Generation of Non-Uniform Random Numbers Refs: Chapter 8 in Law and book by Devroye (watch for typos)

Peter J. Haas

CS 590M: Simulation Spring Semester 2020

1/21

Generation of Non-Uniform Random Numbers Acceptance-Rejection Convolution Method Composition Method Alias Method Random Permutations and Samples Non-Homogeneous Poisson Processes

2/21

Acceptance-Rejection

Goal: Generate a random variate X having pdf f_X

- Avoids computation of $F^{-1}(u)$ as in inversion method
- Assumes f_X is easy to calculate

Special case: $f_X(x) > 0$ only on [a, b] (finite support)

Throw down points uniformly in enclosing rectangle R, reject points above f_X curve

Return x-coordinate of accepted point

イロン イロン イヨン イヨン 三日

Acceptance-Rejection, Continued

Claim:

x-coordinate of an accepted point has pdf f_X

Proof

- 1. Let (Z_1, Z_2) be the (x, y)-coordinates of a random point distributed uniformly in R and fix $x \in [a, b]$
- 2. Then $P(Z_1 \leq x, \text{acceptance}) = P(Z_1 \leq x, Z_2 \leq f_X(Z_1))$
- 3. But $P(Z_1 \le x, Z_2 \le f_X(Z_1)) = \text{prob that } (Z_1, Z_2) \text{ falls in}$ shaded region:

 $P(Z_{1} \leq x, \text{acceptance}) = \left\{ \begin{array}{c} \int_{X}^{\pi} f_{\lambda}(u) du / \text{Area}(R) \\ P(\text{acceptance}) = P(Z_{1} \neq b, \text{accept}) = \int_{X}^{\pi} f_{\lambda}(u) du \\ = 1 / \text{Arca}(A) \\ P(Z_{1} \leq x \mid \text{acceptance}) = P(Z_{1} \neq A, \text{accept}) \\ = \int_{X}^{\pi} f_{\lambda}(u) du / \text{Area}(A) \\ P(Z_{1} \leq x \mid \text{acceptance}) = P(Z_{1} \neq A, \text{accept}) \\ = \int_{X}^{\pi} f_{\lambda}(u) du / \text{Area}(A) \\ P(Arca(A) = \int_{X}^{\pi} f$ 4 / 21

Acceptance-Rejection, Continued

Acceptance-Rejection Algorithm (Finite Support)

- 1. Generate $U_1, U_2 \stackrel{\text{D}}{\sim} \text{Uniform}(0, 1)$ (U_1 and U_2 are independent)
- 2. Set $Z_1 = a + (b a)U_1$ and $Z_2 = mU_2$ (inversion method)
- 3. if $Z_2 \leq f_X(Z_1)$, return $X = Z_1$, else go to step 1

How many (U_1, U_2) pairs must we generate?

- ► N (= number pairs generated) has geometric dist'n: $P(N = k) = p(1 - p)^{k-1}$ where p = 1/(area of R)
- So E[N] = 1/p = (area of R) = (b a)m
- So make m as small as possible

Generalized Acceptance-Rejection: Infinite Support Much have $C \ge f_{\chi}(\alpha)/g(A)$ $\forall \chi$ Find density g that majorizes f_{χ} choose smallest such <

- There exists a constant c such that $f_X(x)/c \le g(x)$ for all x
- Smallest such constant is $c = \sup(f_X(x)/g(x))$

Generalized Acceptance-Rejection Algorithm

- 1. Generate $Z \stackrel{D}{\sim} g$ and $U \stackrel{D}{\sim}$ Uniform(0,1) (Z, U independent)
- 2. if $Ug(Z) \leq f_X(Z)/c$, return X = Z, else go to step 1

Expected number of (Z, U) pairs generated: E[N] = c

Convolution Method

Goal: Generate X where $X = Y_1 + \cdots + Y_m$

$$\bullet f_X = f_{Y_1} * f_{Y_2} * \cdots * f_{Y_m}$$

• Where the convolution f * g is defined by $(f * g)(x) = \int_{-\infty}^{\infty} f(x - y)g(y) dy$

