X = E[X] \text{ and } \mu_Y = E[Y]$

Example: Retail Outlet

- lacktriangle Goal: Estimate lpha= long-run average revenue per customer
- $ightharpoonup X_i = R_i = \text{revenue generated on day } i$
- $ightharpoonup Y_i = \text{number of customers on day } i$
- Assume that pairs $(X_1, Y_1), (X_2, Y_2), \ldots$ are i.i.d.
- ▶ Set $\bar{X}_n = (1/n) \sum_{i=1}^n X_i$ and $\bar{Y}_n = (1/n) \sum_{i=1}^n Y_i$

$$\alpha = \lim_{n \to \infty} \frac{X_1 + \dots + X_n}{Y_1 + \dots + Y_n} = \lim_{n \to \infty} \frac{\bar{X}_n}{\bar{Y}_n} =$$

▶ So $\alpha = g(\mu_X, \mu_Y)$, where g(x, y) =

3/30

Example: Higher-Order Moments

- ▶ Let $R_1, R_2, ...$ be daily revenues as before
- ► Assume that the R_i's are i.i.d. (Critique?)
- $\alpha = Var[R] = variance of daily revenue$
- ▶ Let $X = R^2$ and Y = R
 - $\alpha = g(\mu_X, \mu_Y)$, where g(x, y) =

Estimating Nonlinear Functions of Means

Overview

Delta Method

Jackknife Method Bootstrap Confidence Intervals Complete Bias Elimination

6/20

Delta Method (Taylor Series)

Assume that function g(x, y) is smooth

- ▶ Continuously differentiable in neighborhood of (μ_x, μ_y)
- ▶ I.e., g is continuous, as are $\partial g/\partial x$ and $\partial g/\partial y$

Point estimate

- ▶ Run simulation *n* times to get $(X_1, Y_1), \dots, (X_n, Y_n)$ i.i.d.
- $\blacktriangleright \text{ Set } \alpha_n = g(\bar{X}_n, \bar{Y}_n)$
- ▶ This estimator is biased:
 - $E[\alpha_n] = E[g(\bar{X}_n, \bar{Y}_n)] \neq g(E[\bar{X}_n], E[\bar{Y}_n]) = g(\mu_x, \mu_y) = \alpha$
 - ▶ Jensen's inequality: $E[\alpha_n] = E[g(\bar{X}_n)] \ge g(\mu_X) = \alpha$ if g is convex
- ▶ By SLLN and continuity of g, we have bias $\to 0$ as $n \to \infty$ (Estimator α_n is asymptotically unbiased)

Delta Method, Continued

Confidence interval

- \bullet (\bar{X}_n, \bar{Y}_n) should be "close" to (μ_X, μ_Y) for large n by SLLN
- $\alpha_n = g(\bar{X}_n, \bar{Y}_n)$ should be close to $g(\mu_X, \mu_Y) = \alpha$

$$\alpha_{n} - \alpha = g(\bar{X}_{n}, \bar{Y}_{n}) - g(\mu_{X}, \mu_{Y})$$

$$= \frac{\partial g}{\partial x}(\mu_{X}, \mu_{Y}) \cdot (\bar{X}_{n} - \mu_{X}) + \frac{\partial g}{\partial y}(\mu_{X}, \mu_{Y}) \cdot (\bar{Y}_{n} - \mu_{Y})$$

$$= \bar{Z}_{n}$$

- $ightharpoonup Z_i = c(X_i \mu_X) + d(Y_i \mu_Y) \text{ and } \bar{Z}_n = (1/n) \sum_{i=1}^n Z_i$
- $ightharpoonup c = \frac{\partial g}{\partial x}(\mu_X, \mu_Y)$ and $d = \frac{\partial g}{\partial y}(\mu_X, \mu_Y)$

