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Nonlinear Functions of Means

Our focus up until now

I Estimate quantities of the form µ = E [X ]

I E.g., expected win/loss of gambling game

I We’ll now focus on more complex quantities

Nonlinear functions of means:

α = g(µ1, µ2, . . . , µd), where

I g is a nonlinear function

I µi = E [X (i)] for 1 ≤ i ≤ d

I For simplicity, take d = 2 and focus on α = g(µX , µY )

I µX = E [X ] and µY = E [Y ]
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Example: Retail Outlet

I Goal: Estimate α = long-run average revenue per customer

I Xi = Ri = revenue generated on day i

I Yi = number of customers on day i

I Assume that pairs (X1,Y1), (X2,Y2), . . . are i.i.d.

I Set X̄n = (1/n)
∑n

i=1 Xi and Ȳn = (1/n)
∑n

i=1 Yi

α = lim
n→∞

X1 + · · ·+ Xn

Y1 + · · ·+ Yn
= lim

n→∞

X̄n

Ȳn

=

I So α = g(µX , µY ), where g(x , y) =
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Example: Higher-Order Moments

I Let R1,R2, . . . be daily revenues as before

I Assume that the Ri ’s are i.i.d. (Critique?)

I α = Var[R] = variance of daily revenue

I Let X = R2 and Y = R

α = g(µX , µY ), where g(x , y) =
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Delta Method (Taylor Series)

Assume that function g(x , y) is smooth

I Continuously differentiable in neighborhood of (µx , µy )

I I.e., g is continuous, as are ∂g/∂x and ∂g/∂y

Point estimate

I Run simulation n times to get (X1,Y1), . . . , (Xn,Yn) i.i.d.

I Set αn = g(X̄n, Ȳn)
I This estimator is biased:

I E [αn] = E [g(X̄n, Ȳn)] 6= g(E [X̄n],E [Ȳn]) = g(µx , µy ) = α

I Jensen’s inequality: E [αn] = E [g(X̄n)] ≥ g(µX ) = α
if g is convex

I By SLLN and continuity of g , we have bias→ 0 as n→∞
(Estimator αn is asymptotically unbiased)
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Delta Method, Continued

Confidence interval

I (X̄n, Ȳn) should be “close” to (µX , µY ) for large n by SLLN

I αn = g(X̄n, Ȳn) should be close to g(µX , µY ) = α

αn − α = g(X̄n, Ȳn)− g(µX , µY )

=
∂g

∂x
(µX , µY ) · (X̄n − µX ) +

∂g

∂y
(µX , µY ) · (Ȳn − µY )

= Z̄n

I Zi = c(Xi − µX ) + d(Yi − µY ) and Z̄n = (1/n)
∑n

i=1 Zi

I c = ∂g
∂x (µX , µY ) and d = ∂g

∂y (µX , µY )
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Delta Method, Continued

Confidence interval, continued

I {Zn : n ≥ 1} are i.i.d. as Z = c(X − µX ) + d(Y − µY )

I E [Z ] =

I By CLT,
√
nZ̄n/σ

D∼ N(0, 1) approximately for large n

I Thus
√
n(αn − α)/σ

D∼ N(0, 1) approximately for large n

I Here σ2 = Var[Z ] = E [Z 2] = E
[(
c(X − µX ) + d(Y − µY )

)2]
I So asymptotic 100(1− δ)% CI is αn ± zδσ/

√
n

I zδ is 1− (δ/2) quantile of standard normal distribution
I Estimate c , d , and σ from data
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Delta Method, Continued

Delta Method CI Algorithm

1. Simulate to get (X1,Y1), . . . , (Xn,Yn) i.i.d.

2. αn ← g(X̄n, Ȳn)

3. cn ← ∂g
∂x (X̄n, Ȳn) and dn ← ∂g

∂y (X̄n, Ȳn)

4. s2
n = (n − 1)−1

∑n
i=1

(
cn(Xi − X̄n) + dn(Yi − Ȳn)

)2

5. Return asymptotic 100(1− δ)% CI:[
αn −

zδsn√
n
, αn +

zδsn√
n

]
I SLLN and continuity assumptions imply that, with prob. 1,

cn → c , dn → d , and s2
n → σ2
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Example: Ratio Estimation: g(x , y) = x/y

