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Discrete-Event Stochastic Systems

Stochastic state transitions occur at an increasing sequence
of random times

X(t) -

» it

How to model underlying process (X(t):t>0)?
» Generalized semi-Markov processes (GSMPs)

» Basic model of a discrete-event system

GSMP Overview

» Events associated with a state “compete” to trigger next
state transition
» Each event has own distribution for determining the next state
» New events
» Associated with new state but not old state, or

» Associated with new state and just triggered state transition
» Clock is set with time until event occurs (runs down to 0)

» Old events
» Associated with old and new states, did not trigger transition
» Clock continues to run down

» Canceled events
» Associated with old state, but not new state
» Clock reading is discarded

» Clocks can run down at state-dependent speeds
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Clock-Reading Plot

GSMP Building Blocks
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S: a (finite or countably infinite) set of states

,...,en}: a finite set of events
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» E(s) C E: the set of active events in state s € S

» p(s’;s, E*): probability that new state = s’ when events in E*
simultaneously occur in s

» Write p(s’; s, e*) if E* = {e*} (unique trigger event)
» r(s, e): the nonnegative finite speed at which clock for e runs
down in state s
» Typically r(s,e) =1
» Set r(s,e) = 0 to model “preempt resume” service discipline
» F(-;s', €, s, E*): cdf of new clock-reading for ¢’ after state
. E*
transition s — &’
» i initial distribution for state and clock readings

I D . D
» Assume initial state s ~ v and clock readings ~ Fo( - ;e,s)

i
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New and Old Events

B new transitions

] old transitions

[] newly disabled transitions

(E(s)-E(s")-E N(s';s,E") = E(s") - (E(s)-E")
(E(s)-E(s"))NE’
E(s) E(s")

O(s";s,e) = E(s')n(E(s)-E")
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Example: GI/G/1 Queue

- Assume that interarrival-time dist’'n F; and service-time
dist’'n F; are continuous (no simult. event occurrences)
- Assume that at time t = 0 a job arrives to an empty system

X(t) = # of jobs in service or waiting in queue at time t

Can define (X(t): t > 0) as a GSMP:
> 5 =

VE:

v

E(s) =
> p:
» F(x;s,€,s,e*):

> r(s,e) =

v

Initial dist'n:




A More Complex Example: Patrolling Repairman

See handout for details

> Provides an example of how to concisely express GSMP
building blocks

Specifying a GSMP can be complex and time-consuming, so
why do it?
» Direct guidance for coding (helps catch “corner cases”)
» Communicates model at high level (vs poring through code)
» Theory for GSMPs can help in establishing important
properties of the simulation

» Stability (i.e., convergence to steady state), so that
steady-state estimation problems are well defined

» Validity of specific simulation output-analysis methods, so that
estimates are correct

GSMPs and GSSMCs

GSMP formally defined in terms of GSSMC ((S,,C,) : n > 0)
» S, = state just after nth transition

> Cn = (Cn,la Cn,27 s
transition

> See Haas or Shedler books for definition of P((s,c),A) and p

, Co.m) = clock readings just after nth

GSMP Definition

Define
> Holding time: t*(s, c) = mingj.c.cg(s)) Ci/1(S; &)
> nth state-transition time: ¢, = Y 7_p t*(s, c)
» # of state transitions in [0, t]: N(t) = max{n>0:(, < t}

Let A ¢ S and set

. SN(t) if N(t) < o0;
X(e) = {A if N(t) = oo
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GSMP Definition in a Picture
S, N(t) = 2 3
Nt = 3
83 ] ; O
So N(t)=0 i
— |
S N() = 1 i
|
t(S0.Cy)  t(S1.Cq)  t(S,.Cy) £(S3,C3)

| | | | | |
Co =0 C1 Cz §3 t C4
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Simulating GSMPs
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Sample Path Generation

GSMP Simulation Algorithm (Variable Time-Advance)

1. (Initialization) Select s R v. For each ¢ € E(s) generate a
clock reading ¢; R Fo(-;ei,s). Set ¢; =0 for e ¢ E(s).

2. Determine holding time t*(s, ¢) and set of trigger events
E* =E*(s,c) ={ei:ci/r(s,e) =t*(s,c)}.

D
Generate next state s’ ~ p(-;s, E*).

For each e; € N(s'; s, E*), generate c] 2 (-;5,ei,s, E").
For each e; € O(s'; s, E*), set ¢, = ¢; — t*(s, ) r(s, &).
For each e; € (E(s) — E*) — E(s'), set ¢/ =

(i.e., cancel event ¢;).

