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Nonlinear Functions of Means

Our focus up until now

I Estimate quantities of the form µ = E [X ]

I E.g., expected win/loss of gambling game

I We’ll now focus on more complex quantities

Nonlinear functions of means:

↵ = g(µ1, µ2, . . . , µd), where

I g is a nonlinear function

I µi = E [X (i)] for 1  i  d

I For simplicity, take d = 2 and focus on ↵ = g(µX , µY )

I µX = E [X ] and µY = E [Y ]
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Example: Retail Outlet

I Goal: Estimate ↵ = long-run average revenue per customer

I Xi = Ri = revenue generated on day i

I Yi = number of customers on day i

I Assume that pairs (X1,Y1), (X2,Y2), . . . are i.i.d.

I Set X̄n = (1/n)
Pn

i=1 Xi and Ȳn = (1/n)
Pn

i=1 Yi

↵ = lim
n!1

X1 + · · ·+ Xn

Y1 + · · ·+ Yn
= lim

n!1

X̄n

Ȳn
=

I So ↵ = g(µX , µY ), where g(x , y) =
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Example: Higher-Order Moments

I Let R1,R2, . . . be daily revenues as before

I Assume that the Ri ’s are i.i.d. (Critique?)

I ↵ = Var[R] = variance of daily revenue

I Let X = R
2 and Y = R

↵ = g(µX , µY ), where g(x , y) =
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Delta Method (Taylor Series)

Assume that function g(x , y) is smooth

I Continuously di↵erentiable in neighborhood of (µx , µy )

I I.e., g is continuous, as are @g/@x and @g/@y

Point estimate

I Run simulation n times to get (X1,Y1), . . . , (Xn,Yn) i.i.d.

I Set ↵n = g(X̄n, Ȳn)
I This estimator is biased:

I E [↵n] = E [g(X̄n, Ȳn)] 6= g(E [X̄n],E [Ȳn]) = g(µx , µy ) = ↵

I Jensen’s inequality: E [↵n] = E [g(X̄n)] � g(µX ) = ↵
if g is convex

I By SLLN and continuity of g , we have bias! 0 as n!1
(Estimator ↵n is asymptotically unbiased)
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Delta Method, Continued

Confidence interval

I (X̄n, Ȳn) should be “close” to (µX , µY ) for large n by SLLN

I ↵n = g(X̄n, Ȳn) should be close to g(µX , µY ) = ↵

↵n � ↵ = g(X̄n, Ȳn)� g(µX , µY )

=
@g

@x
(µX , µY ) · (X̄ � µX ) +

@g

@y
(µX , µY ) · (Ȳ � µY )

= Z̄n

I Zi = c(Xi � µX ) + d(Yi � µY ) and Z̄n = (1/n)
Pn

i=1 Zi

I c = @g
@x (µX , µY ) and d = @g

@y (µX , µY )
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Delta Method, Continued

Confidence interval, continued

I {Zn : n � 1} are i.i.d. as Z = c(X � µX ) + d(Y � µY )

I E [Z ] =

I By CLT,
p
nZ̄n/�

D⇠ N(0, 1) approximately for large n

I Thus
p
n(↵n � ↵)/�

D⇠ N(0, 1) approximately for large n

I Here �2 = Var[Z ] = E [Z 2] = E
⇥�
c(X � µX ) + d(Y � µY )

�2⇤

I So asymptotic 100(1� �)% CI is ↵n ± z��/
p
n

I z� is 1� (�/2) quantile of standard normal distribution
I Estimate c , d , and � from data
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Delta Method, Continued

Delta Method CI Algorithm

1. Simulate to get (X1,Y1), . . . , (Xn,Yn) i.i.d.

2. ↵n  g(X̄n, Ȳn)

3. cn  @g
@x (X̄n, Ȳn) and dn  @g

@y (X̄n, Ȳn)

4. s
2
n = (n � 1)�1Pn

i=1

�
cn(Xi � X̄n) + dn(Yi � Ȳn)

�2

5. Return asymptotic 100(1� �)% CI:
h
↵n �

z�snp
n
,↵n +

z�snp
n

i

I SLLN and continuity assumptions imply that, with prob. 1,

cn ! c , dn ! d , and s
2
n ! �2
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Example: Ratio Estimation: g(x , y) = x/y

Multi-pass method (apply previous algorithm directly)

↵ = c = d = ↵n = cn = dn =

s
2
n = (n � 1)�1

nX

i=1

�
cn(Xi � X̄n) + dn(Yi � Ȳn)

�2

11 / 30

Ma,
'
-

"fry
'

Ii
.

