Peter J. Haas

CS 590M: Simulation Spring Semester 2020

イロン イロン イヨン イヨン 三日

1/30

Overview Delta Method Jackknife Method Bootstrap Confidence Intervals Complete Bias Elimination

Nonlinear Functions of Means

Our focus up until now

- Estimate quantities of the form $\mu = E[X]$
- E.g., expected win/loss of gambling game
- We'll now focus on more complex quantities

Nonlinear functions of means:

$$\alpha = g(\mu_1, \mu_2, \dots, \mu_d)$$
, where
 $\blacktriangleright g$ is a nonlinear function
 $\blacktriangleright \mu_i = E[X^{(i)}]$ for $1 \le i \le d$

For simplicity, take d = 2 and focus on $\alpha = g(\mu_X, \mu_Y)$

•
$$\mu_X = E[X]$$
 and $\mu_Y = E[Y]$

Example: Retail Outlet

Bonferroni inequality $P(A \cap B) \ge 1 - P(A^c) - P(B^c)$

- ▶ Goal: Estimate $\alpha = \mathsf{long}\mathsf{-run}$ average revenue per customer
- $X_i = R_i$ = revenue generated on day *i*
- Y_i = number of customers on day i
- Assume that pairs $(X_1, Y_1), (X_2, Y_2), \ldots$ are i.i.d.

• Set
$$\bar{X}_n = (1/n) \sum_{i=1}^n X_i$$
 and $\bar{Y}_n = (1/n) \sum_{i=1}^n Y_i$

$$\alpha = \lim_{n \to \infty} \frac{X_1 + \dots + X_n}{Y_1 + \dots + Y_n} = \lim_{n \to \infty} \frac{\bar{X}_n}{\bar{Y}_n} = \underbrace{\mathcal{M}_n}_{\mathcal{M}_n}$$

• So
$$\alpha = g(\mu_X, \mu_Y)$$
, where $g(x, y) = \frac{2}{7}$

Example: Higher-Order Moments

- Let R_1, R_2, \ldots be daily revenues as before
- Assume that the R_i's are i.i.d. (Critique?)
- $\alpha = Var[R] = variance of daily revenue$

• Let
$$X = R^2$$
 and $Y = R$

$$\alpha = g(\mu_X, \mu_Y), \text{ where } g(x, y) = \chi - \chi^2$$

Overview

Delta Method

Jackknife Method Bootstrap Confidence Intervals Complete Bias Elimination Delta Method (Taylor Series) $\lim_{x \to 0^+} f g(\mu_x, \mu_y) = 3\mu_x + 4\mu_y$ $\sigma_n = 3\chi_n + 4\bar{\gamma}_n$ Assume that function $\sigma(x, y)$ is smooth $\mathcal{E}[\sigma_n] = 3\mathcal{E}[\mathcal{E}_n] + \mathcal{E}[\mathcal{V}_n] \circ \sigma$

Assume that function g(x, y) is smooth

- Continuously differentiable in neighborhood of (μ_x, μ_y)
- ▶ I.e., g is continuous, as are $\partial g / \partial x$ and $\partial g / \partial y$

Point estimate

- Run simulation *n* times to get $(X_1, Y_1), \ldots, (X_n, Y_n)$ i.i.d.
- P(~, -, a)=1 strong consistenci) • Set $\alpha_n = g(\bar{X}_n, \bar{Y}_n)$
- This estimator is biased:
 - $E[\alpha_n] = E[g(\bar{X}_n, \bar{Y}_n)] \neq g(E[\bar{X}_n], E[\bar{Y}_n]) = g(\mu_x, \mu_y) = \alpha$
 - Jensen's inequality: $E[\alpha_n] = E[g(\bar{X}_n)] \ge g(\mu_X) = \alpha$ if g is convex
- By SLLN and continuity of g, we have bias $\rightarrow 0$ as $n \rightarrow \infty$ (Estimator α_n is asymptotically unbiased)

