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Discrete-Event Stochastic Systems

Stochastic state transitions occur at an increasing sequence
of random times

	
t

X (t)

How to model underlying process
(
X (t) : t ≥ 0

)
?

I Generalized semi-Markov processes (GSMPs)

I Basic model of a discrete-event system
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GSMP Overview

I Events associated with a state “compete” to trigger next
state transition

I Each event has own distribution for determining the next state
I New events

I Associated with new state but not old state, or
I Associated with new state and just triggered state transition
I Clock is set with time until event occurs (runs down to 0)

I Old events
I Associated with old and new states, did not trigger transition
I Clock continues to run down

I Canceled events
I Associated with old state, but not new state
I Clock reading is discarded

I Clocks can run down at state-dependent speeds
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Clock-Reading Plot

	

clock
reading

timex x o
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GSMP Building Blocks

I S : a (finite or countably infinite) set of states

I E = {e1, e2, . . . , eM}: a finite set of events

I E (s) ⊆ E : the set of active events in state s ∈ S
I p(s ′; s,E ∗): probability that new state = s ′ when events in E ∗

simultaneously occur in s
I Write p(s ′; s, e∗) if E∗ = {e∗} (unique trigger event)

I r(s, e): the nonnegative finite speed at which clock for e runs
down in state s

I Typically r(s, e) = 1
I Set r(s, e) = 0 to model “preempt resume” service discipline

I F ( · ; s ′, e ′, s,E ∗): cdf of new clock-reading for e ′ after state

transition s
E∗−→ s ′

I µ: initial distribution for state and clock readings

I Assume initial state s
D∼ ν and clock readings

D∼ F0( · ; e, s)
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New and Old Events
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Example: GI/G/1 Queue
- Assume that interarrival-time dist’n Fa and service-time

dist’n Fs are continuous (no simult. event occurrences)
- Assume that at time t = 0 a job arrives to an empty system

X (t) = # of jobs in service or waiting in queue at time t

Can define (X (t) : t ≥ 0) as a GSMP:
I S =

I E =

I E (s) =

I p:

I F (x ; s ′, e ′, s, e∗) :

I r(s, e) =

I Initial dist’n:
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A More Complex Example: Patrolling Repairman

See handout for details

I Provides an example of how to concisely express GSMP
building blocks

Specifying a GSMP can be complex and time-consuming, so
why do it?

I Direct guidance for coding (helps catch “corner cases”)

I Communicates model at high level (vs poring through code)
I Theory for GSMPs can help in establishing important

properties of the simulation
I Stability (i.e., convergence to steady state), so that

steady-state estimation problems are well defined
I Validity of specific simulation output-analysis methods, so that

estimates are correct
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GSMPs and GSSMCs

GSMP formally defined in terms of GSSMC
(
(Sn,Cn) : n ≥ 0

)
I Sn = state just after nth transition

I Cn = (Cn,1,Cn,2, . . . ,Cn,M) = clock readings just after nth
transition

I See Haas or Shedler books for definition of P
(
(s, c),A

)
and µ
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GSMP Definition

Define

I Holding time: t∗(s, c) = min{i :ei∈E(s)} ci/r(s, ei )

I nth state-transition time: ζn =
∑n−1

k=0 t
∗(s, c)

I # of state transitions in [0, t]: N(t) = max{n ≥ 0 : ζn ≤ t}

Let ∆ 6∈ S and set

X (t) =

{
SN(t) if N(t) <∞;

∆ if N(t) =∞
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GSMP Definition in a Picture
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Sample Path Generation

GSMP Simulation Algorithm (Variable Time-Advance)

1. (Initialization) Select s
D∼ ν. For each ei ∈ E (s) generate a

clock reading ci
D∼ F0( · ; ei , s). Set ci = 0 for ei /∈ E (s).

2. Determine holding time t∗(s, c) and set of trigger events
E ∗ = E ∗(s, c) = {ei : ci/r(s, ei ) = t∗(s, c)}.

3. Generate next state s ′
D∼ p( · ; s,E ∗).

4. For each ei ∈ N(s ′; s,E ∗), generate c ′i
D∼ F ( · ; s ′, ei , s,E ∗).

5. For each ei ∈ O(s ′; s,E ∗), set c
′
i = ci − t∗(s, c) r(s, ei ).

6. For each ei ∈ (E (s)− E ∗)− E (s ′), set c ′i = 0
(i.e., cancel event ei ).

7. Set s = s ′ and c = c ′, and go to Step 2.
(Here c = (c1, c2, . . . , cM) and similarly for c ′.)
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Sample Path Generation, Continued

Algorithm generates sequence of states (Sn : n ≥ 0),
clock-reading vectors (Cn : n ≥ 0), and holding times(
t∗(Sn,Cn) : n ≥ 0

)
Transition times (ζn : n ≥ 0) and continuous-time process(
X (n) : n ≥ 0

)
computed as described previously

Use usual techniques to estimate quantities like E
[
f
(
X (t)

