
Uniform Variate Generation

Refs: Chapter 7 in Law,
Pierre Lecuyer Tutorial, Winter Simulation Conference 2015

Peter J. Haas

CS 590M: Simulation
Spring Semester 2020

1 / 21

Pseudo-Random Numbers
Overview
Simple Congruential Generators
Combined Generators
Other Generators
Testing Uniform Random Number Generators

2 / 21

Popular Mechanics

3 / 21

Pseudo-Random Numbers

A deterministic sequence that “looks random”

I Deterministic recurrence relation: sequence of integer seeds
I Each seed converted into a uniform “random number”
I A good generator has desirable theoretical properties,

passes statistical tests

Repeatability is a good thing

I Facilitates debugging and verification
I Allows “common random numbers” (e�ciency improvement)

Versus “natural” sources of randomness

I Ex: Silicon graphics / Cloudflare “lava lamp” generator
I Ex: HotBits site uses radioactive decay
I Ex: random.org uses atmospheric noise (radio static)
I Non-reproducible and slow

(OK for lotteries, games, generating encryption keys)
4 / 21

Pseudo-Random Numbers
Overview
Simple Congruential Generators
Combined Generators
Other Generators
Testing Uniform Random Number Generators

5 / 21

Linear Congruential Generators (LCGs)

Fundamental recurrence:

xn+1 = (axn + c) mod m

I a = multiplier, c = increment, m = modulus

I k mod m is remainder after dividing k by m

(e.g., 14 mod 5 = 4 and 2 mod 10 = 2)

I xn’s take values in {0, 1, 2, . . . ,m � 1}
I Return Un = xn/m

I In C: rand() returns seed between 1 and RAND MAX

I Historically the earliest (e↵ective) rng

6 / 21

Period of an LCG

.

.
.

.
..

An LCG is periodic

I Period m

I Want full period (every number in [0..m � 1] appears once)
I Maximizes number of available random variates in a simulation
I Otherwise, gaps may cause statistical anomalies

7 / 21

Multiplicative Congruential Generators (MCGs)

Fundamental recurrence:

xn+1 = axn mod m

I Special case of LCG with increment c equal to 0

I Full period: all values in {1, 2, . . . ,m � 1} visited in cycle

Theorem:

An MCG has full period if m is prime and a is a primitive element
modulo m

I I.e., r(a) , min{k > 0 : ak mod m = 1} = m � 1

I Ex: xn+1 = 3xn mod 4

I Ex: xn+1 = 3xn mod 5

8 / 21

k 1 2 3 4

3k mod 5 3 4 2 1

Anti -- 3Xn mad 4 Xo't, N ,
=3
,
HE 1,43=3,44--1, - . -

X not i'- m - i is smallest integers't .Prime ai . , is evenly divisible by m

toil
, Hi 3,1--4,45-2,44=1,45-3, - - -

Classical MCGs

Modulus choices

I m = 2b for convenience on binary computer
I mod 2b is simple: retain b lowest-order bits
I Ex: IBM RANDU generator with m = 231 and a = 216 + 3
I For b > 3, period is at most m/4

I m = 231 � 1 is, fortuitously, a (Mersenne) prime number
I Because 231 � 1 is “almost” 231, can compute mod quickly

[Bratley et al., pp. 212–213]

Lewis-Learmonth Generator (“Minimal Standard Generator”)

xn+1 = 75xn mod (231 � 1) = 6807xn mod 2,147,483,647

Used for many years, but fails modern statistical tests, cycle

is too short

9 / 21

Streams and Substreams in an MCG

Jumping ahead

I Goal: quickly compute xk for k large

I xk = (akx0) mod m =
��
a
k mod m

�
x0
�
mod m

I Precompute numbers ↵k = a
k mod m for multiple values of k

I Allows partitioning of cycle into streams and substreams
I Better than, e.g., setting yn = x2n and zn = x2n+1
I Caution: For an MCG, non-overlap is not su�cient (see demo)

stream 1substream 1
substream 2

stream 3 str
ea

m 2

str
ea

m 4

unigen.ResetNextSubstream()
unigen.ResetStartStream()
unigen.ResetStartSubstream()

10 / 21

Pitfalls of MCGs (and Other Generators)

Short cycles

I MCG numbers fall on a lattice

I Only want to use O(
p
period) numbers

Low-order bits

Claim:

If xn+1 = axn mod 2b and rn+1 = xn+1 mod 2k , where 3 < k < b,
then (rn : n � 1) has period at most 2k�2

I rn’s are k low-order bits

I Ex: xn+1 = 13xn mod 231 with k = 4
[period = (231/4)� 1 ⇡ 537⇥ 106]

I So avoid algorithm that sets
X = bnUc and V = nU � X

where U
D⇠ Uniform(0, 1)

11 / 21

n xn rn
1 16049371 11
2 208641823 15
3 564860051 3
4 900729719 7
5 972068107 11
6 1899467151 15
7 1070752835 3
8 1034884967 7

t.net

Other Pitfalls (Demo)

