Uniform Variate Generation

Refs: Chapter 7 in Law,
Pierre Lecuyer Tutorial, Winter Simulation Conference 2015

Peter J. Haas

CS 590M: Simulation Spring Semester 2020

Pseudo-Random Numbers

Overview

Simple Congruential Generators

Combined Generators

Other Generators

Testing Uniform Random Number Generators

1/21

2/21

Mad Scientists Are Using Crystals to Generate Random Numbers

It's all to make your computer safer. But it sounds fun, too.

By Courtney Linder Feb 19, 2020 Popular Mechanics

Pseudo-Random Numbers

A deterministic sequence that "looks random"

- ▶ Deterministic recurrence relation: sequence of integer seeds
- ► Each seed converted into a uniform "random number"
- ► A good generator has desirable theoretical properties, passes statistical tests

Repeatability is a good thing

- ► Facilitates debugging and verification
- ► Allows "common random numbers" (efficiency improvement)

Versus "natural" sources of randomness

- ► Ex: Silicon graphics / Cloudflare "lava lamp" generator
- ► Ex: HotBits site uses radioactive decay
- Ex: random.org uses atmospheric noise (radio static)
- ► Non-reproducible and slow (OK for lotteries, games, generating encryption keys)

Pseudo-Random Numbers

Overview

Simple Congruential Generators

Combined Generators

Other Generators

Testing Uniform Random Number Generators

Linear Congruential Generators (LCGs)

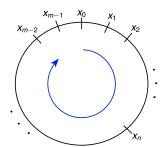
Fundamental recurrence:

 $x_{n+1} = (ax_n + c) \bmod m$

- ightharpoonup a = multiplier, c = increment, m = modulus
- ▶ $k \mod m$ is remainder after dividing $k \mod m$ (e.g., $14 \mod 5 = 4$ and $2 \mod 10 = 2$)
- x_n 's take values in $\{0, 1, 2, ..., m-1\}$
- ▶ Return $U_n = x_n/m$
- ▶ In C: rand() returns seed between 1 and RAND_MAX
- ► Historically the earliest (effective) rng

6/21

Period of an LCG



An LCG is periodic

- ▶ Period $\leq m$
- ▶ Want full period (every number in [0..m-1] appears once)
 - Maximizes number of available random variates in a simulation
 - ▶ Otherwise, gaps may cause statistical anomalies

Multiplicative Congruential Generators (MCGs)

Fundamental recurrence:

 $x_{n+1} = ax_n \mod m$

- ▶ Special case of LCG with increment c equal to 0
- ▶ Full period: all values in $\{1, 2, ..., m-1\}$ visited in cycle

Theorem:

5/21

7 / 21

An MCG has full period if m is prime and a is a primitive element modulo m

- ▶ I.e., $r(a) \triangleq \min\{k > 0 : a^k \mod m = 1\} = m 1$
- ► Ex: $x_{n+1} = 3x_n \mod 4$
- ► Ex: $x_{n+1} = 3x_n \mod 5$

Classical MCGs

Modulus choices

- $m = 2^b$ for convenience on binary computer
 - ightharpoonup mod 2^b is simple: retain b lowest-order bits
 - Ex: IBM RANDU generator with $m = 2^{31}$ and $a = 2^{16} + 3$
 - ▶ For b > 3, period is at most m/4
- $ightharpoonup m = 2^{31} 1$ is, fortuitously, a (Mersenne) prime number
 - ► Because $2^{31} 1$ is "almost" 2^{31} , can compute mod quickly [Bratley et al., pp. 212–213]

Lewis-Learmonth Generator ("Minimal Standard Generator")

$$x_{n+1} = 7^5 x_n \mod (2^{31} - 1) = 6807 x_n \mod 2,147,483,647$$

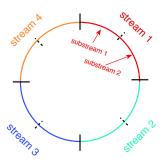
Used for many years, but fails modern statistical tests, cycle is too short