Multi-pass method (apply previous algorithm directly)

α = c = d = αn = cn = dn =

s2
n = (n − 1)−1

n∑
i=1

(
cn(Xi − X̄n) + dn(Yi − Ȳn)

)2
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Example: Ratio Estimation: g(x , y) = x/y
Single-pass method

σ2 = Var[Z ] = Var[c(X − µX ) + d(Y − µY )]

=
Var[X ]− 2αCov[X ,Y ] + α2 Var[Y ]

µ2
Y

s2
n =

sn(1, 1)− 2αnsn(1, 2) + α2
nsn(2, 2)(

Ȳn

)2

I sn(1, 1) = 1
n−1

∑n
i=1(Xi − X̄n)2

I sn(2, 2) = 1
n−1

∑n
i=1(Yi − Ȳn)2

I sn(1, 2) = 1
n−1

∑n
i=1(Xi − X̄n)(Yi − Ȳn)

I Set SX
n =

∑n
i=1 Xi and SY

n =
∑n

i=1 Yi

(k − 1)vk = (k − 1)vk−1 +

(
SX
k−1 − (k − 1)Xk

k

)(
SY
k−1 − (k − 1)Yk

k − 1

)
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Use
single-pass
formulas



Delta Method for Stochastic Root-Finding

Problem:

Find θ̄ such that E [g(X , θ̄)] = 0 (can replace 0 with any fixed constant)

Applications:

I Process control, risk management, finance, quantiles, . . .
I Stochastic optimization: minθ E [h(X , θ)]

I Optimality condition: ∂
∂θE [h(X , θ)] = 0

I Can often show that ∂
∂θE [h(X , θ)] = E

[
∂
∂θh(X , θ)

]
I So take g(X , θ) = ∂

∂θh(X , θ)

Point Estimate (Stochastic Average Approximation)

I Generate X1, . . . ,Xn i.i.d. as X

I Find θn s.t. 1
n

∑n
i=1 g(Xi , θn) = 0 (deterministic problem)
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Delta Method for Stochastic Root-Finding

Problem:

Find θ̄ such that E [g(X , θ̄)] = 0

Point Estimate (Stochastic Average Approximation)

I Generate X1, . . . ,Xn i.i.d. as X

I Find θn s.t. 1
n

∑n
i=1 g(Xi , θn) = 0

How to find a confidence interval for θ̄?

I Taylor series: g(Xi , θn) ≈ g(Xi , θ̄) + ∂g
∂θ (Xi , θ̄)(θn − θ̄)

I Implies: 1
n

∑n
i=1 g(Xi , θn) ≈ 1

n

∑n
i=1 g(Xi , θ̄)− cn(θ̄ − θn)

I where cn = 1
n

∑n
i=1

∂g
∂θ (Xi , θ̄) ≈ E

[
∂g
∂θ (X , θ̄)

]
I Implies: θ̄ − θn ≈ 1

cn
1
n

∑n
i=1 g(Xi , θ̄)

I Implies: θn − θ̄ ≈ N(0, σ2/n), where

σ2 = Var[g(X , θ̄)]/c2
n = E [g(X , θ̄)2]/c2

n
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Delta Method for Stochastic Root-Finding

Algorithm

1. Simulate to get X1, . . . ,Xn i.i.d.

2. Find θn s.t. 1
n

∑n
i=1 g(Xi , θn) = 0

3. ĉn ← 1
n

∑n
i=1

∂g
∂θ (Xi , θn)

4. s2
n ← 1

n

∑n
i=1 g(Xi , θn)2/ĉ2

n

5. Return asymptotic 100(1− δ)% CI:[
θn −

zδsn√
n
, θn +

zδsn√
n

]
I Can use pilot runs, etc. in the usual way
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Jackknife Method

Overview

I Goal: estimate α = g(µx , µy )

I Naive point estimator αn = g(X̄n, Ȳn) is biased

I Jackknife estimator has lower bias

I Avoids need to compute partial derivatives as in Delta method

I More computationally intensive

Starting point: Taylor series + expectation

E [αn] = α +
b

n
+

c

n2
+ · · ·

I Thus bias is O(n−1)

I Estimate b and adjust? α∗
n = αn − bn

n
I Messy partial derivative calculation, adds noise
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Jackknife, Continued

I Observe that

E (αn) = α +
b

n
+

c

n2
+ · · ·

E (αn−1) = α +
b

n − 1
+

c

(n − 1)2 + · · ·

I and so

E [nαn − (n− 1)αn−1] = α+ c

(
1

n
− 1

n − 1

)
+ · · · = α− c

n(n − 1)
+ · · ·

I Bias reduced to O(n−2)!

