Generation of Non-Uniform Random Numbers
 Refs: Chapter 8 in Law and book by Devroye (watch for typos)

Peter J. Haas

CS 590M: Simulation
Spring Semester 2020

Generation of Non-Uniform Random Numbers Acceptance-Rejection
Convolution Method
Composition Method
Alias Method
Random Permutations and Samples Non-Homogeneous Poisson Processes

Acceptance-Rejection

Goal: Generate a random variate X having pdf f_{X}

- Avoids computation of $F^{-1}(u)$ as in inversion method
- Assumes f_{X} is easy to calculate

Special case: $f_{X}(x)>0$ only on $[a, b]$ (finite support)

- Throw down points uniformly in enclosing rectangle R, reject points above f_{X} curve

- Return x-coordinate of accepted point

Acceptance-Rejection, Continued

Claim:
x-coordinate of an accepted point has pdf f_{X}

Proof

1. Let $\left(Z_{1}, Z_{2}\right)$ be the (x, y)-coordinates of a random point distributed uniformly in R and fix $x \in[a, b]$
2. Then $P\left(Z_{1} \leq x\right.$, acceptance $)=P\left(Z_{1} \leq x, Z_{2} \leq f_{X}\left(Z_{1}\right)\right)$
3. But $P\left(Z_{1} \leq x, Z_{2} \leq f_{X}\left(Z_{1}\right)\right)=$ prob that $\left(Z_{1}, Z_{2}\right)$ falls in

$$
\begin{aligned}
& \text { shaded region: } \\
& P\left(Z_{1} \leq x, \text { acceptance }\right)=\int_{a}^{x} f_{x}(u) d u / \operatorname{Arca}(R) \\
& P(\text { acceptance })=P\left(Z_{1} \leq b, a c c o p t\right)=\int_{a}^{b} f_{x}(u) d u / \operatorname{Arca}(A) \\
& =1 / \operatorname{Arca}(A) \\
& P\left(Z_{1} \leq x\right) \\
& =\frac{\int_{0}^{x} f_{x}(u) d u / \operatorname{Arcea}(A)}{1 / \operatorname{Arca}(A)}=\int_{0} S^{x} f_{x}(a c c e p t)
\end{aligned}
$$

Acceptance-Rejection, Continued

Acceptance-Rejection Algorithm (Finite Support)

1. Generate $U_{1}, U_{2} \stackrel{D}{\sim} \operatorname{Uniform}(0,1)$ (U_{1} and U_{2} are independent)
2. Set $Z_{1}=a+(b-a) U_{1}$ and $Z_{2}=m U_{2}$ (inversion method)
3. if $Z_{2} \leq f_{X}\left(Z_{1}\right)$, return $X=Z_{1}$, else go to step 1

How many (U_{1}, U_{2}) pairs must we generate?

- $N(=$ number pairs generated) has geometric dist'n: $P(N=k)=p(1-p)^{k-1}$ where $p=1 /($ area of $R)$
- So $E[N]=1 / p=($ area of $R)=(b-a) m$
- So make m as small as possible

Generalized Acceptance-Rejection: Infinite Support

$$
\text { must have } c \geqslant f_{x}(x) / g(x) \quad \forall x
$$

Find density g that majorizes $f_{X} \quad$ choose smallest such <

- There exists a constant c such that $f_{X}(x) / c \leq g(x)$ for all x
- Smallest such constant is $c=\sup \left(f_{X}(x) / g(x)\right)$

Generalized Acceptance-Rejection Algorithm

1. Generate $Z \stackrel{\mathrm{D}}{\sim} g$ and $U \stackrel{\mathrm{D}}{\sim}$ Uniform $(0,1)(Z, U$ independent)
2. if $U g(Z) \leq f_{X}(Z) / c$, return $X=Z$, else go to step 1

Expected number of (Z, U) pairs generated: $E[N]=c$

Convolution Method

Goal: Generate X where $X=Y_{1}+\cdots+Y_{m} \quad$ i; s are 110

- $f_{X}=f_{Y_{1}} * f_{Y_{2}} * \cdots * f_{Y_{m}}$
- Where the convolution $f * g$ is defined by

$$
(f * g)(x)=\int_{-\infty}^{\infty} f(x-y) g(y) d y
$$

Convolution Algorithm

- Generate Y_{1}, \ldots, Y_{m}
- Return $X=Y_{1}+\cdots+Y_{m}$

Example: Binomial Distribution

- Suppose $X \stackrel{\mathrm{D}}{\sim} \operatorname{Binom}(m, p)$
- Then $X=Y_{1}+\cdots+Y_{m}$ where $Y_{i} \stackrel{\mathrm{D}}{\sim} \operatorname{Bernoulli}(p)$
- Often part of a more complex algorithm (e.g., do something else if m large)

