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Discrete-Event Stochastic Systems

Stochastic state transitions occur at an increasing sequence
of random times

	 t

X (t)

How to model underlying process
�
X (t) : t � 0

�
?

I Generalized semi-Markov processes (GSMPs)

I Basic model of a discrete-event system
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GSMP Overview

I Events associated with a state “compete” to trigger next
state transition

I Each event has own distribution for determining the next state
I New events

I Associated with new state but not old state, or
I Associated with new state and just triggered state transition
I Clock is set with time until event occurs (runs down to 0)

I Old events
I Associated with old and new states, did not trigger transition
I Clock continues to run down

I Canceled events
I Associated with old state, but not new state
I Clock reading is discarded

I Clocks can run down at state-dependent speeds
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Clock-Reading Plot
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GSMP Building Blocks

I S : a (finite or countably infinite) set of states

I E = {e1, e2, . . . , eM}: a finite set of events

I E (s) ✓ E : the set of active events in state s 2 S

I p(s 0; s,E ⇤): probability that new state = s
0 when events in E

⇤

simultaneously occur in s

I Write p(s 0; s, e⇤) if E⇤ = {e⇤} (unique trigger event)

I r(s, e): the nonnegative finite speed at which clock for e runs
down in state s

I Typically r(s, e) = 1
I Set r(s, e) = 0 to model “preempt resume” service discipline

I F ( · ; s 0, e 0, s,E ⇤): cdf of new clock-reading for e 0 after state

transition s
E⇤
�! s

0

I µ: initial distribution for state and clock readings

I Assume initial state s
D⇠ ⌫ and clock readings

D⇠ F0( · ; e, s)
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New and Old Events
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Example: GI/G/1 Queue

- Assume that interarrival-time dist’n Fa and service-time
dist’n Fs are continuous (no simult. event occurrences)

- Assume that at time t = 0 a job arrives to an empty system

X (t) = # of jobs in service or waiting in queue at time t

Can define (X (t) : t � 0) as a GSMP:
I S =

I E =

I E (s) =

I p:

I F (x ; s 0, e 0, s, e⇤) :

I r(s, e) =

I Initial dist’n:
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A More Complex Example: Patrolling Repairman

See handout for details

I Provides an example of how to concisely express GSMP
building blocks

Specifying a GSMP can be complex and time-consuming, so
why do it?

I Direct guidance for coding (helps catch “corner cases”)

I Communicates model at high level (vs poring through code)
I Theory for GSMPs can help in establishing important

properties of the simulation
I Stability (i.e., convergence to steady state), so that

steady-state estimation problems are well defined
I Validity of specific simulation output-analysis methods, so that

estimates are correct
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GSMPs and GSSMCs

GSMP formally defined in terms of GSSMC
�
(Sn,Cn) : n � 0

�

I Sn = state just after nth transition

I Cn = (Cn,1,Cn,2, . . . ,Cn,M) = clock readings just after nth
transition

I See Haas or Shedler books for definition of P
�
(s, c),A

�
and µ
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GSMP Definition

Define

I Holding time: t⇤(s, c) = min{i :ei2E(s)} ci/r(s, ei )

I nth state-transition time: ⇣n =
Pn�1

k=0 t
⇤(s, c)

I # of state transitions in [0, t]: N(t) = max{n � 0 : ⇣n  t}

Let � 62 S and set

X (t) =

(
SN(t) if N(t) < 1;

� if N(t) = 1
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GSMP Definition in a Picture
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Sample Path Generation

GSMP Simulation Algorithm (Variable Time-Advance)

1. (Initialization) Select s
D⇠ ⌫. For each ei 2 E (s) generate a

clock reading ci
D⇠ F0( · ; ei , s). Set ci = 0 for ei /2 E (s).

2. Determine holding time t
⇤(s, c) and set of trigger events

E
⇤ = E

⇤(s, c) = {ei : ci/r(s, ei ) = t
⇤(s, c)}.

3. Generate next state s
0 D⇠ p( · ; s,E ⇤).

4. For each ei 2 N(s 0; s,E ⇤), generate c
0
i
D⇠ F ( · ; s 0, ei , s,E ⇤).

5. For each ei 2 O(s 0; s,E ⇤), set c
0
i = ci � t

⇤(s, c) r(s, ei ).

6. For each ei 2 (E (s)� E
⇤)� E (s 0), set c 0i = 0

(i.e., cancel event ei ).