I Q: What is special about deleting the nth data point?
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Jackknife, Continued
I Delete each data point in turn to get a low-bias estimator
I Average the estimators to reduce variance

Jackknife CI Algorithm for α = g(µX , µY )

1. Choose n and δ, and set zδ = 1− (δ/2) quantile of N(0, 1)

2. Simulate to get (X1,Y1), . . . , (Xn,Yn) i.i.d.

3. αn ← g(X̄n, Ȳn)

4. For i = 1 to n

4.1 αi
n ← g

(
1

n − 1

n∑
j=1
j 6=i

Xj ,
1

n − 1

n∑
j=1
j 6=i

Yj

)
(leave out Xi )

4.2 αn(i)← nαn − (n − 1)αi
n (ith pseudovalue)

5. Point estimator: αJ
n ← (1/n)

∑n
i=1 αn(i)

6. vJn = 1
n−1

∑n
i=1

(
αn(i)− αJ

n

)2

7. 100(1− δ)% CI:
[
αJ
n − zδ

√
vJn /n, α

J
n + zδ

√
vJn /n

]
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Jackknife, Continued

Observations

I Not obvious that CI is correct (why?)

I Substitutes computational brute force for analytical complexity

I Not a one-pass algorithm

I Basic jackknife breaks down for “non-smooth” statistics like
quantiles, maximum (but can fix—see next lecture)
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Bootstrap Confidence Intervals

Another brute force method

I Key idea: analyze variability of estimator using samples of
original data

I More general than jackknife (estimates entire sampling
distribution of estimator, not just mean and variance)

I Jackknife is somewhat better empirically at variance estimates

I “Non-repeatable”, unlike jackknife

I OK for quantiles, still breaks down for maximum
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Bootstrap Samples

I Given data X = (X1, . . . ,Xn): i.i.d. samples from cdf F

I Bootstrap sample X∗ = (X ∗
1 , . . . ,X

∗
n ): i.i.d. samples from F̂

I Recall: empirical distribution F̂n(x) = (1/n)(# obs ≤ x)
I Same as n i.i.d. samples with replacement from {X1, . . . ,Xn}

Creating a Bootstrap Sample X∗ from X = (X1, . . . ,Xn)

For i = 1 to n:

1. Generate U
D∼ Uniform(0, 1)

2. Set J = dnUe //Random integer between 1 and n

3. Add XJ to X∗

Data 4 2 7 6 8 3

Sample 1 6 2 2 8 7 6
Sample 2 3 8 8 8 2 4

...
...

...
...

...
...

...
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Bootstrap “Imitates” the Real World

Bootstrap World

Real World

estimator

observations

performance
measure (unknown)

bootstrap
estimator

bootstrap
observations

estimator from
orig. data

I Boostrap world approaches real world as n→∞
I Glivenko-Cantelli: supx |F̂n(x)− F (x)| → 0 wp1 as n→∞

I So distribution of α∗
n−αn approximates distribution of αn−α

I For small n, better than dist’n of α∗n approximates dist’n of αn

I Hence pivot method instead of direct “percentile method”
I Can estimate distribution of α∗n − αn by sampling from it
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Bootstrap Confidence Intervals: Pivot Method

Revisit usual 90% confidence interval for the mean

P(q0.05 ≤ X̄n − µ ≤ q0.95) ≈ 0.9

⇒ P(X̄n − q0.95 ≤ µ ≤ X̄n − q0.05) ≈ 0.9

⇒ 90% CI = [X̄n − q0.95, X̄n − q0.05]

To recover usual formulas, observe that q0.05 = −q0.95 and

q0.95 = (σ/
√
n)z0.95 because P

(
X̄n−µ
σ/
√
n
≤ z0.95

)
= P

(
X̄n − µ ≤ q0.95

)
90% CI = [X̄n − z0.95σ/

√
n, X̄n + z0.95σ/

√
n]
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z0.95 = 0.95

quantile of N(0, 1)

