
Generation of Non-Uniform Random Numbers
Refs: Chapter 8 in Law and book by Devroye (watch for typos)

Peter J. Haas

CS 590M: Simulation
Spring Semester 2020

1 / 21

Generation of Non-Uniform Random Numbers
Acceptance-Rejection
Convolution Method
Composition Method
Alias Method
Random Permutations and Samples
Non-Homogeneous Poisson Processes

2 / 21

Acceptance-Rejection

Goal: Generate a random variate X having pdf fX
I Avoids computation of F−1(u) as in inversion method

I Assumes fX is easy to calculate

Special case: fX (x) > 0 only on [a, b] (finite support)

I Throw down points uniformly in enclosing rectangle R,
reject points above fX curve

	

 fX(x)

 a b
 x

 m

I Return x-coordinate of accepted point

3 / 21

Acceptance-Rejection, Continued

Claim:

x-coordinate of an accepted point has pdf fX

Proof

1. Let (Z1,Z2) be the (x , y)-coordinates of a random point
distributed uniformly in R and fix x ∈ [a, b]

2. Then P(Z1 ≤ x , acceptance) = P
(
Z1 ≤ x ,Z2 ≤ fX (Z1)

)
3. But P

(
Z1 ≤ x ,Z2 ≤ fX (Z1)

)
= prob that (Z1,Z2) falls in

shaded region:

P(Z1 ≤ x , acceptance) =

P(acceptance) =

P(Z1 ≤ x | acceptance) =

4 / 21

	

 x a

 fX(t)

 tb

Acceptance-Rejection, Continued

Acceptance-Rejection Algorithm (Finite Support)

1. Generate U1,U2
D∼ Uniform(0, 1) (U1 and U2 are independent)

2. Set Z1 = a + (b − a)U1 and Z2 = mU2 (inversion method)

3. if Z2 ≤ fX (Z1), return X = Z1, else go to step 1

How many (U1,U2) pairs must we generate?

I N (= number pairs generated) has geometric dist’n:
P(N = k) = p(1− p)k−1 where p = 1/(area of R)

I So E [N] = 1/p = (area of R) = (b − a)m

I So make m as small as possible

5 / 21
	

 fX(x)

 a b
 x

 m

Generalized Acceptance-Rejection: Infinite Support

Find density g that majorizes fX
I There exists a constant c such that fX (x)/c ≤ g(x) for all x

I Smallest such constant is c = sup
x

(
fX (x)/g(x)

)

Generalized Acceptance-Rejection Algorithm

1. Generate Z
D∼ g and U

D∼ Uniform(0, 1) (Z ,U independent)

2. if U g(Z) ≤ fX (Z)/c , return X = Z , else go to step 1

Expected number of (Z ,U) pairs generated: E [N] = c

6 / 21

Convolution Method

Goal: Generate X where X = Y1 + · · ·+Ym [Y1, . . . ,Ym i.i.d.]

I fX = fY1 ∗ fY2 ∗ · · · ∗ fYm

I Where the convolution f ∗ g is defined by
(f ∗ g)(x) =

∫∞
−∞ f (x − y)g(y) dy

Convolution Algorithm

I Generate Y1, . . . ,Ym

I Return X = Y1 + · · ·+ Ym

Example: Binomial Distribution

I Suppose X
D∼ Binom(m, p)

I Then X = Y1 + · · ·+ Ym where Yi
D∼ Bernoulli(p)

I Often part of a more complex algorithm
(e.g., do something else if m large)

7 / 21

Composition Method

Suppose that we can write

I FX (x) = p1FY1(x) + p2FY2(x) + · · ·+ pmFYm(x) or

I fX (x) = p1fY1(x) + p2fY2(x) + · · ·+ pmfYm(x)

where pi ’s are nonnegative and
∑m

i=1 pi = 1

Composition Method

1. Generate a discrete RV J where P(J = j) = pj for 1 ≤ j ≤ m

2. Generate YJ from FYJ
or fYJ

3. Return X = YJ

Can lead to very fast generation algorithms

8 / 21

Composition Method: Example

	
 b a

 fX(x)

 c

 R1 R2

 R3

I Let pi = area of Ri for 1 ≤ i ≤ 3

I Then fX = p1fY1 + p2fY2 + p3fY3 , where

fY1 (x) =

{
2(x−a)
(b−a)2 if a ≤ x ≤ b;

0 otherwise
fY2 (x) =

{
2(c−x)
(c−b)2 if b ≤ x ≤ c ;

0 otherwise

fY3 (x) = (1/p3)
(
fX (x)− p1fY1 (x)− p2fY2 (x)

)
I Easy to generate Y1 and Y2 (the “usual case”):

I Y1 = max(U1,U2) and Y2 = min(U1,U2) or use inversion

9 / 21

Alias Method for Discrete Random Variables

Goal: Generate X with P(X = xi) = pi for 1 ≤ i ≤ n

Easy case: p1 = p2 = · · · = pn

1 2 43

1/4

0 4

Algorithm

1. Generate U
D∼ Uniform(0, 1)

2. Return xJ , where J = dnUe

dxe = smallest integer ≥ x (ceiling function)