Delta Method, Continued

Confidence interval

- (\bar{X}_n, \bar{Y}_n) should be "close" to (μ_X, μ_Y) for large *n* by SLLN
- $\alpha_n = g(\bar{X}_n, \bar{Y}_n)$ should be close to $g(\mu_X, \mu_Y) = \alpha$

$$\alpha_{n} - \alpha = g(\bar{X}_{n}, \bar{Y}_{n}) - g(\mu_{X}, \mu_{Y})$$
$$= \frac{\partial g}{\partial x}(\mu_{X}, \mu_{Y}) \cdot (\bar{X}_{\eta} - \mu_{X}) + \frac{\partial g}{\partial y}(\mu_{X}, \mu_{Y}) \cdot (\bar{Y}_{\eta} - \mu_{Y})$$
$$= \bar{Z}_{n}$$

►
$$Z_i = c(X_i - \mu_X) + d(Y_i - \mu_Y)$$
 and $\overline{Z}_n = (1/n) \sum_{i=1}^n Z_i$
► $c = \frac{\partial g}{\partial x}(\mu_X, \mu_Y)$ and $d = \frac{\partial g}{\partial y}(\mu_X, \mu_Y)$

Delta Method, Continued

Confidence interval, continued

- $\{Z_n : n \ge 1\}$ are i.i.d. as $Z = c(X \mu_X) + d(Y \mu_Y)$ • E[Z] = 0
- ▶ By CLT, $\sqrt{n}\bar{Z}_n/\sigma \stackrel{\text{D}}{\sim} N(0,1)$ approximately for large n
- Thus $\sqrt{n}(\alpha_n \alpha)/\sigma \stackrel{\mathsf{D}}{\sim} N(0, 1)$ approximately for large n
- Here $\sigma^2 = Var[Z] = E[Z^2] = E[(c(X \mu_X) + d(Y \mu_Y))^2]$
- So asymptotic $100(1-\delta)$ % CI is $\alpha_n \pm z_{\delta}\sigma/\sqrt{n}$
 - z_{δ} is $1 (\delta/2)$ quantile of standard normal distribution
 - Estimate c, d, and σ from data

Delta Method, Continued

Delta Method Cl Algorithm 1. Simulate to get $(X_1, Y_1), \dots, (X_n, Y_n)$ i.i.d. 2. $\alpha_n \leftarrow g(\bar{X}_n, \bar{Y}_n)$ 3. $c_n \leftarrow \frac{\partial g}{\partial x}(\bar{X}_n, \bar{Y}_n)$ and $d_n \leftarrow \frac{\partial g}{\partial y}(\bar{X}_n, \bar{Y}_n)$ 4. $s_n^2 = (n-1)^{-1} \sum_{i=1}^n (c_n(X_i - \bar{X}_n) + d_n(Y_i - \bar{Y}_n))^2$ 5. Return asymptotic $100(1 - \delta)$ % CI:

$$\left[\alpha_n - \frac{z_\delta s_n}{\sqrt{n}}, \alpha_n + \frac{z_\delta s_n}{\sqrt{n}}\right]$$

SLLN and continuity assumptions imply that, with prob. 1,

$$c_n
ightarrow c$$
 , $d_n
ightarrow d$, and $s_n^2
ightarrow \sigma^2$

Example: Ratio Estimation: g(x, y) = x/y

Multi-pass method (apply previous algorithm directly)

$$\alpha = \frac{\mu_X}{\mu_Y} \quad c = \frac{1}{\mu_Y} \quad d = \frac{\mu_X}{\mu_Y} \quad \alpha_n = \frac{\chi_n}{\gamma_n} \quad c_n = \frac{1}{\gamma_n} \quad d_n = -\frac{\chi_n}{(\gamma_n)\gamma}$$

$$s_n^2 = (n-1)^{-1} \sum_{i=1}^n (c_n(X_i - \bar{X}_n) + d_n(Y_i - \bar{Y}_n))^2$$

Example: Ratio Estimation: g(x, y) = x/y

Single-pass method

$$\sigma^{2} = \operatorname{Var}[Z] = \operatorname{Var}[c(X - \mu_{X}) + d(Y - \mu_{Y})]$$
$$= \frac{\operatorname{Var}[X] - 2\alpha \operatorname{Cov}[X, Y] + \alpha^{2} \operatorname{Var}[Y]}{\mu_{Y}^{2}}$$

$$s_n^2 = \frac{s_n(1,1) - 2\alpha_n s_n(1,2) + \alpha_n^2 s_n(2,2)}{(\bar{Y}_n)^2}$$

