

Event Lists (aka Pending Event Sets)

Fetch-next, insert, and cancel operations

- Fundamental operations in discrete-event simulations (up to 40% of sim time)
- ► So far we have used clock-reading vectors
- For M events, it takes O(M) time to get next event
- Unsuitable for large-scale simulation

Alternative: event lists

- ► For GSMP's with unit speeds
- Idea: Maintain list of (event_type, event_time) pairs
 - event_time = (absolute) time when event is scheduled to occur
- Challenge: support operations efficiently (priority queue with removals)

Linked Lists

Goal: Maintain events in sorted order

Singly-linked lists

- fetch-next is O(1), insert and cancel are O(M)
- Doubly-linked lists

3/9

Linked Lists, Continued

Indexed doubly-linked lists

- Faster lookup
- Need to maintain median element
- Cost outweighs benefit for more than one index

Implicit Binary Heaps

Binary tree that maintains min-heap property

- Parent has smaller value than children
- ► Can store efficiently as an array
- Fetch-next is O(1) plus an O(log M) update

Hybrid Data Structures

Bucket System

- Event time "hashes" to a bucket
- Recycle buckets when they become empty

Henriksen's algorithm

- Used in many early commercial systems
- Combines binary search tree with doubly-linked list
- Can have bad worst-case behavior

5/9

Hybrid Data Structures, Continued

Lazy Queue [Ronngren et al. 1991]

- ► Three parts:
 - Near Future (NF): a sorted linked list
 - Far Future (FF): an unsorted bucket system
 - Very Far Future (VFF): an unsorted linked list
- Sorting only happens when FF bucket is moved to NF
- Occasional *adaptive* resizing of # and length of buckets
- Dominates most other event list schemes for > 50 events

