Estimating Nonlinear Functions of Means

Peter J. Haas

CS 590M: Simulation
Spring Semester 2020

Estimating Nonlinear Functions of Means
Overview
Delta Method
Jackknife Method
Bootstrap Confidence Intervals
Complete Bias Elimination

Nonlinear Functions of Means

Our focus up until now

- Estimate quantities of the form $\mu=E[X]$
- E.g., expected win/loss of gambling game
- We'll now focus on more complex quantities

Nonlinear functions of means:
$\alpha=g\left(\mu_{1}, \mu_{2}, \ldots, \mu_{d}\right)$, where

- g is a nonlinear function
- $\mu_{i}=E\left[X^{(i)}\right]$ for $1 \leq i \leq d$
- For simplicity, take $d=2$ and focus on $\alpha=g\left(\mu_{X}, \mu_{Y}\right)$
- $\mu_{X}=E[X]$ and $\mu_{Y}=E[Y]$

Example: Retail Outlet

$$
\begin{aligned}
& \text { Bonforroni inequality } \\
& P(A \cap B) \geqslant 1 \sim P\left(A^{C}\right)-P\left(B^{C}\right)
\end{aligned}
$$

- Goal: Estimate $\alpha=$ long-run average revenue per customer
- $X_{i}=R_{i}=$ revenue generated on day i
- $Y_{i}=$ number of customers on day i
- Assume that pairs $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots$ are i.i.d.
- Set $\bar{X}_{n}=(1 / n) \sum_{i=1}^{n} X_{i}$ and $\bar{Y}_{n}=(1 / n) \sum_{i=1}^{n} Y_{i}$

$$
\alpha=\lim _{n \rightarrow \infty} \frac{X_{1}+\cdots+X_{n}}{Y_{1}+\cdots+Y_{n}}=\lim _{n \rightarrow \infty} \frac{\bar{X}_{n}}{\bar{Y}_{n}}=\frac{\mu_{x}}{\mu_{1}}
$$

- So $\alpha=g\left(\mu_{X}, \mu_{Y}\right)$, where $g(x, y)=\frac{\alpha}{y}$

Example: Higher-Order Moments

- Let R_{1}, R_{2}, \ldots be daily revenues as before
- Assume that the R_{i} 's are i.i.d. (Critique?)
- $\alpha=\operatorname{Var}[R]=$ variance of daily revenue
- Let $X=R^{2}$ and $Y=R$

$$
\alpha=g\left(\mu_{X}, \mu_{Y}\right), \text { where } g(x, y)=x-y^{2}
$$

Estimating Nonlinear Functions of Means
Overview
Delta Method
Jackknife Method
Bootstrap Confidence Intervals
Complete Bias Elimination
> $\begin{array}{rl}\text { Delta Method (Taylor Series) } \frac{\text { Linn } 2 r}{\text { case }}: ~ i f ~ & g\left(\mu_{x}, \rho_{y}\right)=3 \mu_{x}+4 \mu_{1} \\ \alpha_{n}=3 \bar{x}_{n}+4 \bar{y}_{n}\end{array}$
> Assume that function $g(x, y)$ is smooth $E\left[\alpha_{n}\right]=3 E\left[x_{n}\right]+4 E\left[Y_{n}\right]=\alpha$

- Continuously differentiable in neighborhood of $\left(\mu_{x}, \mu_{y}\right)$
- I.e., g is continuous, as are $\partial g / \partial x$ and $\partial g / \partial y$

Point estimate

- Run simulation n times to get $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d.
- Set $\alpha_{n}=g\left(\bar{X}_{n}, \bar{Y}_{n}\right)$
- This estimator is biased:

$$
P\left(\alpha_{n} \rightarrow \alpha\right)=1 \text { strong consistency }
$$

- $E\left[\alpha_{n}\right]=E\left[g\left(\bar{X}_{n}, \bar{Y}_{n}\right)\right] \neq g\left(E\left[\bar{X}_{n}\right], E\left[\bar{Y}_{n}\right]\right)=g\left(\mu_{x}, \mu_{y}\right)=\alpha$
- Jensen's inequality: $E\left[\alpha_{n}\right]=E\left[g\left(\bar{X}_{n}\right)\right] \geq g\left(\mu_{X}\right)=\alpha$ if g is convex
- By SLLN and continuity of g, we have bias $\rightarrow 0$ as $n \rightarrow \infty$ (Estimator α_{n} is asymptotically unbiased)

