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Discrete-Event Stochastic Systems

Stochastic state transitions occur at an increasing sequence
of random times

X(t) -+ —°

» it

How to model underlying process (X(t):t>0)?
» Generalized semi-Markov processes (GSMPs)

» Basic model of a discrete-event system
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GSMP Overview

» Events associated with a state “compete” to trigger next
state transition
» Each event has own distribution for determining the next state

» New events
» Associated with new state but not old state, or
» Associated with new state and just triggered state transition
» Clock is set with time until event occurs (runs down to 0)

» Old events
» Associated with old and new states, did not trigger transition
» Clock continues to run down

» Canceled events

» Associated with old state, but not new state
» Clock reading is discarded

» Clocks can run down at state-dependent speeds
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Clock-Reading Plot
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GSMP Building Blocks

v

v

S: a (finite or countably infinite) set of states

E ={e, e, ..., en}: afinite set of events

» E(s) C E: the set of active events in state s € S

v

p(s’;s, E*): probability that new state = s’ when events in E*
simultaneously occur in s

» Write p(s’;s, e*) if E* = {e*} (unique trigger event)
r(s, e): the nonnegative finite speed at which clock for e runs
down in state s

» Typically r(s,e) =1

» Set r(s,e) =0 to model “preempt resume” service discipline
F(-;s' €, s, E*): cdf of new clock-reading for ¢’ after state

. E*

transition s — s
: initial distribution for state and clock readings

_— D . D
» Assume initial state s ~ v and clock readings ~ Fo( - ;e,s)
<

6
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New and Old Events

B new transitions
[] old transitions
[] newly disabled transitions

(E(s)-E(s")-E N(s%;s,E")= E(s")-(E(s)-E")

(E(s)-E(s")NE

E(s) E(s")

O(s';s,e) = E(s")n(E(s)-E")
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Example: GI/G/1 Queue

- Assume that interarrival-time dist’'n F, and service-time
dist’'n F, are continuous (no simult. event occurrences)
- Assume that at time t = 0 a job arrives to an empty system

X(t) = # of jobs in service or waiting in queue at time t
Can define (X(t) : t > 0) as a GSMP:
>5:§0///}~/_/,I ) 7]
] g < (/Dm ¢
» F = ;g'/ 62—% 4’5 ’aﬂ‘lW[ ! 6)— »F; d
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F(x;s',€,s,e*): Fa ; FMD

ov all 52 PIRAL
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A More Complex Example: Patrolling Repairman

See handout for details
> Provides an example of how to concisely express GSMP
building blocks

Specifying a GSMP can be complex and time-consuming, so
why do it?
» Direct guidance for coding (helps catch “corner cases”)
» Communicates model at high level (vs poring through code)
» Theory for GSMPs can help in establishing important
properties of the simulation
» Stability (i.e., convergence to steady state), so that
steady-state estimation problems are well defined
» Validity of specific simulation output-analysis methods, so that
estimates are correct
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GSMPs and GSSMCs
ewb E < 54',“/ 5”3

GSMP formally defined in terms of GSSMC ((S,,. C,) : n > 0)
» S, = state just after nth transition
» Co=(GCn1,Cn2,..., Cym) = clock readings just after nth
transition
> See Haas or Shedler books for definition of P((s, c), A) and u
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GSMP Definition

o A v&“ll 'I"Z

Define
> Holding time: t*(s, c) = minj.c.ck( 5)} ci/r(s,e)
> nth state-transition time: ¢, = 3273 ot*(s,¢)
» # of state transitions in [0, t]: N(t) = max{n>0:(, < t}

Let A € S and set

. SN(t) if N(t) < o0
X)) = {A if N(t) =

11/27



GSMP Definition in a Picture

|
s, N(t) = 2 |
N(t) = 3
S3 ‘ O
N N(t) = 0 |
—_ |
s, N(E) = 1 i
|
#(Se.Co)  t(S1.Cq)  t(Sp.Cp) £(S5.C3)
\ \ \ \ \ \
=0 g C C t C
Co 1 2 S xies,
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Discrete-Event Systems and Generalized Semi-Markov Processes

Simulating GSMPs
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Sample Path Generation

GSMP Simulation Algorithm (Variable Time-Advance)

1.

o &> @

(Initialization) Select s R v. For each ¢; € E(s) generate a
clock reading ¢; B Fo(-;ei,s). Set ¢; =0 for e; ¢ E(s).
Determine holding time t*(s, ¢) and set of trigger events
E*=E*(s,c)={ei: ci/r(s,e)) =t*(s,c)}.

Generate next state s’ ~ p(-;s, E®).

For each ej € N(s'; s, E*), generate c/ = F(-;s, e,s, E*).
For each ¢; € O(s'; s, E*), set ¢; = ¢; — t*(s, c) r(s, &).
For each e € (E(s) — E*) — E(s'), set ¢/ =0

(i.e., cancel event g;).

Set s =5’ and ¢ = ¢/, and go to Step 2.