7/30

Delta Method, Continued

Confidence interval, continued

- ▶ $\{Z_n : n \ge 1\}$ are i.i.d. as $Z = c(X \mu_X) + d(Y \mu_Y)$
- \triangleright E[Z] =
- ▶ By CLT, $\sqrt{n}\bar{Z}_n/\sigma \stackrel{D}{\sim} N(0,1)$ approximately for large n
- ► Thus $\sqrt{n}(\alpha_n \alpha)/\sigma \stackrel{D}{\sim} N(0, 1)$ approximately for large n
- Here $\sigma^2 = \text{Var}[Z] = E[Z^2] = E[(c(X \mu_X) + d(Y \mu_Y))^2]$
- ▶ So asymptotic $100(1-\delta)\%$ CI is $\alpha_n \pm z_\delta \sigma / \sqrt{n}$
 - \triangleright z_{δ} is $1-(\delta/2)$ quantile of standard normal distribution
 - \triangleright Estimate c, d, and σ from data

Delta Method, Continued

Delta Method CI Algorithm

- 1. Simulate to get $(X_1, Y_1), \ldots, (X_n, Y_n)$ i.i.d.
- 2. $\alpha_n \leftarrow g(\bar{X}_n, \bar{Y}_n)$

9/30

11/30

- 3. $c_n \leftarrow \frac{\partial g}{\partial x}(\bar{X}_n, \bar{Y}_n)$ and $d_n \leftarrow \frac{\partial g}{\partial y}(\bar{X}_n, \bar{Y}_n)$
- 4. $s_n^2 = (n-1)^{-1} \sum_{i=1}^n (c_n(X_i \bar{X}_n) + d_n(Y_i \bar{Y}_n))^2$
- 5. Return asymptotic $100(1-\delta)\%$ CI:

$$\left[\alpha_n - \frac{z_\delta s_n}{\sqrt{n}}, \alpha_n + \frac{z_\delta s_n}{\sqrt{n}}\right]$$

▶ SLLN and continuity assumptions imply that, with prob. 1,

$$c_n \to c$$
, $d_n \to d$, and $s_n^2 \to \sigma^2$

10/30

Example: Ratio Estimation: g(x, y) = x/y

Multi-pass method (apply previous algorithm directly)

$$\alpha = c = d = \alpha_n = c_n = d_n =$$

$$s_n^2 = (n-1)^{-1} \sum_{i=1}^n (c_n(X_i - \bar{X}_n) + d_n(Y_i - \bar{Y}_n))^2$$

Example: Ratio Estimation: g(x, y) = x/ySingle-pass method

$$\sigma^{2} = \text{Var}[Z] = \text{Var}[c(X - \mu_{X}) + d(Y - \mu_{Y})]$$
$$= \frac{\text{Var}[X] - 2\alpha \operatorname{Cov}[X, Y] + \alpha^{2} \operatorname{Var}[Y]}{\mu_{Y}^{2}}$$

$$s_n^2 = \frac{s_n(1,1) - 2\alpha_n s_n(1,2) + \alpha_n^2 s_n(2,2)}{(\bar{Y}_n)^2}$$

- $ightharpoonup s_n(1,1) = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$
- Use
- $s_n(2,2) = \frac{1}{n-1} \sum_{i=1}^n (Y_i \bar{Y}_n)^2$
- single-pass
- $s_n(1,2) = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X}_n)(Y_i \bar{Y}_n)$
- formulas
- \blacktriangleright Set $S_n^X = \sum_{i=1}^n X_i$ and $S_n^Y = \sum_{i=1}^n Y_i$

$$(k-1)v_k = (k-1)v_{k-1} + \left(\frac{S_{k-1}^X - (k-1)X_k}{k}\right) \left(\frac{S_{k-1}^Y - (k-1)Y_k}{k-1}\right)$$

Delta Method for Stochastic Root-Finding

Problem:

Find $\bar{\theta}$ such that $E[g(X,\bar{\theta})] = 0$ (can replace 0 with any fixed constant)

Applications:

- ▶ Process control, risk management, finance, quantiles, ...
- ▶ Stochastic optimization: $min_{\theta} E[h(X, \theta)]$
 - Optimality condition: $\frac{\partial}{\partial \theta} E[h(X, \theta)] = 0$
 - ▶ Can often show that $\frac{\partial}{\partial \theta} E[h(X, \theta)] = E\left[\frac{\partial}{\partial \theta} h(X, \theta)\right]$
 - ▶ So take $g(X, \theta) = \frac{\partial}{\partial \theta} h(X, \theta)$

