Generation of Non-Uniform Random Numbers Refs: Chapter 8 in Law and book by Devroye (watch for typos)

Peter J. Haas

CS 590M: Simulation Spring Semester 2020 Generation of Non-Uniform Random Numbers Acceptance-Rejection Convolution Method Composition Method Alias Method Random Permutations and Samples Non-Homogeneous Poisson Processes

1/21

Acceptance-Rejection

Goal: Generate a random variate X having pdf f_X

- Avoids computation of $F^{-1}(u)$ as in inversion method
- Assumes f_X is easy to calculate

Special case: $f_X(x) > 0$ only on [a, b] (finite support)

Throw down points uniformly in enclosing rectangle R, reject points above f_X curve

Return x-coordinate of accepted point

Acceptance-Rejection, Continued

Claim:

x-coordinate of an accepted point has pdf f_X

Proof

- 1. Let (Z_1, Z_2) be the (x, y)-coordinates of a random point distributed uniformly in R and fix $x \in [a, b]$
- 2. Then $P(Z_1 \leq x, \text{acceptance}) = P(Z_1 \leq x, Z_2 \leq f_X(Z_1))$
- 3. But $P(Z_1 \le x, Z_2 \le f_X(Z_1)) = \text{prob that } (Z_1, Z_2) \text{ falls in shaded region:}$

 $P(Z_1 \leq x, \text{acceptance}) =$

P(acceptance) =

$$P(Z_1 \leq x \mid \text{acceptance}) =$$

Acceptance-Rejection, Continued

Acceptance-Rejection Algorithm (Finite Support)

- 1. Generate $U_1, U_2 \stackrel{\text{D}}{\sim}$ Uniform(0, 1) (U_1 and U_2 are independent)
- 2. Set $Z_1 = a + (b a)U_1$ and $Z_2 = mU_2$ (inversion method)
- 3. if $Z_2 \leq f_X(Z_1)$, return $X = Z_1$, else go to step 1

How many (U_1, U_2) pairs must we generate?

- N (= number pairs generated) has geometric dist'n: $P(N = k) = p(1 - p)^{k-1}$ where p = 1/(area of R)
- So E[N] = 1/p = (area of R) = (b a)m
- So make *m* as small as possible

Generalized Acceptance-Rejection: Infinite Support

Find density g that majorizes f_X

- There exists a constant c such that $f_X(x)/c \le g(x)$ for all x
- Smallest such constant is $c = \sup(f_X(x)/g(x))$

Generalized Acceptance-Rejection Algorithm

1. Generate $Z \stackrel{D}{\sim} g$ and $U \stackrel{D}{\sim}$ Uniform(0,1) (Z, U independent) 2. if $Ug(Z) \le f_X(Z)/c$, return X = Z, else go to step 1

```
Expected number of (Z, U) pairs generated: E[N] = c
```

Convolution Method

Goal: Generate X where $X = Y_1 + \cdots + Y_m$ [Y_1, \ldots, Y_m i.i.d.]

$$\bullet f_X = f_{Y_1} * f_{Y_2} * \cdots * f_{Y_n}$$

• Where the convolution f * g is defined by $(f * g)(x) = \int_{-\infty}^{\infty} f(x - y)g(y) dy$

Convolution Algorithm

- Generate Y_1, \ldots, Y_m
- Return $X = Y_1 + \cdots + Y_m$

Example: Binomial Distribution

- Suppose $X \stackrel{\mathsf{D}}{\sim} \mathsf{Binom}(m, p)$
- Then $X = Y_1 + \cdots + Y_m$ where $Y_i \stackrel{D}{\sim}$ Bernoulli(p)
- Often part of a more complex algorithm (e.g., do something else if *m* large)

Composition Method

Suppose that we can write

•
$$F_X(x) = p_1 F_{Y_1}(x) + p_2 F_{Y_2}(x) + \dots + p_m F_{Y_m}(x)$$
 or
• $f_X(x) = p_1 f_{Y_1}(x) + p_2 f_{Y_2}(x) + \dots + p_m f_{Y_m}(x)$

where p_i 's are nonnegative and $\sum_{i=1}^{m} p_i = 1$

Composition Method

- 1. Generate a discrete RV J where $P(J = j) = p_j$ for $1 \le j \le m$
- 2. Generate Y_J from F_{Y_J} or f_{Y_J}
- 3. Return $X = Y_J$

Can lead to very fast generation algorithms

7 / 21

Alias Method for Discrete Random Variables

Goal: Generate X with $P(X = x_i) = p_i$ for $1 \le i \le n$

Easy case: $p_1 = p_2 = \cdots = p_n$

Algorithm

- 1. Generate $U \stackrel{\mathsf{D}}{\sim} \mathsf{Uniform}(0,1)$
- 2. Return x_J , where $J = \lceil nU \rceil$
- $\lceil x \rceil =$ smallest integer $\ge x$ (ceiling function)

 $11 \, / \, 21$

Generation of Non-Uniform Random Numbers

Acceptance-Rejection Convolution Method Composition Method Alias Method

Random Permutations and Samples

Non-Homogeneous Poisson Processes

Random Permutations: Fisher-Yates Shuffle

Goal: Create random permutation of array x of length n

Fisher-Yates Algorithm

- 1. Set $i \leftarrow n$
- 2. Generate random integer N between 1 and i (e.g., as [iU])
- 3. Swap x[N] and x[i]
- 4. Set $i \leftarrow i 1$
- 5. If i = 1 then exit

Q: What about this algorithm: For i = 1 to *n*: swap x[i] with random entry

Other random objects: graphs, matrices, random vectors, ...