(Here ¢ = (c1, ¢, ..., cp) and similarly for ¢’.)
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Sample Path Generation, Continued

Algorithm generates sequence of states (S, : n > 0),
clock-reading vectors (C, : n > 0), and holding times
(t*(Sn, Cn):n> 0)

Transition times (¢, : n > 0) and continuous-time process
(X(&) : §>0) computed as described previously

Use usual techniques to estimate quantities like £ [f(X(t))]
or even

. |
a=FE H / F(X(w)) dU} il fis;)
JO Il

f(S1)
L

N(t)— :
< Z F(S Ca) + f(Sney) (t — CN(I))>:| R

G G (€O [

Flow charts and diagrams can be helpful
(see Law, p. 30-32 for an example)
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Discrete-Event Systems and Generalized Semi-Markov Processes

Generating Clock Readings: Inversion Method
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) e —
Generating Clock Readings: Example & 114 cdf

Exponential distribution with rate (intensity) A

—Ax . LJ‘F A AX .
&X f(x;/\):{)\e !fx20, and F(x;)\):{l e !fXZO, J
0 if x<0 0 if x <0
Mean = 1/\
Claim:
If U R Uniform(0,1) and V = =Y then V R exp()) J
Proof: A
U = P(lu < )
—I“ﬁ D/C) P W

Pv># ) 103 ) PC“‘C’WB: e
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The Inversion Method: Special Case
=

° A

Spose that cdf F(x) = P(V < x) is increasing and continuous

Claim:
If U R Uniform(0,1) and V = F~1(U), then V R F J

Proof:

p(ye) = PIF LY <q) = P(FLF W) éi’z@
= PlU £ Fw) = FiK)

=
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Example: Exponential Distribution J’éﬁ“;(,{

F(x)=1—e™ LA)”/LA e,m/ _ -0
F(u) = ’XMOFM) Y «OMUFU\B’M
(1
4 n - /\
(W) )
= ///“”w
A

ccial cast @\D Mvevsen mdho/

7
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The Inversion Method: General Case

Generalized inverse
F~Y(u) = min{x : F(x) > u}

F(x)
—0
U o Y PR
—0
O I X
FL(u)

Claim still holds: F~1(u) < x & u < F(x) by definition

Exercise: Show that inversion method = naive method
for discrete RVs
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Discrete-Event Systems and Generalized Semi-Markov Processes

Markovian and Semi-Markovian GSMPs
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Markovian GSMPs ’r“‘“)[ iy I w2 f@, \N
!
Properties of the Exponential Distribution
If X 2 exp(A) and Y = exp(p) then

1. min(X,Y) 2 exp()\ + 1) [indep. of whether min = X or Y]
2. P(X<Y)= )\Jm
3. P(X >a+b| X > a)=e *b [memoryless property]

Properties 1 and 2 generalize to multiple exponential RVs

Simple GSMP event ¢’
F(-;s',e,s,E*)=F(-;€) and Fy(-;€’;s) = F(-; ¢€) J
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Markovian GSMPs, Continued

Suppose that all events in a GSMP are simple with
exponential clock-setting distn’s

Key observation: By memoryless property, whenever GSMP
jumps into a state s, clock readings for events in E(s) are
mutually independent and exponentially distributed

Simplified Simulation Algorithm (No clock readings needed)

T D
1. (Initialization) Select s ~ v

2. Generate holding time t* R exp(\), where
A= A(5) - Ze,-GE(s) Ai
3. Select e; € E(s) as trigger event with probability A;/A

D
4. Generate the next state s’ ~ p(-;s, ¢;)

5. Set s = s’ and go to Step 2
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Markovian GSMPs, Continued y 5#]( oPhur n*

' ‘)
Structure of a Markovian GSMP J«mn; “é own

» Sequence (S, : n>0)is a DTMC with transition matrix
R(5.5') = Yo ceey Ps': 5, ) (Ni/A)

» Given (S, : n > 0), holding times are mutually independent
with holding time in S, R exp(A(Sn))

Often, occurrence of ¢; in s causes state to change to a
unique state y; = y;(s) with probability 1
Super-Simplified Simulation Algorithm
1. (Initialization) Select s Ry
2. Generate holding time t* R exp(A), where A=3", cp(oy Ai
3. Set s’ = y;(s) with probability \;/A
4. Set s = s’ and go to Step 2
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Markovian GSMPs, Continued

A GSMP (X(t):t > 0)) with simple, exponential transitions
is a continuous-time Markov chain (CTMC) [Ross, Ch. 6]

» Finite or countable state space

» Continuous-time Markov property

P(X(t+u)=s|X(s):0<s<t)=P(X(t+u) =s | X(¢)) J

All CTMCs have foregoing structure
» State sequence is a DTMC
» Holding times mutually independent and exp()\(s)) in state s

Q: What can go wrong if events are not simple?
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Example of Markovian GSMP: Poisson Process

Definition of Poisson process (N(t): t > 0) with rate
» $§=4{0,1,2,...}
» Single exp(\) event

» p(s+1;s,e)=1 Ndﬂ

.z—~fo
—0
0__.@_»——/-"—7 £
Pﬂggaﬂ
Can show that )57l N
e—)\s Sn
P(N(t+s):m+n|N(t):m):% J

Examples: # arrivals to a queue, # of lightbulb replacements
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Semi-Markovian GSMPs

GSMP (X(t): t > 0) with simple events such that |E(s)| =1

for all s € S is a semi-Markov process

Definition of semi-Markov process
» Discrete state space S
» State sequence (X, : n > 0) is a DTMC with transition
matrix, say, R
» Holding time in s 2 F(-;s)

» “Markov property holds only at state-transition times”

Example: Renewal counting process
» $={0,1,2,...}
» R(s,s+1)=1forallse$S
» F(-;s)= G(-) for some G
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