9 / 21

Streams and Substreams in an MCG

Jumping ahead

- ▶ Goal: quickly compute x_k for k large
- $ightharpoonup x_k = (a^k x_0) \bmod m = ((a^k \bmod m) x_0) \bmod m$
- Precompute numbers $\alpha_k = a^k \mod m$ for multiple values of k
- ► Allows partitioning of cycle into streams and substreams
 - ▶ Better than, e.g., setting $y_n = x_{2n}$ and $z_n = x_{2n+1}$
 - ► Caution: For an MCG, non-overlap is not sufficient (see demo)



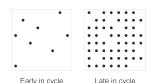
unigen.ResetNextSubstream()
unigen.ResetStartStream()
unigen.ResetStartSubstream()

10 / 21

Pitfalls of MCGs (and Other Generators)

Short cycles

- ▶ MCG numbers fall on a lattice
- ▶ Only want to use $O(\sqrt{\text{period}})$ numbers



Low-order bits

Claim:

If $x_{n+1} = ax_n \mod 2^b$ and $r_{n+1} = x_{n+1} \mod 2^k$, where 3 < k < b, then $(r_n : n \ge 1)$ has period at most 2^{k-2}

- $ightharpoonup r_n$'s are k low-order bits
- ► Ex: $x_{n+1} = 13x_n \mod 2^{31}$ with k = 4 [period = $(2^{31}/4) 1 \approx 537 \times 10^6$]
- So avoid algorithm that sets $X = \lfloor nU \rfloor$ and V = nU X where $U \stackrel{D}{\sim} \text{Uniform}(0,1)$
- $\begin{array}{ccccc}
 n & x_n & r_n \\
 \hline
 1 & 16049371 & 11 \\
 2 & 208641823 & 15
 \end{array}$
- 3 564860051 3 4 900729719 7
- 6 1899467151 1 7 1070752835
- 8 1034884967

Other Pitfalls (Demo)

Starting seeds for Lewis-Learmonth generator

- \triangleright X: use starting seed s=1
- ▶ Y: use starting seed s' = 2
- ightharpoonup s and s' are over 1.3 billion steps apart in cycle
- ▶ Plot (X, Y) pairs
- ▶ Plot histogram of X + Y

Box-Muller and MCG

- 1. Generate U, V i.i.d. U[01,]
- 2. Set $X = \sqrt{-2 \log u} \cos(2\pi V)$
- 3. Set $Y = \sqrt{-2 \log u} \sin(2\pi V)$
- 4. Return X and Y independent N(0,1)

11 / 21

Pseudo-Random Numbers

Combined Generators

Testing Uniform Random Number Generators

Combined Generators

Example: rngStream (used in Arena and other packages)

$$x_n = (1403580x_{n-2} - 810728x_{n-3}) \mod 4294967087$$

 $y_n = (527612y_{n-1} - 1370589y_{n-3}) \mod 4294944443$
 $z_n = (x_n - y_n) \mod 4294967087$
 $u_n = z_n/4294967087$

- ► Seed = vector of six 32-bit integers
- Cycle length $\approx 2^{191} \approx 10^{57}$ (1 octodecillion)
- # streams = $2^{64} \approx 10^{19}$ (10 quintillion)
- Stream length = $2^{127} \approx 10^{38}$ (100 undecillion)
- # substreams = $2^{51} = 10^{15}$ (1 trillion)
- ► Substream length = $2^{76} \approx 10^{22}$ (10 sextillion) $\frac{\text{per nanoseco}}{\text{> 10^{38} years}}$

Fun Fact

Time to mostly use up a generator with period of 2¹⁹¹ with 1 trillion computers generating one seed per nanosecond:

▶ Well-behaved up to at least 45 dimensions

14 / 21

Pseudo-Random Numbers

Other Generators

Testing Uniform Random Number Generators

Mersenne Twister

General Form (Bit-wise Generator):

$$X_n = (A_1 X_{n-1} + \dots + A_k X_{n-k}) \mod 2$$

 $Y_n = BX_n \mod 2 = (y_{n,1}, \dots, y_{n,W})$ where W = 32 or 64

$$u_n = \sum_{j=1}^W y_{n,j} 2^{-j}$$
 or $u_n = 0.y_{n,1}y_{n,2} \cdots y_{n,W}$