Delta Method, Continued

Confidence interval

- $\left(\bar{X}_{n}, \bar{Y}_{n}\right)$ should be "close" to $\left(\mu_{X}, \mu_{Y}\right)$ for large n by SLLN
- $\alpha_{n}=g\left(\bar{X}_{n}, \bar{Y}_{n}\right)$ should be close to $g\left(\mu_{X}, \mu_{Y}\right)=\alpha$

$$
\begin{aligned}
\alpha_{n}-\alpha & =g\left(\bar{X}_{n}, \bar{Y}_{n}\right)-g\left(\mu_{X}, \mu_{Y}\right) \\
& =\frac{\partial g}{\partial x}\left(\mu_{X}, \mu_{Y}\right) \cdot\left(\bar{X}_{n}-\mu_{X}\right)+\frac{\partial g}{\partial y}\left(\mu_{X}, \mu_{Y}\right) \cdot\left(\bar{Y}_{n}-\mu_{Y}\right) \\
& =\bar{Z}_{n}
\end{aligned}
$$

- $Z_{i}=c\left(X_{i}-\mu_{X}\right)+d\left(Y_{i}-\mu_{Y}\right)$ and $\bar{Z}_{n}=(1 / n) \sum_{i=1}^{n} Z_{i}$
- $c=\frac{\partial g}{\partial x}\left(\mu_{X}, \mu_{Y}\right)$ and $d=\frac{\partial g}{\partial y}\left(\mu_{X}, \mu_{Y}\right)$

Delta Method, Continued

Confidence interval, continued

- $\left\{Z_{n}: n \geq 1\right\}$ are i.i.d. as $Z=c\left(X-\mu_{X}\right)+d\left(Y-\mu_{Y}\right)$
- $E[Z]=O$
- By CLT, $\sqrt{n} \bar{Z}_{n} / \sigma \stackrel{\mathrm{D}}{\sim} N(0,1)$ approximately for large n
- Thus $\sqrt{n}\left(\alpha_{n}-\alpha\right) / \sigma \stackrel{\mathrm{D}}{\sim} N(0,1)$ approximately for large n
- Here $\sigma^{2}=\operatorname{Var}[Z]=E\left[Z^{2}\right]=E\left[\left(c\left(X-\mu_{X}\right)+d\left(Y-\mu_{Y}\right)\right)^{2}\right]$
- So asymptotic $100(1-\delta) \% \mathrm{Cl}$ is $\alpha_{n} \pm z_{\delta} \sigma / \sqrt{n}$
- z_{δ} is $1-(\delta / 2)$ quantile of standard normal distribution
- Estimate c, d, and σ from data

Delta Method, Continued

Delta Method CI Algorithm

1. Simulate to get $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d.
2. $\alpha_{n} \leftarrow g\left(\bar{X}_{n}, \bar{Y}_{n}\right)$
3. $c_{n} \leftarrow \frac{\partial g}{\partial x}\left(\bar{X}_{n}, \bar{Y}_{n}\right)$ and $d_{n} \leftarrow \frac{\partial g}{\partial y}\left(\bar{X}_{n}, \bar{Y}_{n}\right)$
4. $s_{n}^{2}=(n-1)^{-1} \sum_{i=1}^{n}\left(c_{n}\left(X_{i}-\bar{X}_{n}\right)+d_{n}\left(Y_{i}-\bar{Y}_{n}\right)\right)^{2}$
5. Return asymptotic $100(1-\delta) \% \mathrm{Cl}$:

$$
\left[\alpha_{n}-\frac{z_{\delta} s_{n}}{\sqrt{n}}, \alpha_{n}+\frac{z_{\delta} s_{n}}{\sqrt{n}}\right]
$$