@ & o> &

7. Set s=s"and ¢ = ¢/, and go to Step 2.
(Here ¢ = (a1, 2, ..., cm) and similarly for ¢’.)
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Sample Path Generation, Continued

Algorithm generates sequence of states (S, : n > 0),
clock-reading vectors (C, : n > 0), and holding times
(t*(Sn, Cp) : n > 0)

Transition times ((, : n > 0) and continuous-time process
(X(n) : n>0) computed as described previously

Use usual techniques to estimate quantities like £ [f(X(t))]
or even

1/t (S
. / F(X(u)) du} ) f(s2)
o IEN
: D F(Sa) " (Sn Co) + F(Swie) (£ = ) omo|so=i| -
t ' :

n=0 o G Lot G

a=E

=E

Flow charts and diagrams can be helpful
(see Law, p. 30-32 for an example)
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Discrete-Event Systems and Generalized Semi-Markov Processes

Generating Clock Readings: Inversion Method
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Generating Clock Readings: Example

Exponential distribution with rate (intensity) A

—Ax >0
f(x;)\)—{)\e if x> 0;

0 if x<0

o Ax > 0-
and F(x;)\)—{l € 'fX—O'J

0 if x<0

Mean =1/

Claim:
If U R Uniform(0,1) and V = =2Y  then V R exp(\) J

Proof:
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The Inversion Method: Special Case

Spose that cdf F(x) = P(V < x) is increasing and continuous
Claim:

If U R Uniform(0,1) and V = F~1(U), then V R F

|

Proof:
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Example: Exponential Distribution
Fx) =1— e

F~l(u) =
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The Inversion Method: General Case

Generalized inverse
F~1(u) = min{x : F(x) > u}

F(x)

Claim still holds: F~1(u) < x < u < F(x) by definition

Exercise: Show that inversion method = naive method
for discrete RVs
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Markovian and Semi-Markovian GSMPs
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Markovian GSMPs

Properties of the Exponential Distribution

If X R exp(\) and Y 2 exp(p) then

1. min(X,Y) = exp(A + 1) [indep. of whether min = X or Y]

2. PX<Y)=x4

3. P(X>a+b|X>a)=e > [memoryless property]

Properties 1 and 2 generalize to multiple exponential RVs

Simple GSMP event €
F(-;s',€,s,E*) = F(-;€) and Fo(-;€';s) = F(-;¢€)
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Markovian GSMPs, Continued

Suppose that all events in a GSMP are simple with
exponential clock-setting distn’s

Key observation: By memoryless property, whenever GSMP
jumps into a state s, clock readings for events in E(s) are
mutually independent and exponentially distributed

Simplified Simulation Algorithm (No clock readings needed)

T D
1. (Initialization) Select s ~ v

2. Generate holding time t* 2 exp(A), where

A= )\(S) = Ze,-GE(S) /\,'
3. Select e; € E(s) as trigger event with probability A;/A
4. Generate the next state s’ ~ p(-;s,e)

5. Set s = s’ and go to Step 2
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Markovian GSMPs, Continued

Structure of a Markovian GSMP
» Sequence (S, : n>0)is a DTMC with transition matrix
R(s,s") = 2 eces) P(Ss 55 €)(Ai/A)
» Given (S, : n > 0), holding times are mutually independent
with holding time in S, 2 exp(A(Sn))

Often, occurrence of ¢; in s causes state to change to a
unique state y; = y;(s) with probability 1
Super-Simplified Simulation Algorithm
1. (Initialization) Select s Ry
2. Generate holding time t* ~ exp()), where A = Y cr () A
3. Set s’ = y;(s) with probability \;/\
4. Set s = s’ and go to Step 2
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Markovian GSMPs, Continued

A GSMP (X(t):t > 0)) with simple, exponential transitions
is a continuous-time Markov chain (CTMC) [Ross, Ch. 6]

» Finite or countable state space

» Continuous-time Markov property

P(X(t+u)=s|X(s):0<s<t)=P(X(t+u)=s|X(t) J

All CTMCs have foregoing structure
» State sequence is a DTMC
> Holding times mutually independent and exp(A(s)) in state s

Q: What can go wrong if events are not simple?
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Example of Markovian GSMP: Poisson Process

Definition of Poisson process (N(t) : t > 0) with rate )
» $={0,1,2,...}
» Single exp(\) event
» p(s+1;s,e)=1

Can show that

P(N(t—l— S) =m-+n | N(t) _ m) _ e-)\S(/\S)n

n!

J

Examples: # arrivals to a queue, # of lightbulb replacements
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Semi-Markovian GSMPs

GSMP (X(t): t > 0) with simple events such that |E(s)| =1
for all s € S is a semi-Markov process

Definition of semi-Markov process
» Discrete state space S
» State sequence (X, : n>0) is a DTMC with transition
matrix, say, R
» Holding time in s 2 F(-;s)

» “Markov property holds only at state-transition times”

Example: Renewal counting process
» $={0,1,2,...}
» R(s,s+1)=1forallse S
» F(-;s) = G(-) for some G
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