Composition Method

Suppose that we can write

- $F_{X}(x)=p_{1} F_{Y_{1}}(x)+p_{2} F_{Y_{2}}(x)+\cdots+p_{m} F_{Y_{m}}(x)$ or
- $f_{X}(x)=p_{1} f_{Y_{1}}(x)+p_{2} f_{Y_{2}}(x)+\cdots+p_{m} f_{Y_{m}}(x)$
where $\sum_{i=1}^{m} p_{i}=1 \quad p_{i}>0$ for $\forall i$
Composition Method

1. Generate a discrete RV J where $P(J=j)=p_{j}$ for $1 \leq j \leq m$
2. Generate Y_{J} from $F_{Y_{J}}$ or $f_{Y_{J}}$
3. Return $X=Y_{J}$

Can lead to very fast generation algorithms

Composition Method: Example

- Let $p_{i}=$ area of R_{i} for $1 \leq i \leq 3$
- Then $f_{X}=p_{1} f_{Y_{1}}+p_{2} f_{Y_{2}}+p_{3} f_{Y_{3}}$, where

$$
f_{Y_{1}}(x)=\left\{\begin{array}{ll}
\frac{2(x-a)}{(b-a)^{2}} & \text { if } a \leq x \leq b ; \\
0 & \text { otherwise }
\end{array} \quad \quad f_{Y_{2}}(x)= \begin{cases}\frac{2(c-x)}{(c-b)^{2}} & \text { if } b \leq x \leq c ; \\
0 & \text { otherwise }\end{cases}\right.
$$

$$
f_{Y_{3}}(x)=\left(1 / p_{3}\right)\left(f_{X}(x)-p_{1} f_{Y_{1}}(x)-p_{2} f_{Y_{2}}(x)\right)
$$

- Easy to generate Y_{1} and Y_{2} (the "usual case"):
- $Y_{1}=\max \left(U_{1}, U_{2}\right)$ and $Y_{2}=\min \left(U_{1}, U_{2}\right)$ or use inversion

Alias Method for Discrete Random Variables

Goal: Generate X with $P\left(X=x_{i}\right)=p_{i}$ for $1 \leq i \leq n$
Easy case: $p_{1}=p_{2}=\cdots=p_{n}$

Algorithm

1. Generate $U \stackrel{D}{\sim}$ Uniform $(0,1)$
2. Return x_{J}, where $J=\lceil n U\rceil$
$\lceil x\rceil=$ smallest integer $\geq x$ (ceiling function)

Alias Method: General Case

i	x_{i}	p_{i}	a_{i}	r_{i}
1	x_{1}	$1 / 6$	x_{2}	0.5
2	x_{2}	$1 / 2$	x_{2}	1.0
3	x_{3}	$1 / 3$	x_{3}	1.0

Alias Algorithm

1. Generate $U_{1}, U_{2} \stackrel{D}{\sim} \operatorname{Uniform}(0,1)$
2. Set $I=\left\lceil n U_{1}\right\rceil$
3. If $U_{2} \leq r_{I}$ return $X=x_{\text {I }}$ else return $X=a_{\text {I }}$

Alias Method: Another Example

$$
\begin{array}{ccccc}
\hline i & x_{i} & p_{i} & a_{i} & r_{i} \\
\hline 1 & x_{1} & 3 / 7 & x_{1} & 1 \\
2 & x_{2} & 3 / 7 & x_{1} & 5 / 7 \\
3 & x_{3} & 1 / 7 & x_{2} & 3 / 7 \\
\hline
\end{array}
$$

Generation of Non-Uniform Random Numbers
Acceptance-Rejection
Convolution Method
Composition Method
Alias Method
Random Permutations and Samples Non-Homogeneous Poisson Processes

Random Permutations: Fisher-Yates Shuffle

Goal: Create random permutation of array x of length n
Fisher-Yates Algorithm

1. Set $i \leftarrow n$
2. Generate random integer N between 1 and i (e.g., as $\lceil i U\rceil)$
3. Swap $x[N]$ and $x[i]$
4. Set $i \leftarrow i-1$
5. If $i=1$ then exit

Q: What about this algorithm:
For $i=1$ to n : swap $x[i]$ with random entry
Other random objects: graphs, matrices, random vectors, ...

Sequential Bernoulli Sampling

- Stream of items x_{1}, x_{2}, \ldots,
- Insert each item into sample with probability p
- Expected sample size after nth item $=n p$
- Fast implementation: generate skips directly (geometrically distributed)

Bernoulli Sampling:
Generate $U \stackrel{D}{\sim}$ Uniform $(0,1)$
Set $\Delta \leftarrow 1+\lfloor\ln U / \ln (1-p)\rfloor$ [Geometric on $\{1,2, \ldots\}$, HW \#4] Set $m \leftarrow \Delta$
Upon arrival of x_{i} :

- if $i=m$, then
- Include x_{i} in sample
- Generate $U \stackrel{D}{\sim} \operatorname{Uniform}(0,1)$
- Set $\Delta \leftarrow 1+\lfloor\ln U / \ln (1-p)\rfloor$
- set $m \leftarrow m+\Delta$