)]
or even

α = E

[
1

t

∫ t

0

f
(
X (u)

)
du

]

= E

[
1

t

(
N(t)−1∑
n=0

f (Sn)t
∗(Sn,Cn) + f (SN(t))

(
t − ζN(t)

))]

Flow charts and diagrams can be helpful
(see Law, p. 30–32 for an example)
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Generating Clock Readings: Example

Exponential distribution with rate (intensity) λ

f (x ;λ) =

{
λe−λx if x ≥ 0;

0 if x < 0
and F (x ;λ) =

{
1− e−λx if x ≥ 0;

0 if x < 0

Mean = 1/λ

Claim:

If U
D∼ Uniform(0, 1) and V = − lnU

λ , then V
D∼ exp(λ)

Proof:
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The Inversion Method: Special Case

Spose that cdf F (x) = P(V ≤ x) is increasing and continuous

Claim:

If U
D∼ Uniform(0, 1) and V = F−1(U), then V

D∼ F

Proof:
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Example: Exponential Distribution

F (x) = 1− e−λx

F−1(u) =
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The Inversion Method: General Case

Generalized inverse

F−1(u) = min{x : F (x) ≥ u}

	

F(x)

x

u

F (u )-1

Claim still holds: F−1(u) ≤ x ⇔ u ≤ F (x) by definition

Exercise: Show that inversion method = naive method
for discrete RVs
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Markovian GSMPs

Properties of the Exponential Distribution

If X
D∼ exp(λ) and Y

D∼ exp(µ) then

1. min(X ,Y )
D∼ exp(λ+ µ) [indep. of whether min = X or Y ]

2. P(X < Y ) = λ
λ+µ

3. P(X > a + b | X > a) = e−λb [memoryless property]

Properties 1 and 2 generalize to multiple exponential RVs

Simple GSMP event e ′

F (· ; s ′, e ′, s,E ∗) ≡ F (· ; e ′) and F0(· ; e ′; s) ≡ F (· ; e ′)
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Markovian GSMPs, Continued
Suppose that all events in a GSMP are simple with
exponential clock-setting distn’s

Key observation: By memoryless property, whenever GSMP
jumps into a state s, clock readings for events in E (s) are
mutually independent and exponentially distributed

Simplified Simulation Algorithm (No clock readings needed)

1. (Initialization) Select s
D∼ ν

2. Generate holding time t∗
D∼ exp(λ), where

λ = λ(s) =
∑

ei∈E(s) λi

3. Select ei ∈ E (s) as trigger event with probability λi/λ

4. Generate the next state s ′
D∼ p( · ; s, ei )

5. Set s = s ′ and go to Step 2
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Markovian GSMPs, Continued

Structure of a Markovian GSMP

I Sequence (Sn : n ≥ 0) is a DTMC with transition matrix
R(s, s ′) =

∑
ei∈E(s) p(s ′; s, ei )(λi/λ)

I Given (Sn : n ≥ 0), holding times are mutually independent

with holding time in Sn
D∼ exp

(
λ(Sn)

)
Often, occurrence of ei in s causes state to change to a
unique state yi = yi (s) with probability 1

Super-Simplified Simulation Algorithm

1. (Initialization) Select s
D∼ ν

2. Generate holding time t∗
D∼ exp(λ), where λ =

∑
ei∈E(s) λi

3. Set s ′ = yi (s) with probability λi/λ

4. Set s = s ′ and go to Step 2
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Markovian GSMPs, Continued

A GSMP
(
X (t) : t ≥ 0)

)
with simple, exponential transitions

is a continuous-time Markov chain (CTMC) [Ross, Ch. 6]

I Finite or countable state space

I Continuous-time Markov property

P
(
X (t + u) = s | X (s) : 0 ≤ s ≤ t

)
= P

(
X (t + u) = s | X (t)

)
All CTMCs have foregoing structure

I State sequence is a DTMC

I Holding times mutually independent and exp
(
λ(s)

)
in state s

Q: What can go wrong if events are not simple?
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Example of Markovian GSMP: Poisson Process

Definition of Poisson process
(
N(t) : t ≥ 0

)
with rate λ

I S = {0, 1, 2, . . .}
I Single exp(λ) event

I p(s + 1; s, e) = 1

Can show that

P
(
N(t + s) = m + n | N(t) = m

)
=

e-λs(λs)n

n!

Examples: # arrivals to a queue, # of lightbulb replacements
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Semi-Markovian GSMPs

GSMP
(
X (t) : t ≥ 0

)
with simple events such that |E (s)| = 1

for all s ∈ S is a semi-Markov process

Definition of semi-Markov process

I Discrete state space S

I State sequence (Xn : n ≥ 0) is a DTMC with transition
matrix, say, R

I Holding time in s
D∼ F ( · ; s)

I “Markov property holds only at state-transition times”

Example: Renewal counting process

I S = {0, 1, 2, . . .}
I R(s, s + 1) = 1 for all s ∈ S

I F ( · ; s) ≡ G ( · ) for some G
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