'

En
-Y÷rMy



Example: Ratio Estimation: g(x , y) = x/y
Single-pass method

�2 = Var[Z ] = Var[c(X � µX ) + d(Y � µY )]

=
Var[X ]� 2↵Cov[X ,Y ] + ↵2 Var[Y ]

µ2
Y

s
2
n =

sn(1, 1)� 2↵nsn(1, 2) + ↵2
nsn(2, 2)�

Ȳn

�2

I sn(1, 1) =
1

n�1

Pn
i=1(Xi � X̄n)2

I sn(2, 2) =
1

n�1

Pn
i=1(Yi � Ȳn)2

I sn(1, 2) =
1

n�1

Pn
i=1(Xi � X̄n)(Yi � Ȳn)

I Set SX
n =

Pn
i=1 Xi and S

Y
n =

Pn
i=1 Yi

(k � 1)vk = (k � 1)vk�1 +

 
S
X
k�1 � (k � 1)Xk

k

! 
S
Y
k�1 � (k � 1)Yk

k � 1

!
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Delta Method for Stochastic Root-Finding

Problem:

Find ✓̄ such that E [g(X , ✓̄)] = 0 (can replace 0 with any fixed constant)

Applications:

I Process control, risk management, finance, quantiles, . . .
I Stochastic optimization: min✓ E [h(X , ✓)]

I Optimality condition: @
@✓E [h(X , ✓)] = 0

I Can often show that @
@✓E [h(X , ✓)] = E

h
@
@✓h(X , ✓)

i

I So take g(X , ✓) = @
@✓h(X , ✓)

Point Estimate (Stochastic Average Approximation)
I Generate X1, . . . ,Xn i.i.d. as X

I Find ✓n s.t. 1
n

Pn
i=1 g(Xi , ✓n) = 0 (deterministic problem)
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Delta Method for Stochastic Root-Finding

Problem:

Find ✓̄ such that E [g(X , ✓̄)] = 0

Point Estimate (Stochastic Average Approximation)
I Generate X1, . . . ,Xn i.i.d. as X

I Find ✓n s.t. 1
n

Pn
i=1 g(Xi , ✓n) = 0

How to find a confidence interval for ✓̄?

I Taylor series: g(Xi , ✓n) ⇡ g(Xi , ✓̄) +
@g
@✓ (Xi , ✓̄)(✓n � ✓̄)

I Implies: 1
n

Pn
i=1 g(Xi , ✓n) ⇡ 1

n

Pn
i=1 g(Xi , ✓̄)� cn(✓̄ � ✓n)

I where cn = 1
n

Pn
i=1

@g
@✓ (Xi , ✓̄) ⇡ E

⇥@g
@✓ (X , ✓̄)

⇤

I Implies: ✓̄ � ✓n ⇡ 1
cn

1
n

Pn
i=1 g(Xi , ✓̄)

I Implies: ✓n � ✓̄ ⇡ N(0,�2/n), where

�2 = Var[g(X , ✓̄)]/c2n = E [g(X , ✓̄)2]/c2n
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Delta Method for Stochastic Root-Finding

Algorithm

1. Simulate to get X1, . . . ,Xn i.i.d.

2. Find ✓n s.t. 1
n

Pn
i=1 g(Xi , ✓n) = 0

3. ĉn  1
n

Pn
i=1

@g
@✓ (Xi , ✓n)

4. s
2
n  1

n

Pn
i=1 g(Xi , ✓n)2/ĉ2n

5. Return asymptotic 100(1� �)% CI:
h
✓n �

z�snp
n
, ✓n +

z�snp
n

i

I Can use pilot runs, etc. in the usual way
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Jackknife Method

Overview

I Naive point estimator ↵n = g(X̄n, Ȳn) is biased

I Jackknife estimator has lower bias

I Avoids need to compute partial derivatives as in Delta method

I More computationally intensive

Starting point: Taylor series + expectation

E [↵n] = ↵+
b

n
+

c

n2
+ · · ·

I Thus bias is O(n�1)

I Estimate b and adjust? ↵⇤
n = ↵n � bn

n
I Messy partial derivative calculation, adds noise
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Jackknife, Continued

I Observe that

E (↵n) = ↵+
b

n
+

c

n2
+ · · ·

E (↵n�1) = ↵+
b

n � 1
+

c

(n � 1)2
+ · · ·

I and so

E [n↵n � (n� 1)↵n�1] = ↵+ c

✓
1

n
� 1

n � 1

◆
+ · · · = ↵� c

n(n � 1)
+ · · ·

I Bias reduced to O(n�2)!