7. Set s = s
0 and c = c

0, and go to Step 2.
(Here c = (c1, c2, . . . , cM) and similarly for c 0.)
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Sample Path Generation, Continued

Algorithm generates sequence of states (Sn : n � 0),
clock-reading vectors (Cn : n � 0), and holding times�
t
⇤(Sn,Cn) : n � 0

�

Transition times (⇣n : n � 0) and continuous-time process�
X (n) : n � 0

�
computed as described previously

Use usual techniques to estimate quantities like E
⇥
f
�
X (t)

�⇤

or even

↵ = E


1
t

Z t

0

f
�
X (u)

�
du

�

= E

"
1
t

 
N(t)�1X

n=0

f (Sn)t
⇤(Sn,Cn) + f (SN(t))

�
t � ⇣N(t)

�
!#

Flow charts and diagrams can be helpful
(see Law, p. 30–32 for an example)
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Generating Clock Readings: Example

Exponential distribution with rate (intensity) �

f (x ;�) =

(
�e��x if x � 0;

0 if x < 0
and F (x ;�) =

(
1� e

��x if x � 0;

0 if x < 0

Mean = 1/�

Claim:

If U
D⇠ Uniform(0, 1) and V = � lnU

� , then V
D⇠ exp(�)

Proof:
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The Inversion Method: Special Case

Spose that cdf F (x) = P(V  x) is increasing and continuous

Claim:

If U
D⇠ Uniform(0, 1) and V = F

�1(U), then V
D⇠ F

Proof:
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Example: Exponential Distribution

F (x) = 1� e
��x

F
�1(u) =
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The Inversion Method: General Case

Generalized inverse

F
�1(u) = min{x : F (x) � u}

	

F(x)

x

u

F (u )-1

Claim still holds: F�1(u)  x , u  F (x) by definition

Exercise: Show that inversion method = naive method
for discrete RVs
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Markovian GSMPs

Properties of the Exponential Distribution

If X
D⇠ exp(�) and Y

D⇠ exp(µ) then

1. min(X ,Y )
D⇠ exp(�+ µ) [indep. of whether min = X or Y ]

2. P(X < Y ) = �
�+µ

3. P(X > a+ b | X > a) = e
��b [memoryless property]

Properties 1 and 2 generalize to multiple exponential RVs

Simple GSMP event e 0

F (· ; s 0, e 0, s,E ⇤) ⌘ F (· ; e 0) and F0(· ; e 0; s) ⌘ F (· ; e 0)
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Markovian GSMPs, Continued

Suppose that all events in a GSMP are simple with
exponential clock-setting distn’s

Key observation: By memoryless property, whenever GSMP
jumps into a state s, clock readings for events in E (s) are
mutually independent and exponentially distributed

Simplified Simulation Algorithm (No clock readings needed)

1. (Initialization) Select s
D⇠ ⌫

2. Generate holding time t
⇤ D⇠ exp(�), where

� = �(s) =
P

ei2E(s) �i

3. Select ei 2 E (s) as trigger event with probability �i/�

4. Generate the next state s
0 D⇠ p( · ; s, ei )

5. Set s = s
0 and go to Step 2
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Markovian GSMPs, Continued

Structure of a Markovian GSMP

I Sequence (Sn : n � 0) is a DTMC with transition matrix
R(s, s 0) =

P
ei2E(s) p(s

0; s, ei )(�i/�)

I Given (Sn : n � 0), holding times are mutually independent

with holding time in Sn
D⇠ exp

�
�(Sn)

�

Often, occurrence of ei in s causes state to change to a
unique state yi = yi (s) with probability 1

Super-Simplified Simulation Algorithm

1. (Initialization) Select s
D⇠ ⌫

2. Generate holding time t
⇤ D⇠ exp(�), where � =

P
ei2E(s) �i

3. Set s 0 = yi (s) with probability �i/�

4. Set s = s
0 and go to Step 2
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Markovian GSMPs, Continued

A GSMP
�
X (t) : t � 0)

�
with simple, exponential transitions

is a continuous-time Markov chain (CTMC) [Ross, Ch. 6]

I Finite or countable state space

I Continuous-time Markov property

P
�
X (t + u) = s | X (s) : 0  s  t

�
= P

�
X (t + u) = s | X (t)

�

All CTMCs have foregoing structure

I State sequence is a DTMC

I Holding times mutually independent and exp
�
�(s)

�
in state s

Q: What can go wrong if events are not simple?
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Example of Markovian GSMP: Poisson Process

Definition of Poisson process
�
N(t) : t � 0

�
with rate �

I S = {0, 1, 2, . . .}
I Single exp(�) event

I p(s + 1; s, e) = 1

Can show that

P
�
N(t + s) = m + n | N(t) = m

�
=

e
-�s(�s)n

n!

Examples: # arrivals to a queue, # of lightbulb replacements
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Semi-Markovian GSMPs

GSMP
�
X (t) : t � 0

�
with simple events such that |E (s)| = 1

for all s 2 S is a semi-Markov process

Definition of semi-Markov process

I Discrete state space S

I State sequence (Xn : n � 0) is a DTMC with transition
matrix, say, R

I Holding time in s
D⇠ F ( · ; s)

I “Markov property holds only at state-transition times”

Example: Renewal counting process

I S = {0, 1, 2, . . .}
I R(s, s + 1) = 1 for all s 2 S

I F ( · ; s) ⌘ G ( · ) for some G
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