Discrete-Event Systems and Generalized Semi-Markov Processes Reading: Section 1.4 in Shedler or Section 4.1 in Haas

Peter J. Haas

CS 590M: Simulation Spring Semester 2020 Discrete-Event Systems and Generalized Semi-Markov Processes

Discrete-Event Stochastic Systems The GSMP Model Simulating GSMPs Generating Clock Readings: Inversion Method Markovian and Semi-Markovian GSMPs

2 / 27

Discrete-Event Stochastic Systems

Stochastic state transitions occur at an increasing sequence of random times

How to model underlying process $(X(t) : t \ge 0)$?

- Generalized semi-Markov processes (GSMPs)
- Basic model of a discrete-event system

GSMP Overview

- Events associated with a state "compete" to trigger next state transition
- Each event has own distribution for determining the next state
- New events
 - Associated with new state but not old state, or
 - Associated with new state and just triggered state transition
 - Clock is set with time until event occurs (runs down to 0)
- Old events
 - Associated with old and new states, did not trigger transition
 - Clock continues to run down
- Canceled events
 - Associated with old state, but not new state
 - Clock reading is discarded
- Clocks can run down at state-dependent speeds

Clock-Reading Plot	GSMP Building Blocks
	 S: a (finite or countably infinite) set of states E = {e₁, e₂,, e_M}: a finite set of events E(s) ⊆ E: the set of active events in state s ∈ S p(s'; s, E*): probability that new state = s' when events in E* simultaneously occur in s Write p(s'; s, e*) if E* = {e*} (unique trigger event) r(s, e): the nonnegative finite speed at which clock for e runs down in state s Typically r(s, e) = 1 Set r(s, e) = 0 to model "preempt resume" service discipline F(·; s', e', s, E*): cdf of new clock-reading for e' after state transition s μ: initial distribution for state and clock readings Assume initial state s ν and clock readings ν F₀(·; e, s)
5/27	6/27

Example: GI/G/1 Queue - Assume that interarrival-time dist'n F_a and service-time dist'n F_s are continuous (no simult. event occurrences) - Assume that at time t = 0 a job arrives to an empty system X(t) = # of jobs in service or waiting in queue at time t

Can define $(X(t) : t \ge 0)$ as a GSMP:

- ► *S* =
- ► E =
- ► *E*(*s*) =
- ► p:
- $F(x; s', e', s, e^*)$:
- ▶ r(s, e) =
- Initial dist'n:

A More Complex Example: Patrolling Repairman

See handout for details

 Provides an example of how to concisely express GSMP building blocks

Specifying a GSMP can be complex and time-consuming, so why do it?

- Direct guidance for coding (helps catch "corner cases")
- Communicates model at high level (vs poring through code)
- Theory for GSMPs can help in establishing important properties of the simulation
 - Stability (i.e., convergence to steady state), so that steady-state estimation problems are well defined
 - Validity of specific simulation output-analysis methods, so that estimates are correct

GSMPs and GSSMCs

GSMP formally defined in terms of GSSMC $((S_n, C_n) : n \ge 0)$

- S_n = state just after *n*th transition
- ► C_n = (C_{n,1}, C_{n,2},..., C_{n,M}) = clock readings just after *n*th transition
- See Haas or Shedler books for definition of P((s, c), A) and μ

9 / 27

GSMP Definition

Define

- Holding time: $t^*(s, c) = \min_{\{i:e_i \in E(s)\}} c_i/r(s, e_i)$
- *n*th state-transition time: $\zeta_n = \sum_{k=0}^{n-1} t^*(s, c)$
- # of state transitions in [0, t]: $N(t) = \max\{n \ge 0 : \zeta_n \le t\}$

Let $\Delta \not\in S$ and set

 $X(t) = egin{cases} S_{N(t)} & ext{if } N(t) < \infty; \ \Delta & ext{if } N(t) = \infty \end{cases}$