- SLLN and continuity assumptions imply that, with prob. 1,

$$
c_{n} \rightarrow c, d_{n} \rightarrow d, \text { and } s_{n}^{2} \rightarrow \sigma^{2}
$$

Example: Ratio Estimation: $g(x, y)=x / y$

Multi-pass method (apply previous algorithm directly)

$$
\alpha=\frac{\mu_{x}}{\mu_{y}} c=\frac{1}{\mu_{y}} \quad d=\frac{-\frac{\mu_{x}}{\mu_{y}^{2}}}{\mu_{y}} \quad \alpha_{n}=\frac{\bar{x}_{n}}{\bar{Y}_{n}} \quad c_{n}=\frac{1}{\bar{y}_{n}} \quad d_{n}=\frac{-\bar{X}_{n}}{\left(\bar{Y}_{n}\right)^{2}}
$$

$$
s_{n}^{2}=(n-1)^{-1} \sum_{i=1}^{n}\left(c_{n}\left(X_{i}-\bar{X}_{n}\right)+d_{n}\left(Y_{i}-\bar{Y}_{n}\right)\right)^{2}
$$

Example: Ratio Estimation: $g(x, y)=x / y$
Single-pass method

$$
\begin{aligned}
\sigma^{2} & =\operatorname{Var}[Z]=\operatorname{Var}\left[c\left(X-\mu_{X}\right)+d\left(Y-\mu_{Y}\right)\right] \\
& =\frac{\operatorname{Var}[X]-2 \alpha \operatorname{Cov}[X, Y]+\alpha^{2} \operatorname{Var}[Y]}{\mu_{Y}^{2}} \\
s_{n}^{2} & =\frac{s_{n}(1,1)-2 \alpha_{n} s_{n}(1,2)+\alpha_{n}^{2} s_{n}(2,2)}{\left(\bar{Y}_{n}\right)^{2}}
\end{aligned}
$$

- $s_{n}(1,1)=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$
- $s_{n}(2,2)=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}$
- $s_{n}(1,2)=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)\left(Y_{i}-\bar{Y}_{n}\right) \quad$ formulas
- Set $S_{n}^{X}=\sum_{i=1}^{n} X_{i}$ and $S_{n}^{Y}=\sum_{i=1}^{n} Y_{i}$

Delta Method for Stochastic Root-Finding

Problem:
Find $\bar{\theta}$ such that $E[g(X, \bar{\theta})]=0$ (can replace 0 with any fixed constant)

Applications:

- Process control, risk management, finance, quantiles, ...
- Stochastic optimization: $\min _{\theta} E[h(X, \theta)]$
- Optimality condition: $\frac{\partial}{\partial \theta} E[h(X, \theta)]=0$
- Can often show that $\frac{\partial}{\partial \theta} E[h(X, \theta)]=E\left[\frac{\partial}{\partial \theta} h(X, \theta)\right]$
- So take $g(X, \theta)=\frac{\partial}{\partial \theta} h(X, \theta)$

Point Estimate (Stochastic Average Approximation)

- Generate X_{1}, \ldots, X_{n} i.i.d. as X
- Find θ_{n} s.t. $\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}, \theta_{n}\right)=0 \quad$ (deterministic problem)

Delta Method for Stochastic Root-Finding

Problem:
Find $\bar{\theta}$ such that $E[g(X, \bar{\theta})]=0$

Point Estimate (Stochastic Average Approximation)

- Generate X_{1}, \ldots, X_{n} i.i.d. as X
- Find θ_{n} s.t. $\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}, \theta_{n}\right)=0$

How to find a confidence interval for $\bar{\theta}$?

