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Nonlinear Functions of Means

Our focus up until now
» Estimate quantities of the form pu = E[X]
» E.g., expected win/loss of gambling game

» We'll now focus on more complex quantities

Nonlinear functions of means:
o = g(p1, p2, - - -, ftd), Where

> g is a nonlinear function

> pui=EXD)for1<i<d

» For simplicity, take d = 2 and focus on o = g(ux, py)
> ix = E[X] and 1y = E[Y]
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Example: Retail Outlet BowFerrony I'hd7uq/fw{7
P(AnB)21~P(AY) - PLE)

v

Goal: Estimate a = long-run average revenue per customer
» X; = R; = revenue generated on day /

> Y; = number of customers on day /

Assume that pairs (X1, Y1), (X2, Y2),... are i.i.d.

Set X, = (1/n) >0 X;and Y, = (1/n) 30, i

v

v

X e+ X, . )_(,, X
Xtk Xo X M

n—)ooY1—|—-~-—|—Yn_n—>oan ‘/14/

» So a = g(px, py), where g(x,y) = é
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Example: Higher-Order Moments

v

Let Ry, R», ... be daily revenues as before
Assume that the R;'s are i.i.d. (Critique?)
a = Var[R] = variance of daily revenue
Let X =R%?and Y =R

v

v

v

o = g(ux, py), where g(x,y) = % '/}L
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Estimating Nonlinear Functions of Means

Delta Method
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Delta Method (Taylor Series) L\W; FF ﬂ(////f) It #
"“/ & 3%t 4
N A P TIAA

Assume that function g(x, y) is smooth
» Continuously differentiable in neighborhood of (i, 1)
» l.e., g is continuous, as are dg/dx and dg/dy

Point estimate
» Run simulation n times to get (X1, Y1),...,(Xn, Yn) i.id. y
X,, Y B
> Set o, = g(Xn, Vy) P("(n =)l Shony &ONS! 6n0/

» This estimator is biased:
> Elag] = Elg(Xa, i) # g(E[X0], EIYa]) = 8o 1ty) = @
» Jensen's inequality: E[cv,] = E[g(X,)] > g(ix) = o
if g is convex
» By SLLN and continuity of g, we have bias — 0 as n — oo
(Estimator «, is asymptotically unbiased)



Delta Method, Continued

Confidence interval
> (X, Yn) should be “close” to (ux, f1y) for large n by SLLN
> a, = g(Xn, V) should be close to g(ux, py) = a

Op — :g()_(na \_/n) _g(,anuY)

0 S 0 _
= D xo ) - (K= 1) + 50 (s ) - (= o)

:Zn

> Zi = c(X; — px) +d(Y; — py) and Z, = (1/n) 30, Z;

0 0
> ¢ = g2 (ux, py) and d = ZE(ux, py)
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Delta Method, Continued

Confidence interval, continued

» {Z,:n>1}areiid. as Z = c(X — px) +d(Y — py)

- E[Z] - ©
By CLT, \/nZ,/o R N(0,1) approximately for large n
Thus /n(ay — @) /o R N(0, 1) approximately for large n
Here 02 = Var[Z] = E[Z2] = E[(c(X — pix) + d(Y — py))?]
So asymptotic 100(1 — )% Cl is o, £ z50/\/n

» z5is 1 — (0/2) quantile of standard normal distribution
» Estimate ¢, d, and o from data

v

v

v

v
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Delta Method, Continued

Delta Method CI Algorithm
1. Simulate to get (X1, Y1), .., (Xn, Ya) i.i.d.
2. ap < g(Xn, Yy)
3. cn 4 FE(Xn, Yn) and dp,  FE(Xy, Vn)
4. 82=(n =10 (ca(Xi — Xn) + da( Vi — V))°
5. Return asymptotic 100(1 — §)% ClI:

Z§5Snp Z5Sp
e |

AR

» SLLN and continuity assumptions imply that, with prob. 1,

Cch — C, d,,%d,ands?,%cr2

10/30



Example: Ratio Estimation: g(x,y) = x/y

Multi-pass method (apply previous algorithm directly)

a—/ux c:'/ dzy% Oz:l C_'i' d:’l
L S T T (%)
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Example: Ratio Estimation: g(x,y) = x/y
Single-pass method
02 = Var[Z] = Var[c(X — ux) + d(Y — py)]
_ Var[X] — 2a Cov[X, Y] + a2 Var[Y]

1
2 sn(1,1) — 2a,54(1,2) + a25,(2,2) J
n — (— )2
> so(1,1) = A5 2 (X — Xn)? Use
> 5n(2,2) = A 50T (Vi = V)2 single-pass
> 5p(1,2) = L 30 (X = Xa)(Yi — Ya) formulas

v

Set SX =37, X;and Sy =Y".V;

X y
(k—1)vik = (k—1)ve_1 + <5k1 (: 1)X/<> <5k1 k(fl 1)Yk>
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Delta Method for Stochastic Root-Finding