Point Estimate (Stochastic Average Approximation)

- ▶ Generate X_1, \ldots, X_n i.i.d. as X
- Find θ_n s.t. $\frac{1}{n} \sum_{i=1}^n g(X_i, \theta_n) = 0$ (deterministic problem)

13/30

15/30

Delta Method for Stochastic Root-Finding

Problem:

Find $\bar{\theta}$ such that $E[g(X, \bar{\theta})] = 0$

Point Estimate (Stochastic Average Approximation)

- ▶ Generate X_1, \ldots, X_n i.i.d. as X
- Find θ_n s.t. $\frac{1}{n} \sum_{i=1}^n g(X_i, \theta_n) = 0$

How to find a confidence interval for $\bar{\theta}$?

- ▶ Taylor series: $g(X_i, \theta_n) \approx g(X_i, \bar{\theta}) + \frac{\partial g}{\partial \theta}(X_i, \bar{\theta})(\theta_n \bar{\theta})$
- ▶ Implies: $\frac{1}{n} \sum_{i=1}^{n} g(X_i, \theta_n) \approx \frac{1}{n} \sum_{i=1}^{n} g(X_i, \bar{\theta}) c_n(\bar{\theta} \theta_n)$
 - where $c_n = \frac{1}{n} \sum_{i=1}^n \frac{\partial g}{\partial \theta}(X_i, \bar{\theta}) \approx E\left[\frac{\partial g}{\partial \theta}(X, \bar{\theta})\right]$
- ▶ Implies: $\bar{\theta} \theta_n \approx \frac{1}{c_n} \frac{1}{n} \sum_{i=1}^n g(X_i, \bar{\theta})$
- ▶ Implies: $\theta_n \bar{\theta} \approx N(0, \sigma^2/n)$, where $\sigma^2 = \text{Var}[g(X, \bar{\theta})]/c_n^2 = E[g(X, \bar{\theta})^2]/c_n^2$

14/30

Delta Method for Stochastic Root-Finding

Algorithm

- 1. Simulate to get X_1, \ldots, X_n i.i.d.
- 2. Find θ_n s.t. $\frac{1}{n} \sum_{i=1}^n g(X_i, \theta_n) = 0$
- 3. $\hat{c}_n \leftarrow \frac{1}{n} \sum_{i=1}^n \frac{\partial g}{\partial \theta}(X_i, \theta_n)$
- 4. $s_n^2 \leftarrow \frac{1}{n} \sum_{i=1}^n g(X_i, \theta_n)^2 / \hat{c}_n^2$
- 5. Return asymptotic $100(1 \delta)\%$ CI:

$$\left[\theta_n - \frac{z_\delta s_n}{\sqrt{n}}, \theta_n + \frac{z_\delta s_n}{\sqrt{n}}\right]$$

► Can use pilot runs, etc. in the usual way

Estimating Nonlinear Functions of Means

Overview

Dolta Motho

Jackknife Method

Bootstrap Confidence Interval Complete Bias Elimination

Jackknife Method

Overview

- Goal: estimate $\alpha = g(\mu_x, \mu_y)$
- ▶ Naive point estimator $\alpha_n = g(\bar{X}_n, \bar{Y}_n)$ is biased
- Jackknife estimator has lower bias
- ▶ Avoids need to compute partial derivatives as in Delta method
- ▶ More computationally intensive

Starting point: Taylor series + expectation

$$E[\alpha_n] = \alpha + \frac{b}{n} + \frac{c}{n^2} + \cdots$$

- ▶ Thus bias is $O(n^{-1})$
- Estimate *b* and adjust? $\alpha_n^* = \alpha_n \frac{b_n}{n}$
 - Messy partial derivative calculation, adds noise

17/30

Jackknife, Continued

Observe that

$$E(\alpha_n) = \alpha + \frac{b}{n} + \frac{c}{n^2} + \cdots$$

$$E(\alpha_{n-1}) = \alpha + \frac{b}{n-1} + \frac{c}{(n-1)^2} + \cdots$$

and so

$$E[n\alpha_n - (n-1)\alpha_{n-1}] = \alpha + c\left(\frac{1}{n} - \frac{1}{n-1}\right) + \cdots = \alpha - \frac{c}{n(n-1)} + \cdots$$

- ▶ Bias reduced to $O(n^{-2})!$
- Q: What is special about deleting the *n*th data point?

