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Overview

To specify a simulation model, we need to define
clock-setting “input” sequences

Examples:
» Interarrival sequences
» Processing time sequences for a production system
» Asset-value sequence for a financial model

Even if we assume i.i.d. sequences for simplicity...

» What type of distribution should we use (gamma, Weibull,
normal, exponential,...)?

» Given a type of probability distribution (i.e., a "distribution
family” ) what parameter values should we use?

Two approaches: probability theory and historical data
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Probability Theory for Choosing Distributions
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Theoretical Justification for Normal Random Variables

Suppose that X can be expressed as a sum of random
variables: X =Y+ Yo +---+ Y,

In great generality, versions of CLT imply that X R N(u,0?)
(approx.) for large n, where ;i = E[X] and 02 = Var[X]

> Y;'s need not be i.i.d., just not “too dependent” and not “too
non-identical”

Q: Examples where CLT breaks down?

X, 2 X;." s {'ﬂ" JCfﬁV\A@h‘#) 0 <)o t’ /\>' [%00 A&xﬂ’”je‘lc"”
X': uz}a'/ﬂlowj and X['BM(:IOJ/ lg ;l o )
Moral:

If X is the sum of a large number of other random quantities, then
X can be approx. modeled as a normal random variable.




Theoretical Justification for Lognormal Random Variables

Suppose that X can be expressed as a product of random
variables: X = 712, --- Z,

» Example: Value of a financial asset Z,= 7, (/"VT), ;s 2),(’4 C_)__\
/

Then log(X) = Y1+ Yo+ -+ Yy, where Y; = log(Z))

By prior discussion, log(X) R N(u,0?) (approx.) for large n,

ie. X R exp(N(0,1)), so that X is approximately lognormally
distributed

Moral:

If X is the product of a large number of other random quantities,
then X can be approx. modeled as a lognormal random variable.
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Theoretical Justification for Poisson Arrival Process

Suppose that the arrival process is a superposition of arrivals
from a variety of statistically independent sources

source 1
source 2

source 3

, ‘ IM/DM‘}{)OS’#’O N
The Palm-Khintchine Theorem says that superposition of n
i.i.d. sources looks ~ Poisson as n becomes large

» Can relax i.i.d. assumption

Moral:

Poisson process often a reasonable model of arrival processes.

(But beware of long-range dependence)
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Theoretical Justification for Weibull Distribution

Suppose that X can be expressed as a minimum of
nonnegative random variables: X = min;<;<, Y;

» Example: Lifetime of a complex system

Extreme-value theory (Gnedenko’s Theorem) says that if Y;’s
are i.i.d. then X has approximately a Weibull distribution
when n is large: P(X < x) =1— e )"

> « is the shape parameter and X is the scale parameter

Moral:

If X is the the lifetime of a complicated component, then X can be
approx. modeled as a Weibull random variable.
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Controlling the Variability

Squared coefficient of variation: p*(X)

Case 1: X = exp())

~ Var(X)
~ (E[X])?

PX)=1

Case 2: X 2 gamma(\, ) fx(x) =
_oa/x? 1

0= anE " a

e M (Ax)21/T(a)

Three scenarios to play with:
> « > 1: less variable than exponential
» « = 1: exponential

> « < 1: more variable than exponential
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Data-Driven Approaches
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Goodness-of-Fit Software

GoF software applies a set of goodness-of-fit tests to select
distribution family with “best fit” to data

» chi-square, Kolmogorov-Smirnov, Epps-Singleton,
Anderson-Darling, ...
4m)/ 2
GoF software must be used with caution bedquiov-

» Low power: Poor discrimination between different distributions
» Sequential testing: Test properties mathematically ill-defined
» Discourages sensitivity analysis: Unwary users stop with “best”

» Can obscure non-i.i.d. features: e.g., trends, autocorrelation

v

Fails on big data: All test fail on real-world datasets

v

Over-reliance on summary statistics: Should also plot data

» Ex: Q-Q plots [Law, p. 339-344] better indicate departures
from candidate distribution (lower/upper, heavy/light tails)

/%
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Feature Matching to Data

Pragmatic approach: match key features in the data

Ex: Use gamma dist’n, match first two empirical moments
» Hence match the empirical coefficient of variation (see below)

» Note: nothing about “process physics” implies gamma, we use
it for it's convenence and flexibility in modeling a range of
variability

Can use even more flexible distribution families
» Ex: Johnson translation system (4 parameters)
» Ex: Generalized lambda distribution (4 parameters)

» Useful when extreme values not important to simulation
[Nelson (2013), pp. 113-116]



Estimating Parameters: Maximum Likelihood Method

Ex: Geometric distribution

» Number of failures before first success in Bernoulli trials,
success probability = p