10 / 21

Alias Method: General Case

1/6

1/3

1/2

x1 x2 x3

1/6

1/3

1/2

x1

x2

x2
x3

i xi pi ai ri
1 x1 1/6 x2 0.5
2 x2 1/2 x2 1.0
3 x3 1/3 x3 1.0

Alias Algorithm

1. Generate U1,U2
D∼ Uniform(0, 1)

2. Set I = dnU1e
3. If U2 ≤ rI return X = xI else return X = aI

11 / 21

Alias Method: Another Example

1/7

2/7

3/7

x1 x2 x3

7/21

5/21

3/21

9/21

i xi pi ai ri
1 x1 3/7
2 x2 3/7
3 x3 1/7

12 / 21

Generation of Non-Uniform Random Numbers
Acceptance-Rejection
Convolution Method
Composition Method
Alias Method
Random Permutations and Samples
Non-Homogeneous Poisson Processes

13 / 21

Random Permutations: Fisher-Yates Shuffle

Goal: Create random permutation of array x of length n

Fisher-Yates Algorithm

1. Set i ← n

2. Generate random integer N between 1 and i (e.g., as diUe)
3. Swap x [N] and x [i]

4. Set i ← i − 1

5. If i = 1 then exit

a b c d a bcd a bcd a bcd

Q: What about this algorithm:
For i = 1 to n: swap x [i] with random entry

Other random objects: graphs, matrices, random vectors, ...

14 / 21

Sequential Bernoulli Sampling
I Stream of items x1, x2, . . . ,
I Insert each item into sample with probability p
I Expected sample size after nth item = np
I Fast implementation: generate skips directly

(geometrically distributed)

Bernoulli Sampling:

Generate U
D∼ Uniform(0, 1)

Set ∆← 1 + blnU/ ln(1− p)c [Geometric on {1, 2, . . .}, HW #4]
Set m← ∆
Upon arrival of xi :

I if i = m, then
I Include xi in sample

I Generate U
D∼ Uniform(0, 1)

I Set ∆← 1 + blnU/ ln(1− p)c
I set m← m + ∆

15 / 21

Reservoir Sampling

I Stream of items x1, x2, . . . ,

I Maintain a uniform random sample of size N w.o.replacement

Reservoir Sampling:

Upon arrival of xi :

I if i ≤ N, then include xi in sample

I if i > N, then

I Generate U
D∼ Uniform(0, 1)

I If U ≤ N/i , then include xi in sample,
replacing randomly chosen victim

I Can generate skips directly using acceptance-rejection
[JS Vitter, ACM Trans. Math. Softw., 11(1): 37–57, 1985]

16 / 21

Reservoir Sampling: Simple Example

I Sample size = 1

I Si = sample state after processing jth item (called ij)

I accept item i1 into S1 with probability 1

P(i1 ∈ S1) = 1

I accept item i2 into S2 with probability 1/2

P(i1 ∈ S2) = P(i1 ∈ S1)× P(i2 6∈ S2) = (1)(1/2) = 1/2

P(i2 ∈ S2) = 1/2

I accept item i3 into S3 with probability 1/3

P(i1 ∈ S3) = P(i1 ∈ S2)× P(i3 6∈ S3) = (1/2)(2/3) = 1/3

P(i2 ∈ S3) = P(i2 ∈ S2)× P(i3 6∈ S3) = (1/2)(2/3) = 1/3

P(i3 ∈ S2) = 1/3

17 / 21

Generation of Non-Uniform Random Numbers
Acceptance-Rejection
Convolution Method
Composition Method
Alias Method
Random Permutations and Samples
Non-Homogeneous Poisson Processes

18 / 21

Non-Homogeneous Poisson Processes: Thinning

Ordinary (Homogeneous) Poisson process

I Times between successive events are i.i.d. Exp(λ)

I Event probabilities for disjoint time intervals
are independent (Markov property)

I P(event in t + ∆t) ≈ λ∆t for ∆t very small

I P(Tn > y + z | Tn−1 = y) = e−λz

Non-Homogeneous Poisson process

I Event probabilities for disjoint time intervals are independent

I P(event in t + ∆t) ≈ λ(t)∆t for ∆ very small
[λ(t) is sometimes called a hazard function]

I P(Tn > y + z | Tn−1 = y) = e−
∫ y+z
y λ(u) du

I Can capture, e.g., time-of-day effects

19 / 21

P(n events in [t, t + ∆t]) =
(λ∆t)ne−λ∆t/n!

Thinning, Continued
Suppose that λ(t) ≤ λmax

for t ∈ [0, τ]

I Idea: Generate “too many”
events according to a
Poisson(λmax) process, then
reject some of the events

Thinning Algorithm:

1. Set T0 = 0 , V = 0, and n = 0

2. Set n← n + 1 [Generate Tn]

3. Generate E
D∼ Exp(λmax) and U

D∼ Uniform(0, 1)

4. Set V ← V + E [Proposed event time]

5. If U ≤ λ(V)/λmax then set Tn = V else go to Step 3

6. If Tn < τ then go to Step 2 else exit

20 / 21

Thinning, Continued

Ross’s Improvement

I Piecewise-constant upper-bounding to reduce rejections

I Correction for event times that span segments

Many other approaches

I Inversion (see HW #4)

I Idiosyncratic methods:
Exploit special properties of Poisson process

21 / 21

	Generation of Non-Uniform Random Numbers
	Acceptance-Rejection
	Convolution Method
	Composition Method
	Alias Method
	Random Permutations and Samples
	Non-Homogeneous Poisson Processes