•
$$s_n(1,1) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$
 Use
• $s_n(2,2) = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y}_n)^2$ single-pass
• $s_n(1,2) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)(Y_i - \bar{Y}_n)$ formulas
• Set $S_n^X = \sum_{i=1}^n X_i$ and $S_n^Y = \sum_{i=1}^n Y_i$
 $k - 1)v_k = (k - 1)v_{k-1} + \left(\frac{S_{k-1}^X - (k - 1)X_k}{k}\right) \left(\frac{S_{k-1}^Y - (k - 1)Y_k}{k-1}\right)$

12/30

э

・ロン ・四 と ・ ヨ と ・ ヨ と

Delta Method for Stochastic Root-Finding

Problem: Find $\overline{\theta}$ such that $E[g(X,\overline{\theta})] = 0$ (can replace 0 with any fixed constant)

Applications:

- Process control, risk management, finance, quantiles, ...
- Stochastic optimization: $\min_{\theta} E[h(X, \theta)]$
 - Optimality condition: $\frac{\partial}{\partial \theta} E[h(X, \theta)] = 0$
 - Can often show that $\frac{\partial}{\partial \theta} E[h(X, \theta)] = E\left[\frac{\partial}{\partial \theta}h(X, \theta)\right]$
 - So take $g(X,\theta) = \frac{\partial}{\partial \theta} h(X,\theta)$

Point Estimate (Stochastic Average Approximation)

- Generate X_1, \ldots, X_n i.i.d. as X
- Find θ_n s.t. $\frac{1}{n} \sum_{i=1}^n g(X_i, \theta_n) = 0$ (deterministic problem)

Delta Method for Stochastic Root-Finding

Problem: Find $\bar{\theta}$ such that $E[g(X, \bar{\theta})] = 0$

Point Estimate (Stochastic Average Approximation)

- Generate X_1, \ldots, X_n i.i.d. as X
- Find θ_n s.t. $\frac{1}{n} \sum_{i=1}^n g(X_i, \theta_n) = 0$

How to find a confidence interval for θ ?

- ► Taylor series: $g(X_i, \theta_n) \approx g(X_i, \bar{\theta}) + \frac{\partial g}{\partial \theta}(X_i, \bar{\theta})(\theta_n \bar{\theta})$
- Implies: $\frac{1}{n} \sum_{i=1}^{n} g(X_i, \theta_n) \approx \frac{1}{n} \sum_{i=1}^{n} g(X_i, \bar{\theta}) c_n(\bar{\theta} \theta_n)$
- where $c_n = \frac{1}{n} \sum_{i=1}^n \frac{\partial g}{\partial \theta}(X_i, \bar{\theta}) \approx E\left[\frac{\partial g}{\partial \theta}(X, \bar{\theta})\right]$ J
- Implies: $\theta_n \overline{\theta} \approx N(0, \sigma^2/n)$, where

 $\sigma^2 = \operatorname{Var}[g(X, \overline{\theta})]/c_n^2 = E[g(X, \overline{\theta})^2]/c_n^2$

D N 4 R N 4 E N 4 E N E

Delta Method for Stochastic Root-Finding

Algorithm

- 1. Simulate to get X_1, \ldots, X_n i.i.d.
- 2. Find θ_n s.t. $\frac{1}{n} \sum_{i=1}^n g(X_i, \theta_n) = 0$
- 3. $\hat{c}_n \leftarrow \frac{1}{n} \sum_{i=1}^n \frac{\partial g}{\partial \theta}(X_i, \theta_n)$
- 4. $s_n^2 \leftarrow \frac{1}{n} \sum_{i=1}^n g(X_i, \theta_n)^2 / \hat{c}_n^2$
- 5. Return asymptotic $100(1 \delta)$ % CI:

$$\left[\theta_n - \frac{z_\delta s_n}{\sqrt{n}}, \theta_n + \frac{z_\delta s_n}{\sqrt{n}}\right]$$

Can use pilot runs, etc. in the usual way

Overview Delta Method

Jackknife Method

Bootstrap Confidence Intervals Complete Bias Elimination

Jackknife Method

Estimate or g(Mx, My)

Overview

- Naive point estimator $\alpha_n = g(\bar{X}_n, \bar{Y}_n)$ is biased
- Jackknife estimator has lower bias
- Avoids need to compute partial derivatives as in Delta method
- More computationally intensive

