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Overview

To specify a simulation model, we need to define
clock-setting “input” sequences

Examples:

I Interarrival sequences

I Processing time sequences for a production system

I Asset-value sequence for a financial model

Even if we assume i.i.d. sequences for simplicity...

I What type of distribution should we use (gamma, Weibull,
normal, exponential,. . .)?

I Given a type of probability distribution (i.e., a “distribution
family”) what parameter values should we use?

Two approaches: probability theory and historical data
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Theoretical Justification for Normal Random Variables

Suppose that X can be expressed as a sum of random
variables: X = Y1 + Y2 + · · ·+ Yn

In great generality, versions of CLT imply that X
D⇠ N(µ,�2)

(approx.) for large n, where µ = E [X ] and �2 = Var[X ]

I Yi ’s need not be i.i.d., just not “too dependent” and not “too
non-identical”

Q: Examples where CLT breaks down?

Moral:

If X is the sum of a large number of other random quantities, then
X can be approx. modeled as a normal random variable.
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Theoretical Justification for Lognormal Random Variables

Suppose that X can be expressed as a product of random
variables: X = Z1Z2 · · ·Zn

I Example: Value of a financial asset

Then log(X ) = Y1 + Y2 + · · ·+ Yn, where Yi = log(Zi )

By prior discussion, log(X )
D⇠ N(µ,�2) (approx.) for large n,

i.e. X
D⇠ exp

�
N(0, 1)

�
, so that X is approximately lognormally

distributed

Moral:

If X is the product of a large number of other random quantities,
then X can be approx. modeled as a lognormal random variable.
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Theoretical Justification for Poisson Arrival Process

Suppose that the arrival process is a superposition of arrivals
from a variety of statistically independent sources

	

 source 1

 source 2

 source 3

 source n

 :
 :
 :

queue

The Palm-Khintchine Theorem says that superposition of n
i.i.d. sources looks ⇡ Poisson as n becomes large

I Can relax i.i.d. assumption

Moral:

Poisson process often a reasonable model of arrival processes.

(But beware of long-range dependence)
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Theoretical Justification for Weibull Distribution

Suppose that X can be expressed as a minimum of
nonnegative random variables: X = min1in Yi

I Example: Lifetime of a complex system

Extreme-value theory (Gnedenko’s Theorem) says that if Yi ’s
are i.i.d. then X has approximately a Weibull distribution
when n is large: P(X  x) = 1� e�(�x)↵

I ↵ is the shape parameter and � is the scale parameter

Moral:

If X is the the lifetime of a complicated component, then X can be
approx. modeled as a Weibull random variable.
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Controlling the Variability

Squared coe�cient of variation: ⇢2(X ) =
Var(X )

(E [X ])2

Case 1: X
D⇠ exp(�)

⇢2(X ) = 1

Case 2: X
D⇠ gamma(�,↵) fX (x) = �e��x

(�x)↵�1/�(↵)

⇢2(X ) =
↵/�2

(↵/�)2
=

1

↵

Three scenarios to play with:

I ↵ > 1: less variable than exponential

I ↵ = 1: exponential

I ↵ < 1: more variable than exponential
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Goodness-of-Fit Software

GoF software applies a set of goodness-of-fit tests to select
distribution family with “best fit” to data

I chi-square, Kolmogorov-Smirnov, Epps-Singleton,
Anderson-Darling, . . .

GoF software must be used with caution

I Low power: Poor discrimination between di↵erent distributions

I Sequential testing: Test properties mathematically ill-defined

I Discourages sensitivity analysis: Unwary users stop with “best”

I Can obscure non-i.i.d. features: e.g., trends, autocorrelation

I Fails on big data: All test fail on real-world datasets
I Over-reliance on summary statistics: Should also plot data

I Ex: Q-Q plots [Law, p. 339-344] better indicate departures
from candidate distribution (lower/upper, heavy/light tails)
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Feature Matching to Data

Pragmatic approach: match key features in the data

Ex: Use gamma dist’n, match first two empirical moments

I Hence match the empirical coe�cient of variation (see below)

I Note: nothing about “process physics” implies gamma, we use
it for it’s convenence and flexibility in modeling a range of
variability

Can use even more flexible distribution families

I Ex: Johnson translation system (4 parameters)

I Ex: Generalized lambda distribution (4 parameters)

I Useful when extreme values not important to simulation
[Nelson (2013), pp. 113–116]
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Estimating Parameters: Maximum Likelihood Method

Ex: Geometric distribution

I Number of failures before first success in Bernoulli trials,
success probability = p

I P {X = k} = (1� p)kp for k � 0

I How to estimate p given four observations of X? X = 3, 5, 2, 8

I Given a value of p, likelihood for
obs1: obs2: obs3: obs4:

I Joint likelihood L(p) for all four observations:

I Choose estimator p̂ to maximize L(p) (“best explains data”)

I Equivalently, maximize L̃(p) = log
�
L(p)

�
:
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Maximum Likelihood, Continued

Ex: Poisson arrival process to a queue

I Exponential interarrivals: 3.0, 1.0, 4.0, 3.0, 8.0

I Goal: estimate �

I For a continuous dist’n, likelihood of an observation = pdf
[Law, Problem 6.26]

I Given a value of �, likelihoods for observations:

I Joint likelihood: L(�) =

I Joint log-likelihood: L̃(�) =

I Estimate �̂ =

Q: Why is this a reasonable estimator?
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Maximum Likelihood, Continued

General setup (continuous i.i.d. case)

I Given X1, . . . ,Xn i.i.d. samples from pdf f ( · ;↵1, . . . ,↵k)

I MLE’s ↵̂1, . . . , ↵̂k maximize the likelihood function

Ln(↵1, . . . ,↵k) =
nY

i=1

f (Xi ;↵1, . . . ,↵k)

or, equivalently, the log-likelihood function

L̃n(↵1, . . . ,↵k) =
nX

i=1

log
�
f (Xi ;↵1, . . . ,↵k)

�

I For discrete case use pmf instead of pdf
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Maximum Likelihood, Continued

Maximizing the likelihood function

I Simple case: solve

@L̃n(↵̂1, . . . , ↵̂k)

@↵i
= 0, for i = 1, 2, . . . , k

I Harder cases: maximum occurs on boundary, constraints
(Kuhn-Tucker conditions)

I Hardest cases (typical in practice): solve numerically

Why bother?

I MLEs maximize asymptotic statistic e�ciency

I For large n, MLEs “squeeze maximal info from sample”
(i.e., smallest variance ) narrowest confidence intervals)
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Estimating Parameters: Method of Moments

Idea: equate k sample moments to k true moments & solve

Example: Exponential distribution

I k = 1 and E [X ] = 1/�

I So equate first moments:

X̄n = 1/�̂ ) �̂ = 1/X̄n

Example: Gamma distribution

I k = 2, E [X ] = ↵/�, and Var[X ] = ↵/�2

I equate moments:

X̄n = ↵̂/�̂ and s2n = ↵̂/�̂2 ) ↵̂ = X̄ 2
n /s

2
n and �̂ = X̄n/s

2
n

Can match other stats, e.g., quantiles [Nelson 2013, p. 115]
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Bayesian Parameter Estimation

View unknown parameter ✓ as a random variable
with prior distribution f (✓)

I Encapsulates prior knowledge about ✓ before seeing data

I Ex: If we know that ✓ 2 [5, 10] set f = Uniform(5,10)

After seeing data Y , use Bayes’ Rule to compute posterior

f (✓ | Y ) = f (Y | ✓) f (✓)/c

where f (Y | ✓) is the likelihood of Y under ✓ and c is normalizing
constant
Estimate ✓ by mean (or mode) of posterior

I f (✓ | Y ) usually very complex

I Use Markov Chain Monte Carlo (MCMC) to estimate mean—
see HW 2
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Bayesian Parameter Estimation, Continued

Simple example (see refresher handout)

I Goal: Estimate success probability for Bernoulli distribution

I Assume a Beta(↵,�) prior on ✓

I Observe n Bernoulli trials with Y successes

I Y | ✓ has Binomial(n, ✓) likelihood distribution

I Posterior, given Y = y , is Beta(↵+ y ,� + n � y)
(Beta is “conjugate prior” to binomial)

I ✓̂ = mean of posterior =
↵+ y

↵+ � + n
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Other Approaches to Input Distributions

Trace-driven simulation: Use actual measured values
I Can’t generalize simulation results beyond data
I Can’t assess variability
I Hard to do “what if’ and sensitivity analyses
I Privacy concerns
I Bootstrapping can help [Efron and Tibshirani book]

Empirical Distributions
I F̂n(x) = (1/n)(# obs  x) or use histogram [Law 6.4.2]
I Truncation e↵ect: problems with tail probabilities
I No smoothing ) sensitive to data anomalies

Modified Empirical Distributions
I Smoothed empirical distribution with exponential tail

[Bratley et al., pp. 131–132]
I Bezier distributions [Law, Sec. 6.9]

21 / 22

Aline



Other Approaches to Input Distributions, Continued

Generative neural networks
(current research with Cen Wang)

I Good for situations with lots of historical data

I Automated distribution fitting

I Can deal with multimodal, non-i.i.d. arrival-process
distributions

I Automatic generation of samples via fast matrix
multiplications
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