Problem:
Find @ such that E[g(X,H_)] = 0 (can replace 0 with any fixed constant) J

Applications:
» Process control, risk management, finance, quantiles, ...
» Stochastic optimization: ming E[h(X, 6)]
» Optimality condition: é%E[h(X,H)] =0
> Can often show that 2 E[h(X,0)] = E[%h(x,e)}
> So take g(X,0) = Zh(X,0)

Point Estimate (Stochastic Average Approximation)
» Generate Xy,..., X, i.i.d. as X
» Find 0, s.t. %27:1 g(Xi,0,) =0 (deterministic problem)
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Delta Method for Stochastic Root-Finding

Problem:
Find 6 such that E[g(X,0)] =0

Point Estimate (Stochastic Average Approximation)
» Generate Xi,..., X, i.i.d. as X
> Find 0, s.t. 237 1 g(X;,0,) =0

How to find a confidence interval for 67
> Taylor series: g(X On) ~ (x,,a‘) 0g(x,,§)(e — )

~

» Implies: m Z, 18(X )—Cn(9 0n)
> where ¢, = 2 37 | %8(X;,0) ~ (Tg 9]
o 6,8\
> Implies: 6 — 0, ~ L1577 | g(X;,0) LET b
» Implies: 0, — 0 ~ N(O,a2/n), where
0% = Var[g(X,0)]/c; = Elg(X,0)]/c;
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Delta Method for Stochastic Root-Finding

Algorithm
1. Simulate to get Xi,..., X, i.i.d.
2. Find 0, s.t. 1 3°7 1 g(X;,0,) =0
3. &+ 130 %X, 6,)
4 s 5 L1 80X, 0n)%/8
5. Return asymptotic 100(1 — )% CI:
Z5Snp Z5Sn
On — —=,6n
[ V/n Vn

» Can use pilot runs, etc. in the usual way
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Estimating Nonlinear Functions of Means

Jackknife Method
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Jackknife Method g\simnwl( A 7(/%/17)

Overview
» Naive point estimator o, = g()_(,,, \7,,) is biased

v

Jackknife estimator has lower bias

v

Avoids need to compute partial derivatives as in Delta method

v

More computationally intensive
Starting point: Taylor series 4+ expectation

b c
E[an]:a‘i‘*‘f'j'i‘"‘ J
n n

» Thus bias is O(n™1)
» Estimate b and adjust? o} = o, — %
» Messy partial derivative calculation, adds noise
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Jackknife, Continued

» Observe that

b c
E n: —_— —_— CEEEEY
(an) = at -+ —5 +
b + c
-1 (n-1y

E(ap-1)= a+ -

» and so

1 1
Elna, — (n—1)ap—1] = == o=
[na,—(n—1Dap1]=a+c (n n—1>+

Cc

» Bias reduced to O(n~2)!

» Q: What is special about deleting the nth data point?
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Jackknife, Continued

» Delete each data point in turn to get a low-bias estimator
> Average the estimators to reduce variance

Jackknife CI Algorithm for oo = g(pux, py)

1.

Choose n and §, and set zs = 1 — (6/2) quantile of N(0,1)

2. Simulate to get (X1, Y1),...,(Xn, Ya) i.id.
3.
4. Fori=1ton

ap — g()_(,,, \_’,,)

; 1 « 1 «
4.1 O[n<;g<n_1 Z)g’n_lz»/-l) (leaVe out X,)
Jj=1 J=1
JF#i ) JF#i
4.2 au(i) « nap, — (n— 1)), (ith pseudovalue)

Point estimator: a7 < (1/n) 37, an(i)
2
Vg = n£1 7:1 (0‘" ) — #)

(i
100(1 — 6)% Cl: [ S zs\/vI/n, ol + z5 v,{/n}
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Jackknife, Continued

Observations
» Not obvious that Cl is correct (why?)

v

Substitutes computational brute force for analytical complexity

» Not a one-pass algorithm

v

Basic jackknife breaks down for “non-smooth” statistics like
quantiles, maximum (but can fix—see next lecture)
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Estimating Nonlinear Functions of Means

Bootstrap Confidence Intervals
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Bootstrap Confidence Intervals

Another brute force method

» Key idea: analyze variability of estimator using samples of
original data

» More general than jackknife (estimates entire sampling
distribution of estimator, not just mean and variance)

» Jackknife is somewhat better empirically at variance estimates
» “Non-repeatable”, unlike jackknife

» OK for quantiles, still breaks down for maximum



Bootstrap Samples

» Given data X = (Xi,...,X,): i.i.d. samples from cdf F

» Bootstrap sample X* = (X{,..., X}): i.i.d. samples from F
> Recall: empirical distribution F,(x) = (1/n)(# obs < x)
» Same as n i.i.d. samples with replacement from {Xi,..., X,}

Creating a Bootstrap Sample X* from X = (Xy,...,X,)
For i =1 to n:
1. Generate U R Uniform(0, 1)

