Generation of Non-Uniform Random Numbers
Refs: Chapter 8 in Law and book by Devroye (watch for typos)
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Acceptance-Rejection

Goal: Generate a random variate X having pdf fx
» Avoids computation of F~!(u) as in inversion method

> Assumes fx is easy to calculate

Special case: fx(x) > 0 only on [a, b] (finite support)

» Throw down points uniformly in enclosing rectangle R,
reject points above fx curve
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» Return x-coordinate of accepted point

Acceptance-Rejection, Continued

Claim:
x-coordinate of an accepted point has pdf fx

Proof

1. Let (Z1, Z2) be the (x, y)-coordinates of a random point
distributed uniformly in R and fix x € [a, b]

2. Then P(Z; < x,acceptance) = P(Zl <x,Z, < fX(Zl))
3. But P(Zl <x,Z, < fX(Zl)) = prob that (Z1, Z>) falls in
shaded region:

P(Z; < x,acceptance) =

P(acceptance) =

fx(t)

P(Z; < x | acceptance) =

L




Acceptance-Rejection, Continued

Acceptance-Rejection Algorithm (Finite Support)

1. Generate Uy, U> R Uniform(0, 1) (U; and U, are independent)
2. Set Z1 = a+ (b— a)U; and Z, = mU, (inversion method)
3. if Zy < fx(Z1), return X = Z3, else go to step 1

How many (Ui, U,) pairs must we generate?
» N (= number pairs generated) has geometric dist'n:

P(N = k) = p(1 — p)*~! where p = 1/(area of R)
» So E[N] =1/p = (area of R) = (b—a)m
» So make m as small as possible - x s ||

Generalized Acceptance-Rejection: Infinite Support

Find density g that majorizes fx
» There exists a constant ¢ such that fx(x)/c < g(x) for all x

» Smallest such constant is ¢ = sup(fx(x)/g(x))

Generalized Acceptance-Rejection Algorithm

1. Generate Z 2 g and U 2 Uniform(0,1) (Z, U independent)
2. if Ug(Z) < fx(Z2)/c, return X = Z, else go to step 1

Expected number of (Z, U) pairs generated: £[N] = ¢
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Convolution Method
Goal: Generate X where X =Y;+---+ Y, [Y1,...
> fX:fyl*fy2*---*me

» Where the convolution f * g is defined by
(Frg)(x) = [ f(x = y)e(y) dy

Y iid.]

Convolution Algorithm
» Generate Y1,..., Y
» Return X = Y1+ .-+ Yy,

Example: Binomial Distribution
» Suppose X R Binom(m, p)
» Then X = Y1+ -+ Y, where Y; 2 Bernoulli(p)

» Often part of a more complex algorithm
(e.g., do something else if m large)

Composition Method

Suppose that we can write
> Fx(x) = p1Fy,(x) + p2Fy,(x) + - + pmFy,,(x) or
> fx(x) = pify(x) + p2fyy(x) + - - + pmfy,, (x)
where p;’s are nonnegative and ) 1" p; =1

Composition Method
1. Generate a discrete RV J where P(J = j) = pj for 1 <j < m
2. Generate Y, from Fy, or fy,
3. Return X =Y/

Can lead to very fast generation algorithms
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Composition Method: Example

R

Ry R,

a b c

> Llet pj=areaof Rjfor1 </<3
» Then fx = plfy1 -+ p2fy2 + p3fy3, where

2(x—a) . ] 2e—r) - .
fri(x) = § =2 o= X = g fyy(x) = { (F tos LG
0 otherwise 0 otherwise

|

fry(x) = (1/p3) (fx(x) — prfv, (X) — p2fy,(x))

» Easy to generate Y7 and Y3 (the “usual case”):
» Y1 = max(Uy, Uz) and Yz = min(U, Us) or use inversion

Alias Method for Discrete Random Variables
Goal: Generate X with P(X = x;) =p; for 1 </ <n
Easy case: py = pp =+ = p,
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Algorithm

1. Generate U R Uniform(0, 1)
2. Return xj, where J = [nU]

[x] = smallest integer > x (ceiling function)
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Alias Method: General Case

1/2 1/2

Xi pi ai li

x1 1/6 x 05
X2 1/2 X2 1.0
X3 1/3 X3 1.0

1/3

1/6

W N |~

Xy Xp X3

Alias Algorithm

1. Generate Uy, U> R Uniform(0, 1)
2. Set | = [nU;]
3. If Uo < rp return X = x; else return X = a4
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Alias Method: Another Example