Starting point: Taylor series + expectation

$$E[\alpha_n] = \alpha + \frac{b}{n} + \frac{c}{n^2} + \cdots$$

- Thus bias is $O(n^{-1})$
- Estimate *b* and adjust? $\alpha_n^* = \alpha_n \frac{b_n}{n}$

Messy partial derivative calculation, adds noise

Jackknife, Continued

Observe that

$$E(\alpha_n) = \alpha + \frac{b}{n} + \frac{c}{n^2} + \cdots$$
$$E(\alpha_{n-1}) = \alpha + \frac{b}{n-1} + \frac{c}{(n-1)^2} + \cdots$$

and so

$$E[n\alpha_n - (n-1)\alpha_{n-1}] = \alpha + c \left(\frac{1}{n} - \frac{1}{n-1}\right) + \cdots = \alpha - \frac{c}{n(n-1)} + \cdots$$

- Bias reduced to $O(n^{-2})!$
- Q: What is special about deleting the nth data point?

Jackknife, Continued

- Delete each data point in turn to get a low-bias estimator
- Average the estimators to reduce variance

Jackknife CI Algorithm for $\alpha = g(\mu_X, \mu_Y)$

- 1. Choose *n* and δ , and set $z_{\delta} = 1 (\delta/2)$ quantile of N(0,1)
- 2. Simulate to get $(X_1, Y_1), \ldots, (X_n, Y_n)$ i.i.d.
- 3. $\alpha_n \leftarrow g(\bar{X}_n, \bar{Y}_n)$
- 4. For i = 1 to n

4.1
$$\alpha_n^i \leftarrow g\left(\frac{1}{n-1}\sum_{\substack{j=1\\j\neq i}}^n X_j, \frac{1}{n-1}\sum_{\substack{j=1\\j\neq i}}^n Y_j\right)$$
 (leave out X
4.2 $\alpha_n(i) \leftarrow n\alpha_n - (n-1)\alpha_n^i$ (*i*th pseudovalue)

- 5. Point estimator: $\alpha_n^J \leftarrow (1/n) \sum_{i=1}^n \alpha_n(i)$
- 6. $v_n^{\rm J} = \frac{1}{n-1} \sum_{i=1}^n \left(\alpha_n(i) \alpha_n^J \right)^2$ 7. $100(1-\delta)\%$ CI: $\left[\alpha_n^J - z_\delta \sqrt{v_n^J/n}, \alpha_n^J + z_\delta \sqrt{v_n^J/n} \right]$

Jackknife, Continued

Observations

- Not obvious that CI is correct (why?)
- Substitutes computational brute force for analytical complexity
- Not a one-pass algorithm
- Basic jackknife breaks down for "non-smooth" statistics like quantiles, maximum (but can fix—see next lecture)

Overview Delta Method Jackknife Method Bootstran Confidence Inter

Bootstrap Confidence Intervals

Complete Bias Elimination

Bootstrap Confidence Intervals

Another brute force method

- Key idea: analyze variability of estimator using samples of original data
- More general than jackknife (estimates entire sampling distribution of estimator, not just mean and variance)
- Jackknife is somewhat better empirically at variance estimates
- "Non-repeatable", unlike jackknife
- OK for quantiles, still breaks down for maximum

Bootstrap Samples

- Given data $\mathbf{X} = (X_1, \dots, X_n)$: i.i.d. samples from cdf F
- Bootstrap sample $\mathbf{X}^* = (X_1^*, \dots, X_n^*)$: i.i.d. samples from \hat{F}
 - Recall: empirical distribution $\hat{F}_n(x) = (1/n)(\# \text{ obs } \le x)$
 - Same as *n* i.i.d. samples with replacement from $\{X_1, \ldots, X_n\}$

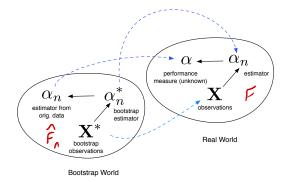
Creating a Bootstrap Sample \mathbf{X}^* from $\mathbf{X} = (X_1, \dots, X_n)$ For i = 1 to n:

- 1. Generate $U \stackrel{\mathsf{D}}{\sim} \mathsf{Uniform}(0,1)$
- 2. Set $J = \lceil nU \rceil$ //Random integer between 1 and n
- 3. Add X_J to \mathbf{X}^*

