Generation of Non-Uniform Random Numbers
Refs: Chapter 8 in Law and book by Devroye (watch for typos)

Peter J. Haas

CS 590M: Simulation
Spring Semester 2020

/21

Generation of Non-Uniform Random Numbers
Acceptance-Rejection
Convolution Method
Composition Method
Alias Method
Random Permutations and Samples
Non-Homogeneous Poisson Processes

)

21

Acceptance-Rejection

Goal: Generate a random variate X having pdf fx
» Avoids computation of F~1(u) as in inversion method

» Assumes fx is easy to calculate

Special case: fx(x) > 0 only on [a, b] (finite support)
» Throw down points uniformly in enclosing rectangle R,
reject points above fx curve

v
i

» Return x-coordinate of accepted point

21

Acceptance-Rejection, Continued

x-coordinate of an accepted point has pdf fx

Claim: J

Proof

1. Let (Z1, Z>) be the (x, y)-coordinates of a random point
distributed uniformly in R and fix x € [a, b]

2. Then P(Z; < x,acceptance) = P(Zl <x,Z» < fX(Zl))
3. But P(Zl <x,24 < fx(Zl)) = prob that (Zl,ZQ) falls in

shaded region:
g [gy /,w(m

y / rea(h)
P(acceptance) = (Z"A “‘&f’l) Sflhf (kt
= ’/Avca(/‘)

P(Z; < x| acceptance 144 mif'/} N

yf /M)Jq fﬂyea(/l) p(ac wp”) ’
real A) 'ff/“)y/bl/ 4/21

P(Z; < x, acceptance) = «

Acceptance-Rejection, Continued

Acceptance-Rejection Algorithm (Finite Support)

1. Generate Ui, U> R Uniform(0, 1) (Ui and Us are independent)
2. Set Zy = a+ (b— a)Ui and Z, = mU; (inversion method)
3. if Zp < fx(Z1), return X = Z3, else go to step 1

How many (U, U>) pairs must we generate?
» N (= number pairs generated) has geometric dist'n:
P(N = k) = p(1 — p)*~! where p = 1/(area of R)
» So E[N]=1/p = (areaof R) =(b—a)m

» So make m as small as possible x m
£(x) | m

Generalized Acceptance-Rejection: Infinite Support

muct hat ¢ = ,&m)/ywv) V %

Find density g that majorizes fx “loose swallest such
» There exists a constant ¢ such that fx(x)/c < g(x) for aII X
» Smallest such constant is ¢ = sup(fx(x)/g(x))
X

Generalized Acceptance-Rejection Algorithm

1. Generate Z g and U R Uniform(0, 1) (Z, U independent)
2. if Ug(Z) < fx(Z)/c, return X = Z, else go to step 1

Expected number of (Z, U) pairs generated: E[N] = ¢

21

Convolution Method

Goal: Generate X where X =Y+ ---+ Y,
> fX:fyl*fy2>k'~>kfym

» Where the convolution f * g is defined by
(Fxg)(x) = [, f(x —y)g(y) dy

Convolution Algorithm
> Generate Yi1,..., Yn
» Return X =Y1+---+ Yn

Example: Binomial Distribution

» Suppose X Y Binom(m, p)

» Then X = Y1 +---+ Y, where Y; R Bernoulli(p)

» Often part of a more complex algorithm
(e.g., do something else if m large)

21

Composition Method

Suppose that we can write
> Fx(x) = p1Fy,(X) + p2Fy,(x) + - + pmFy,, (x) or
> fx(x) = pifvi(x) + p2fy,(x) + - + pmfy,, (x)
where Y7 pi=1 P{ S0 _?ov.\J.'

Composition Method
1. Generate a discrete RV J where P(J =) =pjfor 1 <j<m
2. Generate Y, from Fy, or fy,
3. Return X =Y/

Can lead to very fast generation algorithms

21

Composition Method: Example

R;

Ry R,

a b c

> Let pj = areaof R; for1 </ <3
» Then fx = pify, + pofy, + pafy,, where

2-3) if o< x < by A=) if p< x < ¢
fra(x) = {(b_a) - J fro(x) = ¢ (c=P) T

0 otherwise 0 otherwise

|

fry(x) = (1/p3) (fx(x) — prfvi(x) — p2fv, (X))

» Easy to generate Y7 and Y: (the “usual case”):
» Yy = max(Uy, Uz) and Yo = min(Uy, U,) or use inversion

/21

Alias Method for Discrete Random Variables
Goal: Generate X with P(X =x;) =p; for 1 <i<n
Easy case: py = pp = --- = p,

1/4

Algorithm

1. Generate U R Uniform(0, 1)
2. Return x;, where J = [nU]

[x] = smallest integer > x (ceiling function)

10/21

Alias Method: General Case

12 12

I X pi a n
13 13 1 x3 1/6 xx 05
. 6 " 2 X2 1/2 X2 1.0
s 3 X3 1/3 X3 1.0

Xy Xp X3

Alias Algorithm

1. Generate Uy, U 2 Uniform(0, 1)
2. Set | = fnUﬂ

3. If Uy < rj return X = x; else return X = g

11/21

Alias Method: Another Example

317

217

1/7

Xq

X2

7

2 »

9/21 |-
7/21 |
—_— 521 |
3/21 |
X3
I Xi piai fr
1 x1 3/7 /ﬂ) |
2 x 3/7 y, s/
3 xs YT %, 3/7

12/21

Generation of Non-Uniform Random Numbers

Random Permutations and Samples

13/21

Random Permutations: Fisher-Yates Shuffle

Goal: Create random permutation of array x of length n

Fisher-Yates Algorithm

1.