- $\blacktriangleright X_n = (x_{n,1}, \dots, x_{n,l})^{\top}$ with each $x_{n,i} = 0$ or 1
- ▶ Binary matrices $A_1, ..., A_k$ ($L \times L$) and B ($W \times L$)
- ► Fast: XOR operations and bit shifting

Mersenne Twister

- ▶ Default generator in Python and many other systems
- ► Seed = vector of 623 integers (32 bit)
- ▶ Period = $2^{19937} 1 \approx 10^{6002}$ and well-behaved up to d = 623
- ▶ Drawbacks: large, slow initialization (demo), some stat. issues
- ▶ WELL generator (Lecuyer et al.) scambles bits better

15/21

More Generators

Cryptographic generators

- "Impossible" to guess the next number in the sequence
- Ex: RC4 (open source: Arc4Random), Threefish, ChaCha20
- ► Good for security, slow and statistically shaky for simulation

Counter-based generators

- ▶ Trivial seeds: $s_n = n$ for $n \ge 1$ (great for substreams!)
- $u_n = f(n)$ where f is a "weak" but fast encryption function
- ▶ Perform well, equidistribution properties not well understood

Permuted congruential generator (PCG)

- ▶ Use "improving" transformation of fast but shaky LCG
- Under evaluation

17 / 21

Pseudo-Random Numbers

Overviev

Simple Congruential Generators

Combined Generators

Other Generator

Testing Uniform Random Number Generators

18 / 21

Testing Uniform Random Number Generators

A simple generator:

$$x_{n+1} = (x_n + 1) \bmod m$$

Properties

- ► Full period
- lacktriangle Values uniformly spread out over [0,1]
- ▶ Yet: this is a *terrible* generator

$x_{n+1} = (x_n + 1) \mod 31$ $x_{n+1} = (x_n + 1) \mod 31$

Two ways of showing poor quality

- ► Compare to expected statistical behavior of uniform sequence $U_1 = \frac{1}{m-1}$, $U_2 = \frac{2}{m-1}$, $U_3 = \frac{3}{m-1}$, ... (not very random)
- ► Look at possible values in higher dimensions (see plot)

Structural (Theoretical) Tests

Possible values in d dimensions

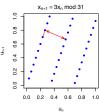
- ► Group the cycle into *d*-vectors: $V_i = (U_i, ..., U_{i+d-1})$
- Want equidistribution over $[0,1]^d$

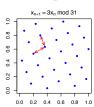
Structural tests for MCGs

- Points of MCG lie on lattice: how even? (spectral test)
- For modulus m, points lie on at most $(d!m)^{1/d}$ hyperplanes
- RANDU (demo)

For other generators:

- ► Not a lattice; 32/64-bit *U* values can appear multiple times in cycle
- ▶ Want same # of points in each "grid cell"





u _n
Upper bound
2^{31}
2^{16}
2344
476
192
108

Statistical (Empirical) Tests	
How does generator jump from point to point?	
▶ Do U_i numbers look i.i.d. uniform to a statistician?	
Many kinds of statistical tests • General tests for goodness of fit (e.g., χ^2 test) 1. Divide $[0,1]$ into k (> 100) equal intervals $\chi^2 = \sum_{j=1}^k \frac{(f_j - \frac{n}{k})^2}{n/k}$ 2. Generate U_1, \ldots, U_n (where $n \approx 10k$) 3. Count number f_1, \ldots, f_k that fall into each interval 4. Compute likelihood under i.i.d. uniform hypothesis	
• Serial test: essentially <i>d</i> -dimensional version of χ^2 test	
► Runs-up test (see homework)	
Test suites (the PRNG arms race)	
► Gold standard: TestU01 suite (incl. "SmallCrush", "Crush") [Lecuyer et al., simul.iro.umontreal.ca/testu01/tu01.html]	
21/21	