2. Set J=[nU] //Random integer between 1 and n
3. Add X, to X*

‘/Kﬂ,\\.\hﬂw&gg Data |4 2 7 6 8 3
L\44¢?0w¢\ Sample 1|6 2 2 8 7 6
\Ah?éleu% Sample2 |3 8 8 8 2 4

bt 1
{)\" ) b)?l‘l‘esw man l‘/be o# Punc-/wuq lg
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Bootstrap “Imitates” the Real World

N
S e Qi
performance estimator
measure (unknown)

X F

7 observations

esiimalor from bootstrap
orig. data estimator

A, &

F n bootstrap J

observations

Real World

Bootstrap World

» Boostrap world approaches real world as n — oo
» Glivenko-Cantelli: sup, |Fp(x) — F(x)] — 0 wpl as n — oo

» So distribution of o), — v, approximates distribution of o, — v
» For small n, better than dist'n of o approximates dist'n of «,
» Hence pivot method instead of direct “percentile method”
» Can estimate distribution of o, — a,, by sampling from it
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Bootstrap Confidence Intervals: Pivot Method

Distribution of X,, — u is approx. N(0,c2%/n) by CLT

2 19
- e’/A r §=10.10

QU‘:]V\ Z20.05 — 0.95

QO.‘os 6 Q(J.gs quantile of N(0,1)

Reuvisit usual 90% confidence interval for the mean
P(go.0s < X, — 11 < qo.05) ~ 0.9
= P(Xn — qo.0s < 1 < Xp — Go.os) ~ 0.9
= 90% Cl = [X, — qo.95, Xn — q0.05]

To recover usual formulas, observe that gg95 = —go.05 and
qo.o5 = (0/+/n)z0.05 because P(?’T\_/Eﬁ < 29.95) = P(Xp — 11 < qo.05)

90% Cl = [X, — 20.950/+/n, X + 20.050/+/1] ]
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Bootstrap Confidence Intervals: Pivot Method

Distribution of X — X,

Bootstrap approach for mean (no normality assumption)
90% Cl = [Xa — ¢5.05, Xn — G.05]
Approximate quantiles of X, — 1 by quantiles of 7* = X — X,

v

v

v

Generate many replicates of 7* to estimate the latter quantiles

v

Technique applies to other statistics such as o = g(ux, 1y)
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Pivot Method for Nonlinear Functions of Means

Bootstrap Confidence Intervals (Pivot Method)

1.

{OFCORE I ARG B GO

Run simulation n times to get (X1, Y1),..., (X, Yn)
Compute o, = g()_(,,, \_’,,)

Compute bootstrap sample (X, Y{),..., (X}, Y})
Set a3, = g(X;, V)

Set pivot 7* = aj, — an

Repeat Steps 3-5 B times to create Tri‘, S, Tg

Sort pivots to obtain 77( 1) < 7r( ) - < ¥
Set | =[(1—-6/2)B] and u=[(6/2)B]

Return 100(1 — 6)% Cl oy — (), ovn — 70|

» Example: For B =100, 90% Cl is [a, — WE‘%),an -

(5)]

» Improvements include BCa bootstrap confidence interval

[See Efron & Tibshirani book]
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Estimating Nonlinear Functions of Means

Complete Bias Elimination
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Complete Bias Elimination [Blanchet et al. 2015]

Idea: Construct X* such that E[X*] = g(ux)
» Then can use usual estimation methods

» Assumes simulation cost not too expensive

Algorithm for Generating a Sample of X*

1. Set p=1—(1/2)*? ~ 0.65 and ny = 10
k~No
2. Generate N s.t. p(k) &f P(N = k) = p(1 — p)? ™ for k > ng

3. Generate X1, Xo, ..., Xon41 ili.d. copies of X and set

X]_ +X3 + +X2N+1_1

and _even7X2+X4+"'+X2N+1
2N B

odd
X oN 2N

4. Return _ _
g(Xonn) — (8(GH) + 8(XG5")) /2

X = p(N)

+g ()?2"0 )
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Unbiasedness of B-E Estimator
Since E[g(Xs)] = E[g(X5i*")] = E[g(Xan)], for all n > 1, we have

Elg(Xer) — (806%) + 8™ /2] = Elg(Xer)] -~ Elg(Xer)], n>1

and
g(Xow1) — (g(X5) + g(X5v)) /2
E[ p(N) ]
g(Xori1) — (g(X55) + g(X5")) /2 |
= E[ () ‘N_n} x p(n)

1M 1M

Elg(Xor1) — (8(X5) + (X)) /2] = > Elg(Xon1)] — Elg(Xer)]

0

g(Xomp1)] — E[g()?gno )]+ E| ono+2)] — E[g%l)] + E[g()_(2,,0+3)] .
1 i 50 ) e siapm

E 0
E

—_— —

So

E[g(xzw) — (8(XN) + g(X56")) /2
p(N)

Can also show Var[X*] < co and E[simulation cost] < o0

+8(Xew)| = gl1x)
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