- Taylor series: $g\left(X_{i}, \theta_{n}\right) \approx g\left(X_{i}, \bar{\theta}\right)+\frac{\partial g}{\partial \theta}\left(X_{i}, \bar{\theta}\right)\left(\theta_{n}-\bar{\theta}\right)$
- Implies: $\frac{1}{n} \sum_{i=1}^{n-\theta}\left(X, \theta_{n}\right) \approx \frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}, \bar{\theta}\right)-c_{n}\left(\bar{\theta}-\theta_{n}\right)$
- where $c_{n}=\frac{1}{n} \sum_{i=1}^{n} \frac{\partial g}{\partial \theta}\left(X_{i}, \bar{\theta}\right) \approx E\left[\frac{\partial g}{\partial \theta}(X, \bar{\theta})\right]$
- Implies: $\bar{\theta}-\theta_{n} \approx \frac{1}{c_{n}} \frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}, \bar{\theta}\right) \quad\left[E\left[g\left(X_{i}, \bar{\theta}\right]\right]=\right.$
- Implies: $\theta_{n}-\bar{\theta} \approx N\left(0, \sigma^{2} / n\right)$, where

$$
\sigma^{2}=\operatorname{Var}[g(X, \bar{\theta})] / c_{n}^{2}=E\left[g(X, \bar{\theta})^{2}\right] / c_{n}^{2}
$$

Delta Method for Stochastic Root-Finding

Algorithm

1. Simulate to get X_{1}, \ldots, X_{n} i.i.d.
2. Find θ_{n} s.t. $\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}, \theta_{n}\right)=0$
3. $\hat{c}_{n} \leftarrow \frac{1}{n} \sum_{i=1}^{n} \frac{\partial g}{\partial \theta}\left(X_{i}, \theta_{n}\right)$
4. $s_{n}^{2} \leftarrow \frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}, \theta_{n}\right)^{2} / \hat{c}_{n}^{2}$
5. Return asymptotic $100(1-\delta) \% \mathrm{Cl}$:

$$
\left[\theta_{n}-\frac{z_{\delta} s_{n}}{\sqrt{n}}, \theta_{n}+\frac{z_{\delta} s_{n}}{\sqrt{n}}\right]
$$

- Can use pilot runs, etc. in the usual way

Estimating Nonlinear Functions of Means
Overview
Delta Method
Jackknife Method
Bootstrap Confidence Intervals
Complete Bias Elimination

Jackknife Method

$$
\text { Kstimate } \sigma=g\left(\mu_{x_{j}} \mu_{y}\right)
$$

Overview

- Naive point estimator $\alpha_{n}=g\left(\bar{X}_{n}, \bar{Y}_{n}\right)$ is biased
- Jackknife estimator has lower bias
- Avoids need to compute partial derivatives as in Delta method
- More computationally intensive

Starting point: Taylor series + expectation

$$
E\left[\alpha_{n}\right]=\alpha+\frac{b}{n}+\frac{c}{n^{2}}+\cdots
$$

- Thus bias is $O\left(n^{-1}\right)$
- Estimate b and adjust? $\alpha_{n}^{*}=\alpha_{n}-\frac{b_{n}}{n}$
- Messy partial derivative calculation, adds noise

Jackknife, Continued

- Observe that

$$
\begin{aligned}
E\left(\alpha_{n}\right) & =\alpha+\frac{b}{n}+\frac{c}{n^{2}}+\cdots \\
E\left(\alpha_{n-1}\right) & =\alpha+\frac{b}{n-1}+\frac{c}{(n-1)^{2}}+\cdots
\end{aligned}
$$

- and so

$$
E\left[n \alpha_{n}-(n-1) \alpha_{n-1}\right]=\alpha+c\left(\frac{1}{n}-\frac{1}{n-1}\right)+\cdots=\alpha-\frac{c}{n(n-1)}+\cdots
$$

- Bias reduced to $O\left(n^{-2}\right)$!
- Q: What is special about deleting the nth data point?