I Q: What is special about deleting the nth data point?
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Jackknife, Continued
I Delete each data point in turn to get a low-bias estimator
I Average the estimators to reduce variance

Jackknife CI Algorithm for ↵ = g(µX , µY )

1. Choose n and �, and set z� = 1� (�/2) quantile of N(0, 1)

2. Simulate to get (X1,Y1), . . . , (Xn,Yn) i.i.d.

3. ↵n  g(X̄n, Ȳn)

4. For i = 1 to n

4.1 ↵i
n  g

 
1

n � 1

nX

j=1
j 6=i

Xj ,
1

n � 1

nX

j=1
j 6=i

Yj

!
(leave out Xi )

4.2 ↵n(i) n↵n � (n � 1)↵i
n (ith pseudovalue)

5. Point estimator: ↵J
n  (1/n)

Pn
i=1 ↵n(i)

6. v
J
n = 1

n�1

Pn
i=1

�
↵n(i)� ↵J

n

�2

7. 100(1� �)% CI:
h
↵J
n � z�

p
vJn /n,↵

J
n + z�

p
vJn /n

i
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Jackknife, Continued

Observations

I Not obvious that CI is correct (why?)

I Substitutes computational brute force for analytical complexity

I Not a one-pass algorithm

I Basic jackknife breaks down for “non-smooth” statistics like
quantiles, maximum (but can fix—see next lecture)
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Bootstrap Confidence Intervals

Another brute force method

I Key idea: analyze variability of estimator using samples of
original data

I More general than jackknife (estimates entire sampling
distribution of estimator, not just mean and variance)

I Jackknife is somewhat better empirically at variance estimates

I “Non-repeatable”, unlike jackknife

I OK for quantiles, still breaks down for maximum
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Bootstrap Samples
I Given data X = (X1, . . . ,Xn): i.i.d. samples from cdf F
I Bootstrap sample X⇤ = (X ⇤

1 , . . . ,X
⇤
n ): i.i.d. samples from F̂

I Recall: empirical distribution F̂n(x) = (1/n)(# obs  x)
I Same as n i.i.d. samples with replacement from {X1, . . . ,Xn}

Creating a Bootstrap Sample X⇤ from X = (X1, . . . ,Xn)

For i = 1 to n:

1. Generate U
D⇠ Uniform(0, 1)

2. Set J = dnUe //Random integer between 1 and n

3. Add XJ to X⇤

Data 4 2 7 6 8 3
Sample 1 6 2 2 8 7 6
Sample 2 3 8 8 8 2 4

...
...

...
...

...
...

...

23 / 30

EEXT
-
-
Hlf)

hlf)
e s x

plan dx

h is
a
functional

'

estimate
appliesto many types of functionals



Bootstrap “Imitates” the Real World

Bootstrap World

Real World

estimator

observations

performance
measure (unknown)

bootstrap
estimator

bootstrap
observations

estimator from
orig. data

I Boostrap world approaches real world as n!1
I Glivenko-Cantelli: supx |F̂n(x)� F (x)|! 0 wp1 as n!1

I So distribution of ↵⇤
n�↵n approximates distribution of ↵n�↵

I For small n, better than dist’n of ↵⇤
n approximates dist’n of ↵n

I Hence pivot method instead of direct “percentile method”
I Can estimate distribution of ↵⇤

n � ↵n by sampling from it
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Bootstrap Confidence Intervals: Pivot Method

Revisit usual 90% confidence interval for the mean

P(q0.05  X̄n � µ  q0.95) ⇡ 0.9

) P(X̄n � q0.95  µ  X̄n � q0.05) ⇡ 0.9

) 90% CI = [X̄n � q0.95, X̄n � q0.05]