Starting seeds for Lewis-Learmonth generator

I X : use starting seed s = 1

I Y : use starting seed s
0 = 2

I s and s
0 are over 1.3 billion steps apart in cycle

I Plot (X ,Y) pairs

I Plot histogram of X + Y

Box-Muller and MCG

1. Generate U, V i.i.d. U[01,]

2. Set X =
p
�2 log u cos(2⇡V)

3. Set Y =
p
�2 log u sin(2⇡V)

4. Return X and Y independent N(0, 1)

12 / 21

Pseudo-Random Numbers
Overview
Simple Congruential Generators
Combined Generators
Other Generators
Testing Uniform Random Number Generators

13 / 21

Combined Generators

Example: rngStream (used in Arena and other packages)

xn = (1403580xn�2 � 810728xn�3) mod 4294967087

yn = (527612yn�1 � 1370589yn�3) mod 4294944443

zn = (xn � yn) mod 4294967087

un = zn/4294967087

I Seed = vector of six 32-bit integers

I Cycle length ⇡ 2191 ⇡ 1057 (1 octodecillion)

I # streams = 264 ⇡ 1019 (10 quintillion)

I Stream length = 2127 ⇡ 1038 (100 undecillion)

I # substreams = 251 = 1015 (1 trillion)

I Substream length = 276 ⇡ 1022 (10 sextillion)

I Well-behaved up to at least 45 dimensions

14 / 21

Fun Fact

Time to mostly use
up a generator with
period of 2191 with 1
trillion computers
generating one seed
per nanosecond:
> 1038 years

Pseudo-Random Numbers
Overview
Simple Congruential Generators
Combined Generators
Other Generators
Testing Uniform Random Number Generators

15 / 21

Mersenne Twister

General Form (Bit-wise Generator):

Xn = (A1Xn�1 + · · ·+ AkXn�k) mod 2

Yn = BXn mod 2 = (yn,1, . . . , yn,W) where W = 32 or 64

un =
PW

j=1 yn,j2
�j or un = 0.yn,1yn,2 · · · yn,W

I Xn = (xn,1, . . . , xn,L)> with each xn,i = 0 or 1
I Binary matrices A1, . . . ,Ak (L⇥ L) and B (W ⇥ L)
I Fast: XOR operations and bit shifting

Mersenne Twister

I Default generator in Python and many other systems
I Seed = vector of 623 integers (32 bit)
I Period = 219937 � 1 ⇡ 106002 and well-behaved up to d = 623
I Drawbacks: large, slow initialization (demo), some stat. issues
I WELL generator (Lecuyer et al.) scambles bits better

16 / 21

More Generators

Cryptographic generators

I “Impossible” to guess the next number in the sequence

I Ex: RC4 (open source: Arc4Random), Threefish, ChaCha20

I Good for security, slow and statistically shaky for simulation

Counter-based generators

I Trivial seeds: sn = n for n � 1 (great for substreams!)

I un = f (n) where f is a “weak” but fast encryption function

I Perform well, equidistribution properties not well understood

Permuted congruential generator (PCG)

I Use “improving” transformation of fast but shaky LCG

I Under evaluation

17 / 21

Pseudo-Random Numbers
Overview
Simple Congruential Generators
Combined Generators
Other Generators
Testing Uniform Random Number Generators

18 / 21

Testing Uniform Random Number Generators

A simple generator:

xn+1 = (xn + 1) mod m

Properties

I Full period

I Values uniformly spread out over [0, 1]

I Yet: this is a terrible generator

Two ways of showing poor quality

I Compare to expected statistical behavior of uniform sequence
U1 =

1
m�1 ,U2 =

2
m�1 ,U3 =

3
m�1 , . . . (not very random)

I Look at possible values in higher dimensions (see plot)

19 / 21

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

un

u n
+1

xn+1 = (xn + 1) mod 31

Structural (Theoretical) Tests

Possible values in d dimensions

I Group the cycle into d-vectors:
Vi = (Ui , . . . ,Ui+d�1)

I Want equidistribution over [0, 1]d

Structural tests for MCGs

I Points of MCG lie on lattice: how even?
(spectral test)

I For modulus m, points lie on at most
(d!m)1/d hyperplanes

I RANDU (demo)

For other generators:

I Not a lattice; 32/64-bit U values can
appear multiple times in cycle

I Want same # of points in each “grid cell”
20 / 21

d Upper bound

1 231

2 216

3 2344
4 476
5 192
6 108

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

un

u n
+1

xn+1 = 3xn mod 31

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

un

u n
+1

xn+1 = 3xn mod 31

Statistical (Empirical) Tests

How does generator jump from point to point?

I Do Ui numbers look i.i.d. uniform to a statistician?

Many kinds of statistical tests

I General tests for goodness of fit (e.g., �2 test)
1. Divide [0, 1] into k (> 100) equal intervals
2. Generate U1, . . . ,Un (where n ⇡ 10k)
3. Count number f1, . . . , fk that fall into each interval
4. Compute likelihood under i.i.d. uniform hypothesis

I Serial test: essentially d-dimensional version of �2 test

I Runs-up test (see homework)

Test suites (the PRNG arms race)

I Gold standard: TestU01 suite (incl. “SmallCrush”, “Crush”)
[Lecuyer et al., simul.iro.umontreal.ca/testu01/tu01.html]

21 / 21

�2 =
Pk

j=1
(fj� n

k)
2

n/k