Bootstrap Confidence Intervals: Pivot Method

Bootstrap approach for mean (no normality assumption)

I 90% CI = [X̄n − q∗0.95, X̄n − q∗0.05]

I Approximate quantiles of X̄n−µ by quantiles of π∗ = X̄ ∗
n − X̄n

I Generate many replicates of π∗ to estimate the latter quantiles

I Technique applies to other statistics such as α = g(µX , µY )
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Pivot Method for Nonlinear Functions of Means

Bootstrap Confidence Intervals (Pivot Method)

1. Run simulation n times to get (X1,Y1), . . . , (Xn,Yn)

2. Compute αn = g(X̄n, Ȳn)

3. Compute bootstrap sample (X ∗
1 ,Y

∗
1 ), . . . , (X ∗

n ,Y
∗
n )

4. Set α∗
n = g(X̄ ∗

n , Ȳ
∗
n )

5. Set pivot π∗ = α∗
n − αn

6. Repeat Steps 3–5 B times to create π∗1, . . . , π
∗
B

7. Sort pivots to obtain π∗(1) ≤ π
∗
(2) ≤ · · · ≤ π

∗
(B)

8. Set l = d(1− δ/2)Be and u = d(δ/2)Be
9. Return 100(1− δ)% CI [αn − π∗(l), αn − π∗(u)]

I Example: For B = 100, 90% CI is [αn − π∗(95), αn − π∗(5)]
I Improvements include BCa bootstrap confidence interval

[See Efron & Tibshirani book]
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Complete Bias Elimination [Blanchet et al. 2015]

Idea: Construct X ∗ such that E [X ∗] = g(µX )

I Then can use usual estimation methods

I Assumes simulation cost not too expensive

Algorithm for Generating a Sample of X ∗

1. Set p = 1− (1/2)3/2 ≈ 0.65 and n0 = 10

2. Generate N s.t. p(k)
def
= P(N = k) = p(1− p)k−n0 for k ≥ n0

3. Generate X1,X2, . . . ,X2N+1 i.i.d. copies of X and set

X̄ odd
2N =

X1 + X3 + · · ·+ X2N+1−1

2N
and X̄ even

2N =
X2 + X4 + · · ·+ X2N+1

2N

4. Return

X ∗ =
g(X̄2N+1 )−

(
g(X̄ odd

2N ) + g(X̄ even
2N )

)
/2

p(N)
+ g(X̄2n0 )
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Unbiasedness of B-E Estimator
Since E [g(X̄ odd

2n )] = E [g(X̄ even
2n )] = E [g(X̄2n )], for all n ≥ 1, we have

E
[
g(X̄2n+1 )−

(
g(X̄ odd

2n ) + g(X̄ even
2n )

)
/2
]

= E [g(X̄2n+1 )]− E [g(X̄2n )], n ≥ 1

and

E
[g(X̄2N+1 )−

(
g(X̄ odd

2N ) + g(X̄ even
2N )

)
/2

p(N)

]
=
∞∑

n=n0

E
[g(X̄2n+1 )−

(
g(X̄ odd

2n ) + g(X̄ even
2n )

)
/2

p(n)

∣∣∣ N = n
]
× p(n)

=
∞∑

n=n0

E
[
g(X̄2n+1 )−

(
g(X̄ odd

2n ) + g(X̄ even
2n )

)
/2
]

=
∞∑

n=n0

E [g(X̄2n+1 )]− E [g(X̄2n )]

= E [g(X̄2n0+1 )]− E [g(X̄2n0 )] + E [g(X̄2n0+2 )]− E [g(X̄2n0+1 )] + E [g(X̄2n0+3 )]− · · ·
= E [g(X̄2∞)]− E [g(X̄2n0 )] = g(µx)− E [g(X̄2n0 )]

So

E
[g(X̄2N+1 )−

(
g(X̄ odd

2N ) + g(X̄ even
2N )

)
/2

p(N)
+ g(X̄2n0 )

]
= g(µX )
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Can also show Var[X ∗] <∞ and E [simulation cost] <∞
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