Discrete-Event Systems and Generalized Semi-Markov Processes Reading: Section 1.4 in Shedler or Section 4.1 in Haas

Peter J. Haas

CS 590M: Simulation Spring Semester 2020

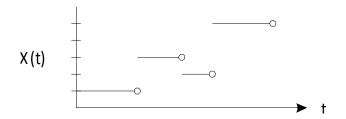
1/27

Discrete-Event Systems and Generalized Semi-Markov Processes Discrete-Event Stochastic Systems The GSMP Model Simulating GSMPs Generating Clock Readings: Inversion Method Markovian and Semi-Markovian GSMPs

2/27

Discrete-Event Stochastic Systems

Stochastic state transitions occur at an increasing sequence of random times

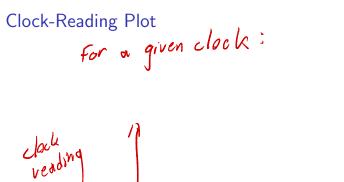


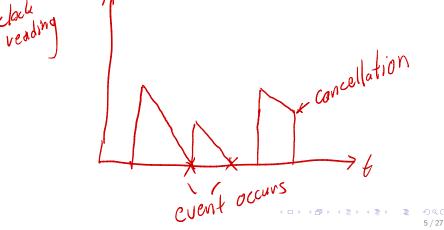
How to model underlying process $(X(t) : t \ge 0)$?

- Generalized semi-Markov processes (GSMPs)
- Basic model of a discrete-event system

GSMP Overview

- Events associated with a state "compete" to trigger next state transition
- Each event has own distribution for determining the next state
- New events
 - Associated with new state but not old state, or
 - Associated with new state and just triggered state transition
 - Clock is set with time until event occurs (runs down to 0)
- Old events
 - Associated with old and new states, did not trigger transition
 - Clock continues to run down
- Canceled events
 - Associated with old state, but not new state
 - Clock reading is discarded
- Clocks can run down at state-dependent speeds

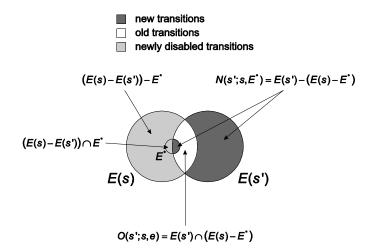




GSMP Building Blocks

- ► S: a (finite or countably infinite) set of states
- $E = \{e_1, e_2, \dots, e_M\}$: a finite set of events
- $E(s) \subseteq E$: the set of active events in state $s \in S$
- p(s'; s, E*): probability that new state = s' when events in E* simultaneously occur in s
 - Write $p(s'; s, e^*)$ if $E^* = \{e^*\}$ (unique trigger event)
- r(s, e): the nonnegative finite speed at which clock for e runs down in state s
 - ▶ Typically r(s, e) = 1
 - Set r(s, e) = 0 to model "preempt resume" service discipline
- F(·; s', e', s, E*): cdf of new clock-reading for e' after state transition s ^{E*}→ s'
- μ : initial distribution for state and clock readings
 - Assume initial state $s \stackrel{\mathsf{D}}{\sim} \nu$ and clock readings $\stackrel{\mathsf{D}}{\sim} \mathcal{F}_0(\ \cdot\ ; e, s)$

New and Old Events



Example: GI/G/1 Queue

- Assume that interarrival-time dist'n F_a and service-time dist'n F_s are continuous (no simult. event occurrences)
- Assume that at time t = 0 a job arrives to an empty system

X(t) = # of jobs in service or waiting in queue at time t

Can define $(X(t) : t \ge 0)$ as a GSMP: $E = \{e_1, e_2\} e_1^*$ "arrival", e_2^* "completion of service • $E(s) = \{e_i\} \ i \neq s = 0; \ E(s) = \{e_i, e_k\} \ i \neq s > 0$ ► p: p(s+1;s,e,)=1, p(s-1;s,e_)=1, p(s';s,e)=0 otherwise • $F(x; s', e', s, e^*)$: F(x), $P(z) = e_1$ and $F_s(x)$, $P(z) = e_2$ ► Initial dist'n: $\mathcal{V}(I) = I$, $\mathcal{V}(S) = 0$, $\forall S \neq 0$, $F(\alpha; e_1, S) = F_a(\alpha)$ $F_a(\alpha; e_1, S) = F_s(\alpha)$

A More Complex Example: Patrolling Repairman

See handout for details

 Provides an example of how to concisely express GSMP building blocks

Specifying a GSMP can be complex and time-consuming, so why do it?