18 / 30

Jackknife, Continued

- ▶ Delete each data point in turn to get a low-bias estimator
- Average the estimators to reduce variance

Jackknife CI Algorithm for $\alpha = g(\mu_X, \mu_Y)$

- 1. Choose *n* and δ , and set $z_{\delta} = 1 (\delta/2)$ quantile of N(0,1)
- 2. Simulate to get $(X_1, Y_1), \ldots, (X_n, Y_n)$ i.i.d.
- 3. $\alpha_n \leftarrow g(\bar{X}_n, \bar{Y}_n)$
- 4. For i = 1 to n

4.1
$$\alpha_n^i \leftarrow g\left(\frac{1}{n-1}\sum_{\substack{j=1\\j\neq i}}^n X_j, \frac{1}{n-1}\sum_{\substack{j=1\\j\neq i}}^n Y_j\right)$$
 (leave out X_i)

4.2 $\alpha_n(i) \leftarrow n\alpha_n - (n-1)\alpha_n^i$ (ith pseudovalue)

- 5. Point estimator: $\alpha_n^J \leftarrow (1/n) \sum_{i=1}^n \alpha_n(i)$
- 6. $v_n^{J} = \frac{1}{n-1} \sum_{i=1}^{n} (\alpha_n(i) \alpha_n^{J})^2$
- 7. $100(1-\delta)\%$ CI: $\left[\alpha_n^J z_\delta \sqrt{v_n^J/n}, \alpha_n^J + z_\delta \sqrt{v_n^J/n}\right]$

Jackknife, Continued

Observations

- Not obvious that CI is correct (why?)
- Substitutes computational brute force for analytical complexity
- ▶ Not a one-pass algorithm
- ▶ Basic jackknife breaks down for "non-smooth" statistics like quantiles, maximum (but can fix—see next lecture)

Estimating Nonlinear Functions of Means

Overview
Delta Method
Jackknife Method

Bootstrap Confidence Intervals

Complete Bias Elimination

21 / 30

23 / 30

Bootstrap Confidence Intervals

Another brute force method

- ► Key idea: analyze variability of estimator using samples of original data
- More general than jackknife (estimates entire sampling distribution of estimator, not just mean and variance)
- ▶ Jackknife is somewhat better empirically at variance estimates
- "Non-repeatable", unlike jackknife
- ▶ OK for quantiles, still breaks down for maximum

22 / 30

Bootstrap Samples

- Given data $\mathbf{X} = (X_1, \dots, X_n)$: i.i.d. samples from cdf F
- ▶ Bootstrap sample $\mathbf{X}^* = (X_1^*, \dots, X_n^*)$: i.i.d. samples from \hat{F}
 - ▶ Recall: empirical distribution $\hat{F}_n(x) = (1/n)(\# \text{ obs } \le x)$
 - ▶ Same as *n* i.i.d. samples with replacement from $\{X_1, ..., X_n\}$

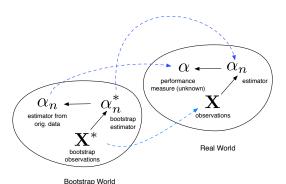
Creating a Bootstrap Sample \mathbf{X}^* from $\mathbf{X} = (X_1, \dots, X_n)$

For i = 1 to n:

- 1. Generate $U \stackrel{\mathsf{D}}{\sim} \mathsf{Uniform}(0,1)$
- 2. Set $J = \lceil nU \rceil$ //Random integer between 1 and n
- 3. Add X_I to \mathbf{X}^*

Data	4	2	7	6	8	3
Sample 1	6	2	2	8	7	6
Sample 2	3	8	8	8	2	4
<u> </u>	:	:	:	:	:	:

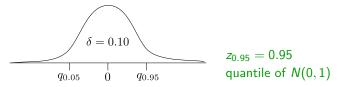
Bootstrap "Imitates" the Real World



- lacktriangle Boostrap world approaches real world as $n o \infty$
 - ▶ Glivenko-Cantelli: $\sup_x |\hat{F}_n(x) F(x)| \to 0$ wp1 as $n \to \infty$
- ▶ So distribution of $\alpha_n^* \alpha_n$ approximates distribution of $\alpha_n \alpha$
 - ▶ For small n, better than dist'n of α_n^* approximates dist'n of α_n
 - ► Hence pivot method instead of direct "percentile method"
 - ▶ Can estimate distribution of $\alpha_n^* \alpha_n$ by sampling from it

Bootstrap Confidence Intervals: Pivot Method

Distribution of $\bar{X}_n - \mu$ is approx. $N(0, \sigma^2/n)$ by CLT



Revisit usual 90% confidence interval for the mean

$$P(q_{0.05} \le \bar{X}_n - \mu \le q_{0.95}) \approx 0.9$$

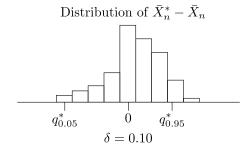
 $\Rightarrow P(\bar{X}_n - q_{0.95} \le \mu \le \bar{X}_n - q_{0.05}) \approx 0.9$
 $\Rightarrow 90\% \text{ CI} = [\bar{X}_n - q_{0.95}, \bar{X}_n - q_{0.05}]$

To recover usual formulas, observe that $q_{0.05}=-q_{0.95}$ and $q_{0.95}=(\sigma/\sqrt{n})z_{0.95}$ because $P\Big(\frac{\bar{X}_n-\mu}{\sigma/\sqrt{n}}\leq z_{0.95}\Big)=P\Big(\bar{X}_n-\mu\leq q_{0.95}\Big)$

90% CI =
$$[\bar{X}_n - z_{0.95}\sigma/\sqrt{n}, \bar{X}_n + z_{0.95}\sigma/\sqrt{n}]$$

25 / 30

Bootstrap Confidence Intervals: Pivot Method



Bootstrap approach for mean (no normality assumption)

- ▶ 90% CI = $[\bar{X}_n q_{0.95}^*, \bar{X}_n q_{0.05}^*]$
- Approximate quantiles of $\bar{X}_n \mu$ by quantiles of $\pi^* = \bar{X}_n^* \bar{X}_n$
- Generate many replicates of π^* to estimate the latter quantiles
- ▶ Technique applies to other statistics such as $\alpha = g(\mu_X, \mu_Y)$

26 / 30

Pivot Method for Nonlinear Functions of Means

Bootstrap Confidence Intervals (Pivot Method)

- 1. Run simulation *n* times to get $(X_1, Y_1), \ldots, (X_n, Y_n)$
- 2. Compute $\alpha_n = g(\bar{X}_n, \bar{Y}_n)$
- 3. Compute bootstrap sample $(X_1^*, Y_1^*), \ldots, (X_n^*, Y_n^*)$
- **4**. Set $\alpha_n^* = g(\bar{X}_n^*, \bar{Y}_n^*)$
- 5. Set pivot $\pi^* = \alpha_n^* \alpha_n$
- 6. Repeat Steps 3–5 B times to create π_1^*, \ldots, π_B^*
- 7. Sort pivots to obtain $\pi_{(1)}^* \leq \pi_{(2)}^* \leq \cdots \leq \pi_{(B)}^*$
- 8. Set $I = \lceil (1 \delta/2)B \rceil$ and $u = \lceil (\delta/2)B \rceil$
- 9. Return $100(1-\delta)\%$ CI $[\alpha_n \pi_{(1)}^*, \alpha_n \pi_{(n)}^*]$
- ▶ Example: For B = 100, 90% CI is $[\alpha_n \pi_{(95)}^*, \alpha_n \pi_{(5)}^*]$
- ► Improvements include BCa bootstrap confidence interval [See Efron & Tibshirani book]