E[X]=h(F)wid	ļ
Lion Lion	
h(F) = SN Floor h(F) = punctional his a punctional Liea estimate Liea by h(Fn)	
thear in here	
W(F) applies	0

Data	4	2	7	6	8	3			
Sample 1	6	2	2	8	7	6			
Sample 1 Sample 2	3	8	8	8	2	4			
÷									
many types	s of	<i>Pu</i>	nctil	ing l	<u>ζ</u> ∢ ⊏	1 > . ∢ (⊒ ► < ≣)	• < ≣ •	ł

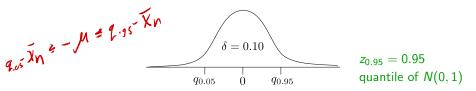
Bootstrap "Imitates" the Real World



- Boostrap world approaches real world as $n \to \infty$
 - ▶ Glivenko-Cantelli: $\sup_x |\hat{F}_n(x) F(x)| \rightarrow 0$ wp1 as $n \rightarrow \infty$
- ▶ So distribution of $\alpha_n^* \alpha_n$ approximates distribution of $\alpha_n \alpha$
 - For small *n*, better than dist'n of α_n^* approximates dist'n of α_n
 - Hence pivot method instead of direct "percentile method"
 - Can estimate distribution of $\alpha_n^* \alpha_n$ by sampling from it

Bootstrap Confidence Intervals: Pivot Method

Distribution of $\bar{X}_n - \mu$ is approx. $N(0, \sigma^2/n)$ by CLT



Revisit usual 90% confidence interval for the mean

$$P(q_{0.05} \le \bar{X}_n - \mu \le q_{0.95}) \approx 0.9$$

$$\Rightarrow P(\bar{X}_n - q_{0.95} \le \mu \le \bar{X}_n - q_{0.05}) \approx 0.9$$

$$\Rightarrow 90\% \text{ CI} = [\bar{X}_n - q_{0.95}, \bar{X}_n - q_{0.05}]$$

To recover usual formulas, observe that $q_{0.05} = -q_{0.95}$ and $q_{0.95} = (\sigma/\sqrt{n})z_{0.95}$ because $P\left(\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \le z_{0.95}\right) = P\left(\bar{X}_n - \mu \le q_{0.95}\right)$

90% CI =
$$[\bar{X}_n - z_{0.95}\sigma/\sqrt{n}, \bar{X}_n + z_{0.95}\sigma/\sqrt{n}]$$

Bootstrap Confidence Intervals: Pivot Method



Bootstrap approach for mean (no normality assumption)

- ► 90% CI = $[\bar{X}_n q^*_{0.95}, \bar{X}_n q^*_{0.05}]$
- Approximate quantiles of $\bar{X}_n \mu$ by quantiles of $\pi^* = \bar{X}_n^* \bar{X}_n$
- Generate many replicates of \u03c6^{*} to estimate the latter quantiles
- Technique applies to other statistics such as $\alpha = g(\mu_X, \mu_Y)$

Pivot Method for Nonlinear Functions of Means

Bootstrap Confidence Intervals (Pivot Method)

- 1. Run simulation *n* times to get $(X_1, Y_1), \ldots, (X_n, Y_n)$
- 2. Compute $\alpha_n = g(\bar{X}_n, \bar{Y}_n)$
- 3. Compute bootstrap sample $(X_1^*, Y_1^*), \ldots, (X_n^*, Y_n^*)$
- 4. Set $\alpha_n^* = g(\bar{X}_n^*, \bar{Y}_n^*)$

5. Set pivot
$$\pi^* = \alpha_n^* - \alpha_n$$

- 6. Repeat Steps 3–5 B times to create π_1^*, \ldots, π_B^*
- 7. Sort pivots to obtain $\pi^*_{(1)} \leq \pi^*_{(2)} \leq \cdots \leq \pi^*_{(B)}$
- 8. Set $I = \lceil (1 \delta/2)B \rceil$ and $u = \lceil (\delta/2)B \rceil$
- 9. Return 100(1 δ)% Cl $[\alpha_n \pi^*_{(l)}, \alpha_n \pi^*_{(u)}]$
- Example: For B = 100, 90% Cl is $[\alpha_n \pi^*_{(95)}, \alpha_n \pi^*_{(5)}]$
- Improvements include BCa bootstrap confidence interval [See Efron & Tibshirani book]

