Input Distributions Reading: Chapter 6 in Law

Peter J. Haas

CS 590M: Simulation Spring Semester 2020

1/22

Input Distributions

Overview Probability Theory for Choosing Distributions Data-Driven Approaches Other Approaches to Input Distributions

Overview

To specify a simulation model, we need to define clock-setting "input" sequences

Examples:

- Interarrival sequences
- Processing time sequences for a production system
- Asset-value sequence for a financial model

Even if we assume i.i.d. sequences for simplicity...

- What type of distribution should we use (gamma, Weibull, normal, exponential,...)?
- Given a type of probability distribution (i.e., a "distribution family") what parameter values should we use?

Two approaches: probability theory and historical data

Input Distributions

Overview

Probability Theory for Choosing Distributions

Data-Driven Approaches Other Approaches to Input Distribution

Theoretical Justification for Normal Random Variables

Suppose that *X* can be expressed as a sum of random variables: $X = Y_1 + Y_2 + \cdots + Y_n$

In great generality, versions of CLT imply that $X \stackrel{D}{\sim} N(\mu, \sigma^2)$ (approx.) for large *n*, where $\mu = E[X]$ and $\sigma^2 = Var[X]$

- Y_i's need not be i.i.d., just not "too dependent" and not "too non-identical"
- Q: Examples where CLT breaks down?

 $X_1 = X_n = \dots$ (too dependent) $X_1 \stackrel{\circ}{=} U [10]^{\circ}, 10^{\circ}$ and $X_1 \stackrel{\circ}{=} U [10^{-20}, 10^{10}]$ for i > 1 (too heterogeneous)

Moral:

If X is the sum of a large number of other random quantities, then X can be approx. modeled as a normal random variable.

Theoretical Justification for Lognormal Random Variables

Suppose that X can be expressed as a product of random variables: $X = Z_1 Z_2 \cdots Z_n$

• Example: Value of a financial asset $Z_{2} = Z_{1}(Hr_{1})_{1} = Z_{2}(Hr_{2})_{1}$

Then $\log(X) = Y_1 + Y_2 + \cdots + Y_n$, where $Y_i = \log(Z_i)$

By prior discussion, $\log(X) \stackrel{\mathbf{D}}{\sim} N(\mu, \sigma^2)$ (approx.) for large *n*, i.e. $X \stackrel{\mathbf{D}}{\sim} \exp(N(0, 1))$, so that X is approximately lognormally distributed

Moral:

If X is the product of a large number of other random quantities, then X can be approx. modeled as a lognormal random variable.

Theoretical Justification for Poisson Arrival Process

Suppose that the arrival process is a superposition of arrivals from a variety of statistically independent sources

The Palm-Khintchine Theorem says that superposition of n i.i.d. sources looks \approx Poisson as n becomes large

Can relax i.i.d. assumption

Moral:

Poisson process often a reasonable model of arrival processes.

(But beware of long-range dependence)

イロト イポト イヨト イヨト

Theoretical Justification for Weibull Distribution

Suppose that X can be expressed as a minimum of nonnegative random variables: $X = \min_{1 \le i \le n} Y_i$

Example: Lifetime of a complex system

Extreme-value theory (Gnedenko's Theorem) says that if Y_i 's are i.i.d. then X has approximately a Weibull distribution when *n* is large: $P(X \le x) = 1 - e^{-(\lambda x)^{\alpha}}$

• α is the *shape* parameter and λ is the *scale* parameter

Moral:

If X is the the lifetime of a complicated component, then X can be approx. modeled as a Weibull random variable.

Controlling the Variability

Squared coefficient of variation: $\rho^2(X) = \frac{Var(X)}{(E[X])^2}$

Case 1: $X \stackrel{D}{\sim} \exp(\lambda)$ $\rho^2(X) = 1$

Case 2:
$$X \stackrel{D}{\sim} \operatorname{gamma}(\lambda, \alpha)$$
 $f_X(x) = \lambda e^{-\lambda x} (\lambda x)^{\alpha - 1} / \Gamma(\alpha)$
 $\rho^2(X) = \frac{\alpha/\lambda^2}{(\alpha/\lambda)^2} = \frac{1}{\alpha}$

Three scenarios to play with:

- $\alpha > 1$: less variable than exponential
- ▶ α = 1: exponential
- $\alpha < 1$: more variable than exponential

Input Distributions

Overview Probability Theory for Choosing Distributions Data-Driven Approaches

Goodness-of-Fit Software

GoF software applies a set of goodness-of-fit tests to select distribution family with "best fit" to data $Q - Q p^{lot}$

 chi-square, Kolmogorov-Smirnov, Epps-Singleton, Anderson-Darling, ...