To recover usual formulas, observe that q0.05 = �q0.95 and
q0.95 = (�/

p
n)z0.95 because P

⇣
X̄n�µ
�/

p
n
 z0.95

�
= P

�
X̄n � µ  q0.95

�

90% CI = [X̄n � z0.95�/
p
n, X̄n + z0.95�/

p
n]
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Bootstrap Confidence Intervals: Pivot Method

Bootstrap approach for mean (no normality assumption)

I 90% CI = [X̄n � q
⇤
0.95, X̄n � q

⇤
0.05]

I Approximate quantiles of X̄n�µ by quantiles of ⇡⇤ = X̄
⇤
n � X̄n

I Generate many replicates of ⇡⇤ to estimate the latter quantiles

I Technique applies to other statistics such as ↵ = g(µX , µY )
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Pivot Method for Nonlinear Functions of Means

Bootstrap Confidence Intervals (Pivot Method)

1. Run simulation n times to get (X1,Y1), . . . , (Xn,Yn)

2. Compute ↵n = g(X̄n, Ȳn)

3. Compute bootstrap sample (X ⇤
1 ,Y

⇤
1 ), . . . , (X

⇤
n ,Y

⇤
n )

4. Set ↵⇤
n = g(X̄ ⇤

n , Ȳ
⇤
n )

5. Set pivot ⇡⇤ = ↵⇤
n � ↵n

6. Repeat Steps 3–5 B times to create ⇡⇤
1, . . . ,⇡

⇤
B

7. Sort pivots to obtain ⇡⇤
(1)  ⇡⇤

(2)  · · ·  ⇡⇤
(B)

8. Set l = d(1� �/2)Be and u = d(�/2)Be
9. Return 100(1� �)% CI [↵n � ⇡⇤

(l),↵n � ⇡⇤
(u)]

I Example: For B = 100, 90% CI is [↵n � ⇡⇤
(95),↵n � ⇡⇤

(5)]
I Improvements include BCa bootstrap confidence interval

[See Efron & Tibshirani book]
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Complete Bias Elimination [Blanchet et al. 2015]

Idea: Construct X ⇤ such that E [X ⇤] = g(µX )

I Then can use usual estimation methods

I Assumes simulation cost not too expensive

Algorithm for Generating a Sample of X ⇤

1. Set p = 1� (1/2)3/2 ⇡ 0.65 and n0 = 10

2. Generate N s.t. p(k)
def
= P(N = k) = p(1� p)n0�k for k � n0

3. Generate X1,X2, . . . ,X2N+1 i.i.d. copies of X and set

X̄
odd
2N =

X1 + X3 + · · ·+ X2N+1�1

2N
and X̄

even
2N =

X2 + X4 + · · ·+ X2N+1

2N

4. Return

X ⇤ =
g(X̄2N+1)�

�
g(X̄ odd

2N ) + g(X̄ even
2N )

�
/2

p(N)
+ g(X̄2n0 )
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Unbiasedness of B-E Estimator
Since E [g(X̄ odd

2n )] = E [g(X̄ even
2n )] = E [g(X̄2n )], for all n � 1, we have

E
h
g(X̄2n+1)�

�
g(X̄ odd

2n ) + g(X̄ even
2n )

�
/2

i
= E [g(X̄2n+1)]� E [g(X̄2n )], n � 1

and

E
hg(X̄2N+1)�

�
g(X̄ odd

2N ) + g(X̄ even
2N )

�
/2

p(N)

i

=
1X

n=n0

E
hg(X̄2n+1)�

�
g(X̄ odd

2n ) + g(X̄ even
2n )

�
/2

p(n)

��� N = n
i
⇥ p(n)

=
1X

n=n0

E
⇥
g(X̄2n+1)�

�
g(X̄ odd

2n ) + g(X̄ even
2n )

�
/2

⇤
=

1X

n=n0

E [g(X̄2n+1)]� E [g(X̄2n )]

= E [g(X̄2n0+1)]� E [g(X̄2n0 )] + E [g(X̄2n0+2)]� E [g(X̄2n0+1)] + E [g(X̄2n0+3)]� · · ·
= E [g(X̄21)]� E [g(X̄2n0 )] = g(µx)� E [g(X̄2n0 )]

So

E
hg(X̄2N+1)�

�
g(X̄ odd

2N ) + g(X̄ even
2N )

�
/2

p(N)
+ g(X̄2n0 )

i
= g(µX )
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