Jackknife, Continued

- Delete each data point in turn to get a low-bias estimator
- Average the estimators to reduce variance

Jackknife CI Algorithm for $\alpha=g\left(\mu_{X}, \mu_{Y}\right)$

1. Choose n and δ, and set $z_{\delta}=1-(\delta / 2)$ quantile of $N(0,1)$
2. Simulate to get $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d.
3. $\alpha_{n} \leftarrow g\left(\bar{X}_{n}, \bar{Y}_{n}\right)$
4. For $i=1$ to n

$$
\begin{aligned}
& 4.1 \alpha_{n}^{i} \leftarrow g\left(\frac{1}{n-1} \sum_{\substack{j=1 \\
j \neq i}}^{n} X_{j}, \frac{1}{n-1} \sum_{\substack{j=1 \\
j \neq i}}^{n} Y_{j}\right) \quad \text { (leave out } X_{i} \text {) } \\
& 4.2 \quad \alpha_{n}(i) \leftarrow n \alpha_{n}-(n-1) \alpha_{n}^{i} \quad \text { (ith pseudovalue) }
\end{aligned}
$$

5. Point estimator: $\alpha_{n}^{J} \leftarrow(1 / n) \sum_{i=1}^{n} \alpha_{n}(i)$
6. $v_{n}^{\mathrm{J}}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\alpha_{n}(i)-\alpha_{n}^{J}\right)^{2}$
7. $100(1-\delta) \% \mathrm{Cl}:\left[\alpha_{n}^{J}-z_{\delta} \sqrt{v_{n}^{J} / n}, \alpha_{n}^{J}+z_{\delta} \sqrt{v_{n}^{J} / n}\right]$

Jackknife, Continued

Observations

- Not obvious that Cl is correct (why?)
- Substitutes computational brute force for analytical complexity
- Not a one-pass algorithm
- Basic jackknife breaks down for "non-smooth" statistics like quantiles, maximum (but can fix-see next lecture)

Estimating Nonlinear Functions of Means
Overview
Delta Method
Jackknife Method
Bootstrap Confidence Intervals
Complete Bias Elimination

Bootstrap Confidence Intervals

Another brute force method

- Key idea: analyze variability of estimator using samples of original data
- More general than jackknife (estimates entire sampling distribution of estimator, not just mean and variance)
- Jackknife is somewhat better empirically at variance estimates
- "Non-repeatable", unlike jackknife
- OK for quantiles, still breaks down for maximum

Bootstrap Samples

- Given data $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$: i.i.d. samples from cdf F
- Bootstrap sample $\mathbf{X}^{*}=\left(X_{1}^{*}, \ldots, X_{n}^{*}\right)$: i.i.d. samples from \hat{F}
- Recall: empirical distribution $\hat{F}_{n}(x)=(1 / n)(\#$ obs $\leq x)$
- Same as n i.i.d. samples with replacement from $\left\{X_{1}, \ldots, X_{n}\right\}$

Creating a Bootstrap Sample \mathbf{X}^{*} from $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$
For $i=1$ to n :

1. Generate $U \stackrel{D}{\sim} \operatorname{Uniform}(0,1)$
2. Set $J=\lceil n U\rceil \quad / /$ Random integer between 1 and n
3. Add X_{J} to \mathbf{X}^{*}

Bootstrap "Imitates" the Real World

Bootstrap World

- Boostrap world approaches real world as $n \rightarrow \infty$
- Glivenko-Cantelli: $\sup _{x}\left|\hat{F}_{n}(x)-F(x)\right| \rightarrow 0$ wp1 as $n \rightarrow \infty$
- So distribution of $\alpha_{n}^{*}-\alpha_{n}$ approximates distribution of $\alpha_{n}-\alpha$
- For small n, better than dist'n of α_{n}^{*} approximates dist'n of α_{n}
- Hence pivot method instead of direct "percentile method"
- Can estimate distribution of $\alpha_{n}^{*}-\alpha_{n}$ by sampling from it

Bootstrap Confidence Intervals: Pivot Method

Distribution of $\bar{X}_{n}-\mu$ is approx. $N\left(0, \sigma^{2} / n\right)$ by CLT

Revisit usual 90% confidence interval for the mean

$$
\begin{aligned}
& P\left(q_{0.05} \leq \bar{X}_{n}-\mu \leq q_{0.95}\right) \approx 0.9 \\
& \Rightarrow P\left(\bar{X}_{n}-q_{0.95} \leq \mu \leq \bar{X}_{n}-q_{0.05}\right) \approx 0.9 \\
& \Rightarrow 90 \% \mathrm{CI}=\left[\bar{X}_{n}-q_{0.95}, \bar{X}_{n}-q_{0.05}\right]
\end{aligned}
$$