Reservoir Sampling

- Stream of items x_{1}, x_{2}, \ldots,
- Maintain a uniform random sample of size N w.o.replacement

Reservoir Sampling:

Upon arrival of x_{i} :

- if $i \leq N$, then include x_{i} in sample
- if $i>N$, then
- Generate $U \stackrel{D}{\sim}$ Uniform $(0,1)$
- If $U \leq N / i$, then include x_{i} in sample, replacing randomly chosen victim
- Can generate skips directly using acceptance-rejection [JS Vitter, ACM Trans. Math. Softw., 11(1): 37-57, 1985]

Reservoir Sampling: Simple Example

- Sample size $=1$
- $S_{i}=$ sample state after processing j th item (called i_{j})
- accept item i_{1} into S_{1} with probability 1

$$
P\left(i_{1} \in S_{1}\right)=1
$$

- accept item i_{2} into S_{2} with probability $1 / 2$

$$
\left.\begin{array}{l}
P\left(i_{1} \in S_{2}\right)=P\left(i_{1} \in S_{1}\right) \times P\left(i_{2} \notin S_{2}\right)=(1)(1 / 2)=1 / 2 \\
P\left(i_{2} \in S_{2}\right)=1 / 2
\end{array}\right\} \begin{aligned}
& \text { equal }
\end{aligned}
$$

- accept item i_{3} into S_{3} with probability $1 / 3$

$$
\left.\begin{array}{l}
P\left(i_{1} \in S_{3}\right)=P\left(i_{1} \in S_{2}\right) \times P\left(i_{3} \notin S_{3}\right)=(1 / 2)(2 / 3)=1 / 3 \\
P\left(i_{2} \in S_{3}\right)=P\left(i_{2} \in S_{2}\right) \times P\left(i_{3} \notin S_{3}\right)=(1 / 2)(2 / 3)=1 / 3 \\
P\left(i_{3} \in S_{2}\right)=1 / 3
\end{array}\right\} \begin{aligned}
& \text { equid } \\
& \text { prats }
\end{aligned}
$$

Generation of Non-Uniform Random Numbers
Acceptance-Rejection
Convolution Method
Composition Method
Alias Method
Random Permutations and Samples
Non-Homogeneous Poisson Processes

Non-Homogeneous Poisson Processes: Thinning

Ordinary (Homogeneous) Poisson process

- Times between successive events are i.i.d. $\operatorname{Exp}(\lambda)$
- Event probabilities for disjoint time intervals are independent (Markov property)
- $P($ event in $t+\Delta t) \approx \lambda \Delta t$ for Δt very small
- $P\left(T_{n}>y+z \mid T_{n-1}=y\right)=e^{-\lambda z}$

$$
\begin{aligned}
& \text { y small } \quad \operatorname{pol}^{3} 3^{n} \operatorname{dis} l^{\prime \prime n} \\
& P(n \text { events in }[t, t+\Delta t])= \\
& (\lambda \Delta t)^{n} e^{-\lambda \Delta t} / n!
\end{aligned}
$$

Non-Homogeneous Poisson process

- Event probabilities for disjoint time intervals are independent
- $P($ event in $t+\Delta t) \approx \lambda(t) \Delta t$ for Δ very small [$\lambda(t)$ is sometimes called a hazard function]
- $P\left(T_{n}>y+z \mid T_{n-1}=y\right)=e^{-\int_{y}^{y+z} \lambda(u) d u}$
- Can capture, e.g., time-of-day effects

Thinning, Continued
Suppose that $\lambda(t) \leq \lambda_{\text {max }}$ for $t \in[0, \tau]$

- Idea: Generate "too many" events according to a Poisson $\left(\lambda_{\max }\right)$ process, then reject some of the events
$\begin{aligned} \begin{array}{c}\text { Intuition: } \\ \lambda(t)\end{array} & P \text { (event in } V+\Delta t) \\ = & P\left(\lambda_{\text {maxa }} \text { event in } V+\Delta t\right) \cdot P \text { (accept) }\end{aligned}$
Thinning Algorithm:

1. Set $T_{0}=0, V=0$, and $n=0$
2. Set $n \leftarrow n+1 \quad$ [Generate T_{n}]
3. Generate $E \stackrel{D}{\sim} \operatorname{Exp}\left(\lambda_{\max }\right)$ and $U \stackrel{D}{\sim} \operatorname{Uniform}(0,1)$
4. Set $V \leftarrow V+E \quad$ [Proposed event time]
5. If $U \leq \lambda(V) / \lambda_{\max }$ then set $T_{n}=V$ else go to Step 3
6. If $T_{n}<\tau$ then go to Step 2 else exit

Thinning, Continued

Ross's Improvement

- Piecewise-constant upper-bounding to reduce rejections
- Correction for event times that span segments

Many other approaches

- Inversion (see HW \#4)
- Idiosyncratic methods:

Exploit special properties of Poisson process