GoF software must be used with caution

- Low power: Poor discrimination between different distributions
- Sequential testing: Test properties mathematically ill-defined
- Discourages sensitivity analysis: Unwary users stop with "best"
- Can obscure non-i.i.d. features: e.g., trends, autocorrelation
- Fails on big data: All test fail on real-world datasets
- Over-reliance on summary statistics: Should also plot data
 - Ex: Q-Q plots [Law, p. 339-344] better indicate departures from candidate distribution (lower/upper, heavy/light tails)

Feature Matching to Data

Pragmatic approach: match key features in the data

Ex: Use gamma dist'n, match first two empirical moments

- Hence match the empirical coefficient of variation (see below)
- Note: nothing about "process physics" implies gamma, we use it for it's convenence and flexibility in modeling a range of variability

Can use even more flexible distribution families

- Ex: Johnson translation system (4 parameters)
- Ex: Generalized lambda distribution (4 parameters)
- Useful when extreme values not important to simulation [Nelson (2013), pp. 113–116]

Estimating Parameters: Maximum Likelihood Method

Ex: Geometric distribution

Number of failures before first success in Bernoulli trials. success probability = p

►
$$P\{X = k\} = (1 - p)^k p \text{ for } k \ge 0$$
 $\chi_1 \chi_2 \chi_3 \chi_4$

- How to estimate p given four observations of X? X = 3, 5, 2, 8
- Given a value of p, likelihood for obs1: $(I-P)^{3} \rho$ obs2: $(I-\rho)^{5} \rho$ obs3: $(I-\rho)^{5} \rho$ obs4: $(I-\rho)^{4} \rho^{4}$ Joint likelihood L(p) for all four observations: $(I-\rho)^{4} \rho^{4}$
- Choose estimator \hat{p} to maximize L(p) ("best explains data")
- $\begin{aligned} \mathbf{E}_{quivalently, maximize } \tilde{L}(p) &= \log(L(p)): 13 \cdot \log(1-p) + 4 \log(p) \\ \tilde{L}(p) &= 0 \implies \hat{p} = \frac{4}{12} = \frac{1}{1+X_4} \qquad \tilde{X}_4 = \arg(X_1, X_n, X_3, X_4) \end{aligned}$

Maximum Likelihood, Continued

Ex: Poisson arrival process to a queue

- Exponential interarrivals: 3.0, 1.0, 4.0, 3.0, 8.0
- Goal: estimate λ
- For a continuous dist'n, likelihood of an observation = pdf • Given a value of λ , likelihoods for observations: $\lambda e^{3\lambda}$ $\lambda e^{4\lambda}$ • Joint likelihood: $L(\lambda) = \lambda^5 e^{-i\theta_{\lambda}}$
- Joint log-likelihood: $\tilde{L}(\lambda) = 5 \log(\lambda) 19 \lambda$
- Estimate $\hat{\lambda} = \tilde{\boldsymbol{L}}'(\boldsymbol{\lambda}) = \mathcal{O}$ ₹ =19 => f = 5/9

Q: Why is this a reasonable estimator? $\chi_{n}^{\nu} \exp(\lambda)$ ビスコーシー トーション

Maximum Likelihood, Continued

General setup (continuous i.i.d. case)

- Given X_1, \ldots, X_n i.i.d. samples from pdf $f(\cdot; \alpha_1, \ldots, \alpha_k)$
- MLE's $\hat{\alpha}_1, \ldots, \hat{\alpha}_k$ maximize the likelihood function

$$L_n(\alpha_1,\ldots,\alpha_k)=\prod_{i=1}^n f(X_i;\alpha_1,\ldots,\alpha_k)$$

or, equivalently, the log-likelihood function

$$\tilde{L}_n(\alpha_1,\ldots,\alpha_k) = \sum_{i=1}^n \log(f(X_i;\alpha_1,\ldots,\alpha_k))$$