Convolution Algorithm

• Generate Y_1, \ldots, Y_m

• Return
$$X = Y_1 + \cdots + Y_m$$

Example: Binomial Distribution

- Suppose $X \stackrel{\mathsf{D}}{\sim} \mathsf{Binom}(m, p)$
- Then $X = Y_1 + \cdots + Y_m$ where $Y_i \stackrel{D}{\sim}$ Bernoulli(p)
- Often part of a more complex algorithm (e.g., do something else if *m* large)

Composition Method

Suppose that we can write

- $F_X(x) = p_1 F_{Y_1}(x) + p_2 F_{Y_2}(x) + \dots + p_m F_{Y_m}(x)$ or
- $f_X(x) = p_1 f_{Y_1}(x) + p_2 f_{Y_2}(x) + \dots + p_m f_{Y_m}(x)$
- where $\sum_{i=1}^{m} p_i = 1$ $p_i > 0$ for $\forall i$

Composition Method

- 1. Generate a discrete RV J where $P(J = j) = p_j$ for $1 \le j \le m$
- 2. Generate Y_J from F_{Y_J} or f_{Y_J}
- 3. Return $X = Y_J$

Can lead to very fast generation algorithms

Composition Method: Example

• Let p_i = area of R_i for $1 \le i \le 3$

• Then $f_X = p_1 f_{Y_1} + p_2 f_{Y_2} + p_3 f_{Y_3}$, where

$$f_{Y_1}(x) = \begin{cases} \frac{2(x-a)}{(b-a)^2} & \text{if } a \le x \le b; \\ 0 & \text{otherwise} \end{cases} \qquad f_{Y_2}(x) = \begin{cases} \frac{2(c-x)}{(c-b)^2} & \text{if } b \le x \le c; \\ 0 & \text{otherwise} \end{cases}$$

$$f_{Y_3}(x) = (1/p_3) \big(f_X(x) - p_1 f_{Y_1}(x) - p_2 f_{Y_2}(x) \big)$$

• Easy to generate Y_1 and Y_2 (the "usual case"):

• $Y_1 = \max(U_1, U_2)$ and $Y_2 = \min(U_1, U_2)$ or use inversion

Alias Method for Discrete Random Variables

Goal: Generate X with $P(X = x_i) = p_i$ for $1 \le i \le n$

Easy case: $p_1 = p_2 = \cdots = p_n$

Algorithm

- 1. Generate $U \stackrel{\mathsf{D}}{\sim} \mathsf{Uniform}(0,1)$
- 2. Return x_J , where $J = \lceil nU \rceil$

 $\lceil x \rceil =$ smallest integer $\ge x$ (ceiling function)

イロト 不得下 イヨト イヨト 二日

Alias Method: General Case

i	Xi	pi	ai	ri
1	x_1	1/6	<i>x</i> ₂	0.5
2	<i>x</i> ₂	1/2	<i>x</i> ₂	1.0
3	<i>x</i> ₃	1/3	<i>x</i> ₃	1.0

Alias Algorithm

- 1. Generate $U_1, U_2 \stackrel{D}{\sim} Uniform(0, 1)$
- 2. Set $I = \lceil nU_1 \rceil$
- 3. If $U_2 \leq r_1$ return $X = x_1$ else return $X = a_1$

Alias Method: Another Example

Xi pi ai ri 3/7 1 x_1 2 *x*₂ 3/7 3 1/7Х3

Generation of Non-Uniform Random Numbers

Acceptance-Rejection Convolution Method Composition Method Alias Method Pandom Permutations and Sai

Random Permutations and Samples

Non-Homogeneous Poisson Processes

Random Permutations: Fisher-Yates Shuffle

Goal: Create random permutation of array x of length n

Fisher-Yates Algorithm

- 1. Set $i \leftarrow n$
- 2. Generate random integer N between 1 and i (e.g., as [iU])
- 3. Swap x[N] and x[i]
- 4. Set $i \leftarrow i 1$
- 5. If i = 1 then exit

Q: What about this algorithm: For i = 1 to *n*: swap x[i] with random entry

Other random objects: graphs, matrices, random vectors, ...