To recover usual formulas, observe that $q_{0.05}=-q_{0.95}$ and $q_{0.95}=(\sigma / \sqrt{n}) z_{0.95}$ because $P\left(\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \leq z_{0.95}\right)=P\left(\bar{X}_{n}-\mu \leq q_{0.95}\right)$

$$
90 \% \mathrm{CI}=\left[\bar{X}_{n}-z_{0.95} \sigma / \sqrt{n}, \bar{X}_{n}+z_{0.95} \sigma / \sqrt{n}\right]
$$

Bootstrap Confidence Intervals: Pivot Method

Bootstrap approach for mean (no normality assumption)

- $90 \% \mathrm{Cl}=\left[\bar{X}_{n}-q_{0.95}^{*}, \bar{X}_{n}-q_{0.05}^{*}\right]$
- Approximate quantiles of $\bar{X}_{n}-\mu$ by quantiles of $\pi^{*}=\bar{X}_{n}^{*}-\bar{X}_{n}$
- Generate many replicates of π^{*} to estimate the latter quantiles
- Technique applies to other statistics such as $\alpha=g\left(\mu_{X}, \mu_{Y}\right)$

Pivot Method for Nonlinear Functions of Means

Bootstrap Confidence Intervals (Pivot Method)

1. Run simulation n times to get $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$
2. Compute $\alpha_{n}=g\left(\bar{X}_{n}, \bar{Y}_{n}\right)$
3. Compute bootstrap sample $\left(X_{1}^{*}, Y_{1}^{*}\right), \ldots,\left(X_{n}^{*}, Y_{n}^{*}\right)$
4. Set $\alpha_{n}^{*}=g\left(\bar{X}_{n}^{*}, \bar{Y}_{n}^{*}\right)$
5. Set pivot $\pi^{*}=\alpha_{n}^{*}-\alpha_{n}$
6. Repeat Steps 3-5 B times to create $\pi_{1}^{*}, \ldots, \pi_{B}^{*}$
7. Sort pivots to obtain $\pi_{(1)}^{*} \leq \pi_{(2)}^{*} \leq \cdots \leq \pi_{(B)}^{*}$
8. Set $I=\lceil(1-\delta / 2) B\rceil$ and $u=\lceil(\delta / 2) B\rceil$
9. Return $100(1-\delta) \% \mathrm{Cl}\left[\alpha_{n}-\pi_{(I)}^{*}, \alpha_{n}-\pi_{(u)}^{*}\right]$

- Example: For $B=100,90 \% \mathrm{Cl}$ is $\left[\alpha_{n}-\pi_{(95)}^{*}, \alpha_{n}-\pi_{(5)}^{*}\right]$
- Improvements include BCa bootstrap confidence interval [See Efron \& Tibshirani book]

Estimating Nonlinear Functions of Means
Overview
Delta Method
Jackknife Method
Bootstrap Confidence Intervals
Complete Bias Elimination

Complete Bias Elimination [Blanchet et al. 2015]

Idea: Construct X^{*} such that $E\left[X^{*}\right]=g\left(\mu_{X}\right)$

- Then can use usual estimation methods
- Assumes simulation cost not too expensive

Algorithm for Generating a Sample of X^{*}

1. Set $p=1-(1 / 2)^{3 / 2} \approx 0.65$ and $n_{0}=10$
2. Generate N s.t. $p(k) \stackrel{\text { def }}{=} P(N=k)=p(1-p)^{k-n_{0}} \operatorname{mor}_{0}$ for $k \geq n_{0}$
3. Generate $X_{1}, X_{2}, \ldots, X_{2^{N+1}}$ i.i.d. copies of X and set

$$
\bar{X}_{2^{N}}^{\text {odd }}=\frac{X_{1}+X_{3}+\cdots+X_{2^{N+1}-1}}{2^{N}} \quad \text { and } \quad \bar{X}_{2^{N}}^{\text {even }}=\frac{X_{2}+X_{4}+\cdots+X_{2^{N+1}}}{2^{N}}
$$