Overview Delta Method Jackknife Method Bootstrap Confidence Intervals Complete Bias Elimination

Complete Bias Elimination [Blanchet et al. 2015]

Idea: Construct X^* such that $E[X^*] = g(\mu_X)$

- Then can use usual estimation methods
- Assumes simulation cost not too expensive

Algorithm for Generating a Sample of X^*

1. Set
$$p = 1 - (1/2)^{3/2} \approx 0.65$$
 and $n_0 = 10$

2. Generate N s.t.
$$p(k) \stackrel{ ext{def}}{=} P(N=k) = p(1-p)^{a_{p-k}}$$
 for $k \geq n_0$

3. Generate
$$X_1, X_2, \ldots, X_{2^{N+1}}$$
 i.i.d. copies of X and set

$$\bar{X}_{2^N}^{\mathsf{odd}} = \frac{X_1 + X_3 + \dots + X_{2^{N+1}-1}}{2^N} \quad \mathsf{and} \quad \bar{X}_{2^N}^{\mathsf{even}} = \frac{X_2 + X_4 + \dots + X_{2^{N+1}}}{2^N}$$

Ir-No

4. Return

$$X^* = \frac{g(\bar{X}_{2^{N+1}}) - \left(g(\bar{X}_{2^N}^{\text{odd}}) + g(\bar{X}_{2^N}^{\text{even}})\right)/2}{p(N)} + g(\bar{X}_{2^{n_0}})$$

Unbiasedness of B-E Estimator

Since
$$E[g(\bar{X}_{2^n}^{\text{odd}})] = E[g(\bar{X}_{2^n}^{\text{even}})] = E[g(\bar{X}_{2^n})]$$
, for all $n \ge 1$, we have
 $E\Big[g(\bar{X}_{2^{n+1}}) - (g(\bar{X}_{2^n}^{\text{odd}}) + g(\bar{X}_{2^n}^{\text{even}}))/2\Big] = E[g(\bar{X}_{2^{n+1}})] - E[g(\bar{X}_{2^n})], \quad n \ge 1$
and

$$E\left[\frac{g(\bar{X}_{2^{N+1}}) - (g(\bar{X}_{2^{N}}^{\text{odd}}) + g(\bar{X}_{2^{N}}^{\text{even}}))/2}{p(N)}\right]$$

$$= \sum_{n=n_{0}}^{\infty} E\left[\frac{g(\bar{X}_{2^{n+1}}) - (g(\bar{X}_{2^{n}}^{\text{odd}}) + g(\bar{X}_{2^{n}}^{\text{even}}))/2}{p(n)} \mid N = n\right] \times p(n)$$

$$= \sum_{n=n_{0}}^{\infty} E\left[g(\bar{X}_{2^{n+1}}) - (g(\bar{X}_{2^{n}}^{\text{odd}}) + g(\bar{X}_{2^{n}}^{\text{even}}))/2\right] = \sum_{n=n_{0}}^{\infty} E\left[g(\bar{X}_{2^{n+1}})\right] - E\left[g(\bar{X}_{2^{n}})\right]$$

$$= E\left[g(\bar{X}_{2^{n}+1})\right] - E\left[g(\bar{X}_{2^{n}})\right] + E\left[g(\bar{X}_{2^{n}+2})\right] - E\left[g(\bar{X}_{2^{n}+2})\right] + E\left[g(\bar{X}_{2^{n}+3})\right] - \cdots, \eta$$

$$= E\left[g(\bar{X}_{2^{\infty}})\right] - E\left[g(\bar{X}_{2^{n}})\right] = g(\mu_{X}) - E\left[g(\bar{X}_{2^{n}})\right] = g(\mu_{X})$$
So
$$E\left[\frac{g(\bar{X}_{2^{N+1}}) - (g(\bar{X}_{2^{N}}^{\text{odd}}) + g(\bar{X}_{2^{N}}^{\text{even}}))/2}{p(N)} + g(\bar{X}_{2^{n}})\right] = g(\mu_{X})$$

Can also show $Var[X^*] < \infty$ and $E[simulation cost] < \infty$