11 / 27

Discrete-Event Systems and Generalized Semi-Markov Processes

Discrete-Event Stochastic Systems The GSMP Model

Simulating GSMPs

Generating Clock Readings: Inversion Method Markovian and Semi-Markovian GSMPs

13 / 27

Sample Path Generation

GSMP Simulation Algorithm (Variable Time-Advance)

- 1. (Initialization) Select $s \stackrel{D}{\sim} \nu$. For each $e_i \in E(s)$ generate a clock reading $c_i \stackrel{D}{\sim} F_0(\cdot; e_i, s)$. Set $c_i = 0$ for $e_i \notin E(s)$.
- 2. Determine holding time $t^*(s, c)$ and set of trigger events $E^* = E^*(s, c) = \{e_i : c_i/r(s, e_i) = t^*(s, c)\}.$
- 3. Generate next state $s' \stackrel{D}{\sim} p(\cdot; s, E^*)$.
- 4. For each $e_i \in N(s'; s, E^*)$, generate $c'_i \stackrel{\mathsf{D}}{\sim} F(\cdot; s', e_i, s, E^*)$.
- 5. For each $e_i \in O(s'; s, E^*)$, set $c'_i = c_i t^*(s, c) r(s, e_i)$.
- 6. For each $e_i \in (E(s) E^*) E(s')$, set $c'_i = 0$ (i.e., cancel event e_i).
- 7. Set s = s' and c = c', and go to Step 2. (Here $c = (c_1, c_2, \dots, c_M)$ and similarly for c'.)

14 / 27

Sample Path Generation, Continued

Algorithm generates sequence of states $(S_n : n \ge 0)$, clock-reading vectors $(C_n : n \ge 0)$, and holding times $(t^*(S_n, C_n) : n \ge 0)$

Transition times $(\zeta_n : n \ge 0)$ and continuous-time process $(X(n) : n \ge 0)$ computed as described previously

Use usual techniques to estimate quantities like E[f(X(t))] or even

$$\alpha = E\left[\frac{1}{t}\int_0^t f(X(u)) du\right]$$

= $E\left[\frac{1}{t}\left(\sum_{n=0}^{N(t)-1} f(S_n)t^*(S_n, C_n) + f(S_{N(t)})(t - \zeta_{N(t)})\right)\right]$

Flow charts and diagrams can be helpful (see Law, p. 30–32 for an example)

Generating Clock Readings: Example

Exponential distribution with rate (intensity) λ

$$f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0; \\ 0 & \text{if } x < 0 \end{cases} \quad \text{and} \quad F(x;\lambda) = \begin{cases} 1 - e^{-\lambda x} & \text{if } x \ge 0; \\ 0 & \text{if } x < 0 \end{cases}$$

Mean = $1/\lambda$

Claim:

If $U \stackrel{\mathsf{D}}{\sim} \mathsf{Uniform}(0,1)$ and $V = \frac{-\ln U}{\lambda}$, then $V \stackrel{\mathsf{D}}{\sim} \exp(\lambda)$

Proof:

The Inversion Method: Special Case

Spose that cdf $F(x) = P(V \le x)$ is increasing and continuous

Claim:

If $U \stackrel{\mathrm{D}}{\sim} \text{Uniform}(0,1)$ and $V = F^{-1}(U)$, then $V \stackrel{\mathrm{D}}{\sim} F$

Proof:

18 / 27

$F(x) = 1 - e^{-\lambda x}$ $F^{-1}(u) =$

Example: Exponential Distribution

19/27

Discrete-Event Systems and Generalized Semi-Markov Processes

Discrete-Event Stochastic Systems The GSMP Model Simulating GSMPs Generating Clock Readings: Inversion Method Markovian and Semi-Markovian GSMPs

Markovian GSMPs

Properties of the Exponential Distribution

If $X \stackrel{D}{\sim} \exp(\lambda)$ and $Y \stackrel{D}{\sim} \exp(\mu)$ then 1. $\min(X, Y) \stackrel{D}{\sim} \exp(\lambda + \mu)$ [indep. of whether $\min = X$ or Y] 2. $P(X < Y) = \frac{\lambda}{\lambda + \mu}$ 3. $P(X > a + b \mid X > a) = e^{-\lambda b}$ [memoryless property]