<ロ> (四) (四) (三) (三) (三) (三)

Sequential Bernoulli Sampling

- Stream of items $x_1, x_2, \ldots,$
- Insert each item into sample with probability p
- Expected sample size after *n*th item = *np*
- Fast implementation: generate skips directly (geometrically distributed)

Bernoulli Sampling:

Generate $U \stackrel{D}{\sim}$ Uniform(0, 1) Set $\Delta \leftarrow 1 + \lfloor \ln U / \ln(1 - p) \rfloor$ [Geometric on $\{1, 2, ...\}$, HW #4] Set $m \leftarrow \Delta$ Upon arrival of x_i :

- if i = m, then
 - Include x_i in sample
 - Generate $U \stackrel{\text{D}}{\sim} \text{Uniform}(0,1)$
 - Set $\Delta \leftarrow 1 + \lfloor \ln U / \ln(1-p) \rfloor$
 - set $m \leftarrow m + \Delta$

Reservoir Sampling

- Stream of items $x_1, x_2, \ldots,$
- Maintain a uniform random sample of size N w.o.replacement

Reservoir Sampling:

```
Upon arrival of x_i:
```

- if $i \leq N$, then include x_i in sample
- if i > N, then
 - Generate $U \stackrel{\text{D}}{\sim} \text{Uniform}(0,1)$
 - ► If U ≤ N/i, then include x_i in sample, replacing randomly chosen victim
- Can generate skips directly using acceptance-rejection [JS Vitter, ACM Trans. Math. Softw., 11(1): 37–57, 1985]

Reservoir Sampling: Simple Example

- Sample size = 1
- S_i = sample state after processing *j*th item (called *i_j*)
- accept item i_1 into S_1 with probability 1

 $P(i_1 \in S_1) = 1$

• accept item i_2 into S_2 with probability 1/2

 $P(i_{1} \in S_{2}) = P(i_{1} \in S_{1}) \times P(i_{2} \notin S_{2}) = (1)(1/2) = 1/2$

accept item i₃ into S₃ with probability 1/3

 $P(i_{1} \in S_{3}) = P(i_{1} \in S_{2}) \times P(i_{3} \notin S_{3}) = (1/2)(2/3) = 1/3$ $P(i_{2} \in S_{3}) = P(i_{2} \in S_{2}) \times P(i_{3} \notin S_{3}) = (1/2)(2/3) = 1/3$ $P(i_{3} \in S_{2}) = 1/3$

Generation of Non-Uniform Random Numbers

Acceptance-Rejection Convolution Method Composition Method Alias Method Random Permutations and Samples Non-Homogeneous Poisson Processes

Non-Homogeneous Poisson Processes: Thinning

Ordinary (Homogeneous) Poisson process

- Times between successive events are i.i.d. $Exp(\lambda)$
- Event probabilities for disjoint time intervals are independent (Markov property)
- $P(\text{event in } t + \Delta t) \approx \lambda \Delta t$ for Δt very small

$$P(T_n > y + z \mid T_{n-1} = y) = e^{-\lambda z}$$

Non-Homogeneous Poisson process

- Event probabilities for disjoint time intervals are independent
- P(event in t + Δt) ≈ λ(t)Δt for Δ very small [λ(t) is sometimes called a hazard function]

•
$$P(T_n > y + z \mid T_{n-1} = y) = e^{-\int_y^{y+z} \lambda(u) \, du}$$

Can capture, e.g., time-of-day effects

poisson distin

 $P(n \text{ events in } [t, t + \Delta t]) =$

 $(\lambda \Delta t)^n e^{-\lambda \Delta t}/n!$

Thinning, Continued

Suppose that $\lambda(t) \leq \lambda_{\max}$ for $t \in [0, \tau]$

► Idea: Generate "too many" events according to a Poisson(λ_{max}) process, then reject some of the events

Thinning Algorithm:

- 1. Set $T_0 = 0$, V = 0, and n = 0
- 2. Set $n \leftarrow n+1$ [Generate T_n]
- 3. Generate $E \stackrel{D}{\sim} \text{Exp}(\lambda_{\max})$ and $U \stackrel{D}{\sim} \text{Uniform}(0,1)$
- 4. Set $V \leftarrow V + E$ [Proposed event time]
- 5. If $U \leq \lambda(V)/\lambda_{\max}$ then set $T_n = V$ else go to Step 3
- 6. If $T_n < \tau$ then go to Step 2 else exit

Thinning, Continued

Ross's Improvement

- Piecewise-constant upper-bounding to reduce rejections
- Correction for event times that span segments

Many other approaches

- Inversion (see HW #4)
- Idiosyncratic methods: Exploit special properties of Poisson process