Estimating Nonlinear Functions of Means

Overview

Delta Metho

Jackknife Method

Bootstran Confidence Intervals

Complete Bias Elimination

27 / 30

Complete Bias Elimination [Blanchet et al. 2015]

Idea: Construct X^* such that $E[X^*] = g(\mu_X)$

- ▶ Then can use usual estimation methods
- Assumes simulation cost not too expensive

Algorithm for Generating a Sample of X^*

- 1. Set $p = 1 (1/2)^{3/2} \approx 0.65$ and $n_0 = 10$
- 2. Generate N s.t. $p(k) \stackrel{\text{def}}{=} P(N=k) = p(1-p)^{k-n_0}$ for $k \ge n_0$
- 3. Generate $X_1, X_2, \dots, X_{2^{N+1}}$ i.i.d. copies of X and set

$$\bar{X}_{2^N}^{\text{odd}} = \frac{X_1 + X_3 + \dots + X_{2^{N+1}-1}}{2^N} \quad \text{and} \quad \bar{X}_{2^N}^{\text{even}} = \frac{X_2 + X_4 + \dots + X_{2^{N+1}}}{2^N}$$

4. Return

$$X^* = rac{g(ar{X}_{2^{N+1}}) - ig(g(ar{X}_{2^N}^{ ext{odd}}) + g(ar{X}_{2^N}^{ ext{even}})ig)/2}{p(N)} + g(ar{X}_{2^n})$$

29 / 30

Unbiasedness of B-E Estimator

Since $E[g(\bar{X}_{2^n}^{\mathrm{odd}})] = E[g(\bar{X}_{2^n}^{\mathrm{even}})] = E[g(\bar{X}_{2^n})]$, for all $n \geq 1$, we have

$$\mathsf{E}\Big[g(\bar{X}_{2^{n+1}}) - \big(g(\bar{X}_{2^n}^{\mathsf{odd}}) + g(\bar{X}_{2^n}^{\mathsf{even}})\big)/2\Big] = \mathsf{E}[g(\bar{X}_{2^{n+1}})] - \mathsf{E}[g(\bar{X}_{2^n})], \quad n \geq 1$$

and

$$\begin{split} &E\Big[\frac{g(\bar{X}_{2^{N+1}})-\big(g(\bar{X}_{2^{N}}^{odd})+g(\bar{X}_{2^{N}}^{even})\big)/2}{p(N)}\Big]\\ &=\sum_{n=n_{0}}^{\infty}E\Big[\frac{g(\bar{X}_{2^{n+1}})-\big(g(\bar{X}_{2^{n}}^{odd})+g(\bar{X}_{2^{n}}^{even})\big)/2}{p(n)} \ \Big| \ N=n\Big]\times p(n)\\ &=\sum_{n=n_{0}}^{\infty}E\big[g(\bar{X}_{2^{n+1}})-\big(g(\bar{X}_{2^{n}}^{odd})+g(\bar{X}_{2^{n}}^{even})\big)/2\Big] =\sum_{n=n_{0}}^{\infty}E[g(\bar{X}_{2^{n+1}})]-E[g(\bar{X}_{2^{n}})]\\ &=E[g(\bar{X}_{2^{n_{0}+1}})]-E[g(\bar{X}_{2^{n_{0}}})]+E[g(\bar{X}_{2^{n_{0}+2}})]-E[g(\bar{X}_{2^{n_{0}+1}})]+E[g(\bar{X}_{2^{n_{0}+3}})]-\cdots\\ &=E[g(\bar{X}_{2^{\infty}})]-E[g(\bar{X}_{2^{n_{0}}})]=g(\mu_{\times})-E[g(\bar{X}_{2^{n_{0}}})] \end{split}$$

So

$$E\Big[\frac{g(\bar{X}_{2^{N+1}}) - \big(g(\bar{X}_{2^{N}}^{\text{odd}}) + g(\bar{X}_{2^{N}}^{\text{even}})\big)/2}{p(N)} + g(\bar{X}_{2^{n_0}})\Big] = g(\mu_X)$$

Can also show $Var[X^*] < \infty$ and $E[\text{simulation cost}] < \infty$