Properties 1 and 2 generalize to multiple exponential RVs

Simple GSMP event e' $F(\cdot; s', e', s, E^*) \equiv F(\cdot; e')$ and $F_0(\cdot; e'; s) \equiv F(\cdot; e')$

21 / 27

Markovian GSMPs, Continued

Suppose that all events in a GSMP are simple with exponential clock-setting distn's

Key observation: By memoryless property, whenever GSMP jumps into a state s, clock readings for events in E(s) are mutually independent and exponentially distributed

Simplified Simulation Algorithm (No clock readings needed)

- 1. (Initialization) Select $s \stackrel{D}{\sim} \nu$
- 2. Generate holding time $t^* \stackrel{D}{\sim} \exp(\lambda)$, where $\lambda = \lambda(s) = \sum_{e_i \in E(s)} \lambda_i$
- 3. Select $e_i \in E(s)$ as trigger event with probability λ_i/λ
- 4. Generate the next state $s' \stackrel{D}{\sim} p(\cdot; s, e_i)$
- 5. Set s = s' and go to Step 2

Markovian GSMPs, Continued

Structure of a Markovian GSMP

- ► Sequence $(S_n : n \ge 0)$ is a DTMC with transition matrix $R(s, s') = \sum_{e_i \in E(s)} p(s'; s, e_i)(\lambda_i / \lambda)$
- Given (S_n : n ≥ 0), holding times are mutually independent with holding time in S_n ^D exp(λ(S_n))

Often, occurrence of e_i in *s* causes state to change to a unique state $y_i = y_i(s)$ with probability 1

Super-Simplified Simulation Algorithm

- 1. (Initialization) Select $s \stackrel{D}{\sim} \nu$
- 2. Generate holding time $t^* \stackrel{\mathsf{D}}{\sim} \exp(\lambda)$, where $\lambda = \sum_{e_i \in E(s)} \lambda_i$
- 3. Set $s' = y_i(s)$ with probability λ_i/λ
- 4. Set s = s' and go to Step 2

Markovian GSMPs, Continued

A GSMP $(X(t): t \ge 0))$ with simple, exponential transitions is a continuous-time Markov chain (CTMC) [Ross, Ch. 6]

- Finite or countable state space
- Continuous-time Markov property

 $P(X(t+u) = s \mid X(s) : 0 \le s \le t) = P(X(t+u) = s \mid X(t))$

All CTMCs have foregoing structure

- State sequence is a DTMC
- Holding times mutually independent and $\exp(\lambda(s))$ in state s

Q: What can go wrong if events are not simple?

Example of Markovian GSMP: Poisson Process

Definition of Poisson process $(N(t) : t \ge 0)$ with rate λ

- $S = \{0, 1, 2, ...\}$
- Single $exp(\lambda)$ event
- ▶ p(s+1; s, e) = 1

Can show that

$$P(N(t+s) = m+n \mid N(t) = m) = \frac{e^{-\lambda s}(\lambda s)^n}{n!}$$

Examples: # arrivals to a queue, # of lightbulb replacements

26 / 27

25 / 27

Semi-Markovian GSMPs

GSMP $(X(t) : t \ge 0)$ with simple events such that |E(s)| = 1 for all $s \in S$ is a semi-Markov process

Definition of semi-Markov process

- ► Discrete state space *S*
- State sequence (X_n : n ≥ 0) is a DTMC with transition matrix, say, R
- Holding time in $s \stackrel{D}{\sim} F(\cdot; s)$
- "Markov property holds only at state-transition times"

Example: Renewal counting process

- $S = \{0, 1, 2, ...\}$
- R(s, s+1) = 1 for all $s \in S$
- $F(\cdot; s) \equiv G(\cdot)$ for some G