OISR CORIIND

Set i< n

Generate random integer N between 1 and i (e.g., as [iU])
Swap x[N] and x][i]

Set i« i—1

If i =1 then exit

[alefeld] [afafcfo][afdfc]o|[d]a]c]o]

Q: What about this algorithm:
For i =1 to n: swap x[i] with random entry

Other random objects: graphs, matrices, random vectors, ...

14 /21

Sequential Bernoulli Sampling

» Stream of items xi, xo, .. .,

> Insert each item into sample with probability p

» Expected sample size after nth item = np

» Fast implementation: generate skips directly
(geometrically distributed)

Bernoulli Sampling:

Generate U 2 Uniform(0, 1)
Set A <1+ |InU/In(1 — p)| [Geometric on {1,2,...}, HW #4]
Set m«+ A
Upon arrival of x;:
» if i = m, then

v

Include x; in sample
Generate U 2 Uniform(0, 1)

Set A« 1+ |[InU/In(1—p)]
set m+— m+ A

v

v

v

15/21

Reservoir Sampling

» Stream of items xi, xo, .. .,

» Maintain a uniform random sample of size N w.o.replacement

Reservoir Sampling:

Upon arrival of x;:
» if i < N, then include x; in sample
» if i > N, then

> Generate U ~ Uniform(0, 1)
» If U < N/, then include x; in sample,
replacing randomly chosen victim

» Can generate skips directly using acceptance-rejection
[JS Vitter, ACM Trans. Math. Softw., 11(1): 37-57, 1985]

16 /21

Reservoir Sampling: Simple Example

v

Sample size =1

v

S; = sample state after processing jth item (called ij)

v

accept item /i into S; with probability 1

P(ii € 5)=1

v

accept item ip into Sy with probability 1/2
e 1 10
i € 5) = P(ir € $1) x P(ia & $) = (1)(1/2) = 1/2 A |

P(ip € S5)=1)2 w} P]/Dh5

accept item i3 into Sz with probability 1/3

Pli € 53) = Pir € S2) x Plis ¢ 53) = (1/2)(2/3) = 1/3)y
P € S3) = P(i € %) x P(is & S3) = (1/2)(2/3) = 1/3 | p
P(izs € Sy)=1/3

17/21

v

Generation of Non-Uniform Random Numbers

Non-Homogeneous Poisson Processes

18/21

Non-Homogeneous Poisson Processes: Thinning

Ordinary (Homogeneous) Poisson process
» Times between successive events are i.i.d. Exp(\)
» Event probabilities for disjoint time intervals
are independent (Markov property) A\Z‘
> P(event in t + At) ~ A\At for At very small Po\\g‘)cﬂ\ \
> P(Th>y+z|Thr=y)=e? P(n events in [t,t + At])

(AAt)"e At /nl
Non-Homogeneous Poisson process

» Event probabilities for disjoint time intervals are independent

» P(event in t + At) =~ A(t)At for A very small
[A(t) is sometimes called a hazard function]

» P(Th>y+z| Tho1=y)= effyHZ,\(u)du

» Can capture, e.g., time-of-day effects

A

19/21

nni ; Hrow i +
Thinning, Continued Tirbu A("'t) pleve Mf‘{huﬁ)4)*f(d&€ﬁj)
Suppose that \(t) < Amax NP ALY

= ,{mva-"gg = AMV}‘M

for t € [0, 7] Amax {7 An#ELIL v

» |dea: Generate “too many” 1
events according to a
Poisson(Amax) process, then (‘) I ‘L '

reject some of the events _ T N
rejected accept with prob =

I

AV)
/\mnx

Thinning Algorithm:
1. Set o =0,V =0,and n=0
2. Set n< n+1 [Generate Tj]
3. Generate E 2 Exp(Amax) and U R Uniform(0, 1)
4. Set V< V + E [Proposed event time]
5. 1f U < A(V)/Amax then set T, = V else go to Step 3
6. If T, < 7 then go to Step 2 else exit

20/21

Thinning, Continued

AV
accept with prob = (/\7)
1

Ross’s Improvement
> Piecewise-constant upper-bounding to reduce rejections

» Correction for event times that span segments

Many other approaches
> Inversion (see HW #4)

» Idiosyncratic methods:
Exploit special properties of Poisson process

21/21