4. Return

$$
X^{*}=\frac{g\left(\bar{X}_{2^{N+1}}\right)-\left(g\left(\bar{X}_{2 N}^{\text {odd }}\right)+g\left(\bar{X}_{2^{N}}^{\text {even }}\right)\right) / 2}{p(N)}+g\left(\bar{X}_{2^{n_{0}}}\right)
$$

Unbiasedness of B-E Estimator

Since $E\left[g\left(\bar{X}_{2^{n}}^{\text {odd }}\right)\right]=E\left[g\left(\bar{X}_{2^{n}}^{\text {even }}\right)\right]=E\left[g\left(\bar{X}_{2^{n}}\right)\right]$, for all $n \geq 1$, we have

$$
E\left[g\left(\bar{X}_{2^{n+1}}\right)-\left(g\left(\bar{X}_{2^{n}}^{\text {odd }}\right)+g\left(\bar{X}_{2^{n}}^{\text {even }}\right)\right) / 2\right]=E\left[g\left(\bar{X}_{2^{n+1}}\right)\right]-E\left[g\left(\bar{X}_{2^{n}}\right)\right], \quad n \geq 1
$$

and

$$
\begin{aligned}
& E\left[\frac{g\left(\bar{X}_{2^{N+1}}\right)-\left(g\left(\bar{X}_{2^{N}}^{\text {odd }}\right)+g\left(\bar{X}_{2^{N}}^{\text {even }}\right)\right) / 2}{p(N)}\right] \\
& =\sum_{n=n_{0}}^{\infty} E\left[\left.\frac{g\left(\bar{X}_{2^{n+1}}\right)-\left(g\left(\bar{X}_{2^{n}}^{\text {odd }}\right)+g\left(\bar{X}_{2^{n}}^{\text {even }}\right)\right) / 2}{p(n)} \right\rvert\, N=n\right] \times p(n) \\
& =\sum_{n=n_{0}}^{\infty} E\left[g\left(\bar{X}_{2^{n+1}}\right)-\left(g\left(\bar{X}_{2^{n}}^{\text {odd }}\right)+g\left(\bar{X}_{2^{n}}^{\text {even }}\right)\right) / 2\right]=\sum_{n=n_{0}}^{\infty} E\left[g\left(\bar{X}_{2^{n+1}}\right)\right]-E\left[g\left(\bar{X}_{2^{n}}\right)\right] \\
& \left.=E\left[g\left(\bar{X}_{2^{n_{0}+1}}\right)\right]-E\left[g\left(\bar{X}_{2^{n_{0}}}\right)\right]+E\left[g\left(\bar{X}_{2^{n_{0}+2}}\right)\right]-E\left[g\left(\bar{X}_{2^{n_{0}+1}}\right)\right]+E\left[g\left(\bar{X}_{2^{n_{0}+3}}\right)\right]-\cdots{ }^{\prime}\right) \\
& \left.=E\left[g\left(\bar{X}_{2^{\infty}}\right)\right]-E\left[g\left(\bar{X}_{2^{n_{0}}}\right)\right]=g\left(\mu_{x}\right)-E\left[g\left(\bar{X}_{2^{n_{0}}}\right)\right] \quad \text { "telescopinq sum }{ }^{\prime}\right)
\end{aligned}
$$

So

$$
E\left[\frac{g\left(\bar{X}_{2^{N+1}}\right)-\left(g\left(\bar{X}_{2^{N}}^{\text {odd }}\right)+g\left(\bar{X}_{2^{N}}^{\text {even }}\right)\right) / 2}{p(N)}+g\left(\bar{X}_{2^{n_{0}}}\right)\right]=g\left(\mu_{X}\right)
$$

Can also show $\operatorname{Var}\left[X^{*}\right]<\infty$ and $E[$ simulation cost $]<\infty$