317 - 9/21 |-
7/21 |-
217 |
— 521 |
17 | 3/21 |-
X1 X2 X3

I X pi & I

1 X1 3/7

2 X2 3/7

3 x3 1/7
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Generation of Non-Uniform Random Numbers

Random Permutations and Samples
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Random Permutations: Fisher-Yates Shuffle

Goal: Create random permutation of array x of length n

Fisher-Yates Algorithm
1. Set i< n
Generate random integer N between 1 and i (e.g., as [iU])
Swap x[N] and x[i]
Seti+i—1
If i =1 then exit

o1 R

[=leefia] [afe el o | [afida]o o] fa]afc]e0]

Q: What about this algorithm:
For i =1 to n: swap x[i] with random entry

Other random objects: graphs, matrices, random vectors, ...
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Sequential Bernoulli Sampling

Stream of items xi, x2, ...,

Insert each item into sample with probability p
Expected sample size after nth item = np
Fast implementation: generate skips directly
(geometrically distributed)

vV v vy

Bernoulli Sampling:

Generate U 2 Uniform(0, 1)
Set A+ 1+ [InU/In(1 — p)| [Geometric on {1,2,...}, HW #4]
Set m+ A
Upon arrival of x;:
» if i = m, then

v

Include x; in sample

Generate U 2 Uniform(0, 1)
Set A« 1+ [InU/In(1 - p)]
set m+— m+ A

vV VYyy
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Reservoir Sampling

» Stream of items xq, x2, ...,

» Maintain a uniform random sample of size N w.o.replacement

Reservoir Sampling:

Upon arrival of x;:
» if i < N, then include x; in sample
» if i > N, then

> Generate U 2 Uniform(0, 1)
> If U< N/i, then include x; in sample,
replacing randomly chosen victim

» Can generate skips directly using acceptance-rejection
[JS Vitter, ACM Trans. Math. Softw., 11(1): 37-57, 1985]
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Reservoir Sampling: Simple Example

» Sample size = 1
» S; = sample state after processing jth item (called i)
> accept item /1 into S; with probability 1

P(il € 51) =1
> accept item iy into Sp with probability 1/2

P(il € 52) = P(il S 51) X P(I'g ¢ 52) = (1)(1/2) = 1/2
P(ih € S) =1/2

» accept item i3 into Sz with probability 1/3
P(iy € S3) = P(i1 € $2) x P(i3 € S3)
P(12 c 53) = P(/2 S 52) X P(’3 € 53)
P(iz € $2) =1/3

(1/2)(2/3) = 1/3
(1/2)(2/3) = 1/3
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Generation of Non-Uniform Random Numbers

Non-Homogeneous Poisson Processes
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Non-Homogeneous Poisson Processes: Thinning

Ordinary (Homogeneous) Poisson process
» Times between successive events are i.i.d. Exp(\)

» Event probabilities for disjoint time intervals
are independent (Markov property)

» P(event in t + At) &~ AAt for At very small

— _ oAz
>» P(Th,>y+z|Thi=y)=e P(n events in [t,t + At]) =

(AAt)"e At/
Non-Homogeneous Poisson process

» Event probabilities for disjoint time intervals are independent
P(event in t + At) = A(t)At for A very small
[A(t) is sometimes called a hazard function]

P(Th>y+z|Tho1=y)= o S M) du

Can capture, e.g., time-of-day effects

v

v

v
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Thinning, Continued Alt)

Suppose that \(t) < Amax
for t € [0, 7] Ammax oo .

» Idea: Generate “too many”
events according to a N
Poisson(Amax) process, then (‘) an
reject some of the events

T
v T
D

rejecte accept with prob =

Thinning Algorithm:

1.

Set To=0,V =0,and n=0

. Setn< n+1 [Generate T,]

2
3. Generate E 2 Exp(Amax) and U = Uniform(0, 1)
4.
5
6

Set V + V + E [Proposed event time]

I U < AN(V)/Amax then set T, = V else go to Step 3
. If T, < 7 then go to Step 2 else exit

A(V)

/\mux
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Thinning, Continued

accept with prob = M
A
Ross’s Improvement
> Piecewise-constant upper-bounding to reduce rejections

» Correction for event times that span segments

Many other approaches
> Inversion (see HW #4)

» Idiosyncratic methods:
Exploit special properties of Poisson process
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