For discrete case use pmf instead of pdf

Maximum Likelihood, Continued

Maximizing the likelihood function

Simple case: solve

$$\frac{\partial \tilde{\mathcal{L}}_n(\hat{\alpha}_1,\ldots,\hat{\alpha}_k)}{\partial \alpha_i} = 0, \qquad \text{for } i = 1, 2, \ldots, k$$

- Harder cases: maximum occurs on boundary, constraints (Kuhn-Tucker conditions)
- Hardest cases (typical in practice): solve numerically

Why bother?

- MLEs maximize asymptotic statistic efficiency
- For large n, MLEs "squeeze maximal info from sample" (i.e., smallest variance ⇒ narrowest confidence intervals)

Estimating Parameters: Method of Moments

Idea: equate k sample moments to k true moments & solve

Example: Exponential distribution

- k = 1 and $E[X] = 1/\lambda$
- So equate first moments:

$$ar{X}_n = 1/\hat{\lambda} \quad \Rightarrow \quad \hat{\lambda} = 1/ar{X}_n$$

Example: Gamma distribution

•
$$k = 2$$
, $E[X] = \alpha/\lambda$, and $Var[X] = \alpha/\lambda^2$

equate moments:

 $ar{X}_n = \hat{lpha}/\hat{\lambda}$ and $s_n^2 = \hat{lpha}/\hat{\lambda}^2 \quad \Rightarrow \quad \hat{lpha} = ar{X}_n^2/s_n^2$ and $\hat{\lambda} = ar{X}_n/s_n^2$

Can match other stats, e.g., quantiles [Nelson 2013, p. 115]

Bayesian Parameter Estimation

View unknown parameter θ as a random variable with prior distribution $f(\theta)$

- Encapsulates prior knowledge about θ before seeing data
- Ex: If we know that $\theta \in [5, 10]$ set f = Uniform(5, 10)

After seeing data Y, use Bayes' Rule to compute posterior

 $f(\theta \mid Y) = f(Y \mid \theta) f(\theta)/c$

where $f(Y \mid \theta)$ is the likelihood of Y under θ and c is normalizing constant ρ of the likelihood of Y under θ and c is normalizing

Estimate θ by mean (or mode) of posterior

- $f(\theta \mid Y)$ usually very complex
- Use Markov Chain Monte Carlo (MCMC) to estimate mean see HW 2

Bayesian Parameter Estimation, Continued

Simple example (see refresher handout)

- Goal: Estimate success probability for Bernoulli distribution
- Assume a Beta (α, β) prior on θ
- Observe n Bernoulli trials with Y successes
- $Y \mid \theta$ has Binomial (n, θ) likelihood distribution

Input Distributions

Overview Probability Theory for Choosing Distributions Data-Driven Approaches

Other Approaches to Input Distributions

Other Approaches to Input Distributions

Trace-driven simulation: Use actual measured values

- Can't generalize simulation results beyond data
- Can't assess variability
- Hard to do "what if' and sensitivity analyses
- Privacy concerns
- Bootstrapping can help [Efron and Tibshirani book]

Empirical Distributions

- $\hat{F}_n(x) = (1/n)(\# \text{ obs } \le x)$ or use histogram [Law 6.4.2]
- Truncation effect: problems with tail probabilities
- No smoothing \Rightarrow sensitive to data anomalies

Modified Empirical Distributions

- Smoothed empirical distribution with exponential tail
 Bratley et al. pp. 121 (199) [Bratley et al., pp. 131–132]
- Bezier distributions [Law, Sec. 6.9]

Other Approaches to Input Distributions, Continued

Generative neural networks (current research with Cen Wang)

- Good for situations with lots of historical data
- Automated distribution fitting
- Can deal with multimodal, non-i.i.d. arrival-process distributions
- Automatic generation of samples via fast matrix multiplications