13 / 21

Sequential Bernoulli Sampling

- Stream of items $x_1, x_2, \ldots,$
- Insert each item into sample with probability p
- Expected sample size after *n*th item = *np*
- Fast implementation: generate skips directly (geometrically distributed)

Bernoulli Sampling:

Generate $U \stackrel{D}{\sim}$ Uniform(0, 1) Set $\Delta \leftarrow 1 + \lfloor \ln U / \ln(1 - p) \rfloor$ [Geometric on $\{1, 2, ...\}$, HW #4] Set $m \leftarrow \Delta$

Upon arrival of x_i :

- if i = m, then
 - Include x_i in sample

• Generate
$$U \stackrel{\mathrm{D}}{\sim} \text{Uniform}(0,1)$$

• Set
$$\Delta \leftarrow 1 + \lfloor \ln U / \ln(1-p) \rfloor$$

• set $m \leftarrow m + \Delta$

Reservoir Sampling

- Stream of items $x_1, x_2, \ldots,$
- Maintain a uniform random sample of size N w.o.replacement

Reservoir Sampling:

Upon arrival of x_i :

- if $i \leq N$, then include x_i in sample
- if i > N, then
 - Generate $U \stackrel{D}{\sim}$ Uniform(0, 1)
 - ► If U ≤ N/i, then include x_i in sample, replacing randomly chosen victim
- Can generate skips directly using acceptance-rejection [JS Vitter, ACM Trans. Math. Softw., 11(1): 37–57, 1985]

Reservoir Sampling: Simple Example

- Sample size = 1
- S_i = sample state after processing *j*th item (called i_j)
- accept item i_1 into S_1 with probability 1

 $P(i_1 \in S_1) = 1$

• accept item i_2 into S_2 with probability 1/2

 $P(i_1 \in S_2) = P(i_1 \in S_1) \times P(i_2 \notin S_2) = (1)(1/2) = 1/2$ $P(i_2 \in S_2) = 1/2$

• accept item i_3 into S_3 with probability 1/3

 $P(i_1 \in S_3) = P(i_1 \in S_2) \times P(i_3 \notin S_3) = (1/2)(2/3) = 1/3$ $P(i_2 \in S_3) = P(i_2 \in S_2) \times P(i_3 \notin S_3) = (1/2)(2/3) = 1/3$ $P(i_3 \in S_2) = 1/3$

17 / 21

Generation of Non-Uniform Random Numbers

Acceptance-Rejection Convolution Method Composition Method Alias Method Random Permutations and Samples Non-Homogeneous Poisson Processes

Non-Homogeneous Poisson Processes: Thinning

Ordinary (Homogeneous) Poisson process

- Times between successive events are i.i.d. $Exp(\lambda)$
- Event probabilities for disjoint time intervals are independent (Markov property)
- $P(\text{event in } t + \Delta t) \approx \lambda \Delta t \text{ for } \Delta t \text{ very small}$
- $P(T_n > y + z | T_{n-1} = y) = e^{-\lambda z}$

 $P(n \text{ events in } [t, t + \Delta t]) = (\lambda \Delta t)^n e^{-\lambda \Delta t} / n!$

Non-Homogeneous Poisson process

- Event probabilities for disjoint time intervals are independent
- P(event in t + Δt) ≈ λ(t)Δt for Δ very small
 [λ(t) is sometimes called a hazard function]
- $P(T_n > y + z | T_{n-1} = y) = e^{-\int_y^{y+z} \lambda(u) \, du}$
- ► Can capture, e.g., time-of-day effects

Thinning, Continued $\lambda(t)$ Suppose that $\lambda(t) \leq \lambda_{\max}$ for $t \in [0, \tau]$ $\lambda_{
m max}$ ► Idea: Generate "too many" $\sum \lambda(V)$ events according to a Poisson(λ_{max}) process, then Λ T_{n-1} reject some of the events rejected 'accept with prob = Thinning Algorithm: 1. Set $T_0 = 0$, V = 0, and n = 02. Set $n \leftarrow n+1$ [Generate T_n] 3. Generate $E \stackrel{D}{\sim} Exp(\lambda_{max})$ and $U \stackrel{D}{\sim} Uniform(0,1)$ 4. Set $V \leftarrow V + E$ [Proposed event time] 5. If $U < \lambda(V) / \lambda_{max}$ then set $T_n = V$ else go to Step 3 6. If $T_n < \tau$ then go to Step 2 else exit

Thinning, Continued

Ross's Improvement

- Piecewise-constant upper-bounding to reduce rejections
- Correction for event times that span segments

Many other approaches

- ► Inversion (see HW #4)
- Idiosyncratic methods: Exploit special properties of Poisson process