» P{X=k}=(1—-p)pfork>0 X, )(J(—;XH
» How to estimate p given four observations of X7 X =3,5,2,8
» Given a value of p, likelihood for

obsl:(/zP)qf obl.:2: (I‘P)Ip obs3:("PJVF obs4:(}”9%70
» Joint likelihood L(p) for all four observations: [I’PBW' F‘|+
» Choose estimator p to maximize L(p) (“best explains data”)
» Equivalently, maximize L(p) = log(L(p)): 1% - /”JZ"P) + i }”j(m

A |

7 <0 = — = .
L (P) P 1% Xysavj()(,/)(h/x)})(ﬂ
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Maximum Likelihood, Continued

Ex: Poisson arrival process to a queue /070[9/) /\6 M
» Exponential interarrivals: 3.0, 1.0, 4.0, 3.0, 8.0
» Goal: estimate \

» For a continuous dist'n, likelihood of an observation = pdf
[Law, Problem 6.26] 3\ /\6 ¢A

v

Given a value of ), I|kel|hoods for observations: A@ -~
Joint likelihood: L(A\) = A ‘e

Joint log-likelihood: [(\) = £log(h) - 17 A

Estimate \ = 0\) =0

£ <5
512 )7 N
Q: Why is this a reasonable estimator? X‘/" 6)((’
n v 7) -
\ .LDQ X =) /\ < —b/):ﬂ

v

v

v

\= =
7 Y
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Maximum Likelihood, Continued

General setup (continuous i.i.d. case)
» Given Xi,..., X, i.i.d. samples from pdf f(-;a1,...,ak)

» MLE's &y, ..., &, maximize the likelihood function

L al,..., HfX Aly...,0 ) J

or, equivalently, the log-likelihood function

Ln(al,...,ak):ZIOg(f(X,-;al,...,ak)) J

> For discrete case use pmf instead of pdf
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Maximum Likelihood, Continued

Maximizing the likelihood function

» Simple case: solve

ALn(4s,. .., 6x)

D =0, fori=1,2,... k

» Harder cases: maximum occurs on boundary, constraints
(Kuhn-Tucker conditions)

» Hardest cases (typical in practice): solve numerically

Why bother?
» MLEs maximize asymptotic statistiaéefﬁciency

> For large n, MLEs “squeeze maximal info from sample”
(i.e., smallest variance = narrowest confidence intervals)

16
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Estimating Parameters: Method of Moments

Idea: equate k sample moments to k true moments & solve

Example: Exponential distribution
» k=1and E[X]=1/\

» So equate first moments:
X, =1/ = A=1/X,

Example: Gamma distribution
» k=2, E[X] = a/), and Var[X] = a/\?
» equate moments:

X,=a/Aand 2 =4/ = a=X2/s?and A= X,/s2

Can match other stats, e.g., quantiles [Nelson 2013, p. 115]
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Bayesian Parameter Estimation

View unknown parameter 6 as a random variable
with prior distribution f(0)

» Encapsulates prior knowledge about 6 before seeing data
» Ex: If we know that 6 € [5,10] set f = Uniform(5,10)

After seeing data Y, use Bayes’ Rule to compute posterior

FO1Y)=1(Y|0)f(0)/c )

where f(Y | 0) is the likelihood of Y under 6 and c is normalizing

constant /oGS{M‘/ »r
Estimate ¢ by mean (or mode) of posterior 4

» f(0|Y) usually very complex Y

» Use Markov Chain Monte Carlo (MCMC) to estimate mean—
see HW 2
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Bayesian Parameter Estimation, Continued

Simple example (see refresher handout)

» Goal: Estimate success probability for Bernoulli distribution

v

Assume a Beta(a, 3) prior on 6

v

Observe n Bernoulli trials with Y successes

Y | 6 has Binomial(n, 0) likelihood distribution

Posterior, given Y =y, is Beta(a + y,5+ n—y)

(Beta is “conjugate prior” to binomial)
aty o (I N

ot PLE s

v

v

» = mean of posterior =

a Swl‘d) 64$6 < <‘ e T PETES
@ay&g S M/Im/é (n '\@;@/;:W )
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Other Approaches to Input Distributions
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Other Approaches to Input Distributions
Trace-driven simulation: Use actual measured values
» Can't generalize simulation results beyond data
» Can't assess variability
Hard to do “what if' and sensitivity analyses
Privacy concerns

vV v v

Bootstrapping can help [Efron and Tibshirani book]

Empirical Distributions
> Fo(x) = (1/n)(# obs < x) or use histogram [Law 6.4.2]
» Truncation effect: problems with tail probabilities
> No smoothing = sensitive to data anomalies

Modified Empirical Distributions /J:[Hb‘
» Smoothed empirical distribution with exponential tail

[Bratley et al., pp. 131-132]
» Bezier distributions [Law, Sec. 6.9]



Other Approaches to Input Distributions, Continued

Generative neural networks
(current research with Cen Wang)

» Good for situations with lots of historical data

» Automated distribution fitting

» Can deal with multimodal, non-i.i.d. arrival-process
distributions

» Automatic generation of samples via fast matrix

multiplications

N
N
N



