
Event Lists

Refs: Sections 2.2 and 2.8 in Law,
Section 5.3 in Leemis and Park

Peter J. Haas

CS 590M: Simulation
Spring Semester 2020

1 / 9



Event Lists
Overview
Linked Lists
Heaps
Hybrid Data Structures

2 / 9



Event Lists (aka Pending Event Sets)

Fetch-next, insert, and cancel operations

I Fundamental operations in discrete-event simulations
(up to 40% of sim time)

I So far we have used clock-reading vectors

I For M events, it takes O(M) time to get next event

I Unsuitable for large-scale simulation

Alternative: event lists

I For GSMP’s with unit speeds
I Idea: Maintain list of (event type, event time) pairs

I event time = (absolute) time when event is scheduled to occur

I Challenge: support operations e�ciently
(priority queue with removals)

3 / 9



Linked Lists

Goal: Maintain events in sorted order

I Singly-linked lists

20.3

20.3

23.7

23.7

34.0

34.0

head

head

tail

tail

20.3 23.7

23.7

34.0
head tail

I fetch-next is O(1), insert and cancel are O(M)

I Doubly-linked lists

20.3

20.3

23.7

23.7

34.0

34.0

head

head

tail

tail

20.3 23.7

23.7

34.0
head tail

4 / 9

÷

⇐.



Linked Lists, Continued

I Indexed doubly-linked lists

20.3

20.3

23.7

23.7

34.0

34.0

head

head

tail

tail

20.3 23.7

23.7

34.0
head tail

I Faster lookup
I Need to maintain median element
I Cost outweighs benefit for more than one index

5 / 9



Implicit Binary Heaps

Binary tree that maintains

min-heap property

I Parent has smaller value than
children

I Can store e�ciently as an array

I Fetch-next is O(1) plus an
O(logM) update

6 / 9

1.6

3.14.22.93.7

2.5 2.3

1.6

3.14.22.93.7

2.5 2.3

3.1

3.1

4.22.93.7

2.5 2.3

4.22.93.7

2.5

2.3

3.1

3.1

4.22.93.7

2.5 2.3

4.22.93.7

2.5

2.3



Heaps, Continued

I Insert is O(logM)

I Cancellation is O(M) search + O(logM) update

I Python solution for O(1) cancellation
I Use heapq to implement heap
I Use a dict for O(1) find
I Mark event as ”canceled ”and
I Ignore cancelled events upon fetch
I OK if not too many cancellations
I See code on website

7 / 9

4.2 2.1

2.1

2.93.7

2.5

2.3

3.1

4.22.93.7

2.5

2.3

3.1

4.2 2.1

2.1

2.93.7

2.5

2.3

3.1

4.22.93.7

2.5

2.3

3.1

2.1

4.22.93.7

2.5 2.3

3.1

2.1

4.22.93.7

2.5 2.3

3.1

"e2""e1" "e4""e3" "e5" "e6" "e7"



Hybrid Data Structures

Bucket System

I Event time “hashes” to a bucket

I Recycle buckets
when they become empty

Henriksen’s algorithm

I Used in many
early commercial systems

I Combines binary search tree
with doubly-linked list

I Can have bad worst-case behavior

8 / 9

1.3

7.2

5.8

12.6

19.3

17.7

24.0

28.2

87.2 230.1

1-10 10-20 20-30 80-90 overflow...



Hybrid Data Structures, Continued

Lazy Queue [Ronngren et al. 1991]
I Three parts:

I Near Future (NF): a sorted linked list
I Far Future (FF): an unsorted bucket system
I Very Far Future (VFF): an unsorted linked list

I Sorting only happens when FF
bucket is moved to NF

I Occasional adaptive resizing of #
and length of buckets

I Dominates most other event list
schemes for > 50 events

9 / 9

1-20-1 2-3 3-4 4-5 5-6 > 6

NF FF VFF

sorted

unsorted