- Direct guidance for coding (helps catch "corner cases")
- Communicates model at high level (vs poring through code)
- Theory for GSMPs can help in establishing important properties of the simulation
 - Stability (i.e., convergence to steady state), so that steady-state estimation problems are well defined
 - Validity of specific simulation output-analysis methods, so that estimates are correct

GSMPs and GSSMCs

GSMP formally defined in terms of GSSMC $((S_n, C_n) : n \ge 0)$

- S_n = state just after *n*th transition
- $C_n = (C_{n,1}, C_{n,2}, \dots, C_{n,M}) = \text{clock readings just after } n\text{th transition}$
- See Haas or Shedler books for definition of P((s, c), A) and μ

GSMP Definition

Define

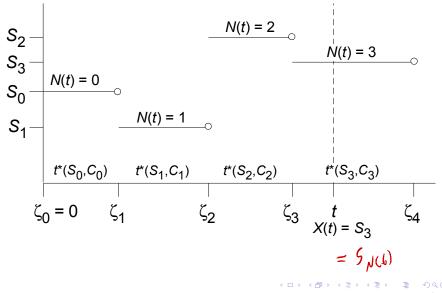
- ► Holding time: $t^*(s, c) = \min_{\{i:e_i \in E(s)\}} c_i / r(s, e_i)$
- *n*th state-transition time: $\zeta_n = \sum_{k=0}^{n-1} t^*(s, c)$
- # of state transitions in [0, t]: $N(t) = \max\{n \ge 0 : \zeta_n \le t\}$

clock reading. for ei

Let $\Delta \not\in S$ and set

$$X(t) = egin{cases} S_{N(t)} & ext{if } N(t) < \infty; \ \Delta & ext{if } N(t) = \infty \end{cases}$$

GSMP Definition in a Picture



12 / 27

Discrete-Event Systems and Generalized Semi-Markov Processes

Discrete-Event Stochastic Systems The GSMP Model

Simulating GSMPs

Generating Clock Readings: Inversion Method Markovian and Semi-Markovian GSMPs

Sample Path Generation

GSMP Simulation Algorithm (Variable Time-Advance)

- 1. (Initialization) Select $s \stackrel{D}{\sim} \nu$. For each $e_i \in E(s)$ generate a clock reading $c_i \stackrel{D}{\sim} F_0(\cdot; e_i, s)$. Set $c_i = 0$ for $e_i \notin E(s)$.
- 2. Determine holding time $t^*(s, c)$ and set of trigger events $E^* = E^*(s, c) = \{e_i : c_i/r(s, e_i) = t^*(s, c)\}.$
- 3. Generate next state $s' \stackrel{\text{D}}{\sim} p(\cdot; s, E^*)$.
- 4. For each $e_i \in N(s'; s, E^*)$, generate $c'_i \stackrel{D}{\sim} F(\cdot; s', e_i, s, E^*)$.
- 5. For each $e_i \in O(s'; s, E^*)$, set $c'_i = c_i t^*(s, c) r(s, e_i)$.
- 6. For each $e_i \in (E(s) E^*) E(s')$, set $c'_i = 0$ (i.e., cancel event e_i).

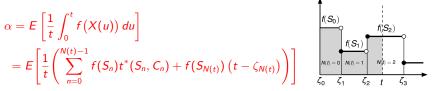
7. Set
$$s = s'$$
 and $c = c'$, and go to Step 2.
(Here $c = (c_1, c_2, \dots, c_M)$ and similarly for c' .

Sample Path Generation, Continued

Algorithm generates sequence of states $(S_n : n \ge 0)$, clock-reading vectors $(C_n : n \ge 0)$, and holding times $(t^*(S_n, C_n) : n \ge 0)$

Transition times $(\zeta_n : n \ge 0)$ and continuous-time process $(X(\mathbf{k}) : \mathbf{k} \ge 0)$ computed as described previously

Use usual techniques to estimate quantities like E[f(X(t))] or even



Flow charts and diagrams can be helpful (see Law, p. 30–32 for an example)

イロト 不同下 イヨト イヨト

Discrete-Event Systems and Generalized Semi-Markov Processes

Discrete-Event Stochastic Systems The GSMP Model Simulating GSMPs Generating Clock Readings: Inversion Method Markovian and Semi-Markovian GSMPs Generating Clock Readings: Example Tedf

Exponential distribution with rate (intensity) λ

$$f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0; \\ 0 & \text{if } x < 0 \end{cases} \text{ and } F(x;\lambda) = \begin{cases} 1 - e^{-\lambda x} & \text{if } x \ge 0; \\ 0 & \text{if } x < 0 \end{cases}$$

Mean = $1/\lambda$

Claim:

If
$$U \stackrel{\mathsf{D}}{\sim} \mathsf{Uniform}(0,1)$$
 and $V = \frac{-\ln U}{\lambda}$, then $V \stackrel{\mathsf{D}}{\sim} \exp(\lambda)$

Proof:

$$P(V > x) = P(-\frac{hu}{\lambda} > x) = P(-\frac{hu}{\lambda} > x)$$

 $= P(-\frac{hu}{\lambda} > x) = P(-\frac{hu}{\lambda} > x)$

1

イロト 不同下 イヨト イヨト

The Inversion Method: Special Case

Spose that cdf $F(x) = P(V \le x)$ is increasing and continuous

Claim:

If $U \stackrel{\text{D}}{\sim} \text{Uniform}(0,1)$ and $V = F^{-1}(U)$, then $V \stackrel{\text{D}}{\sim} F$

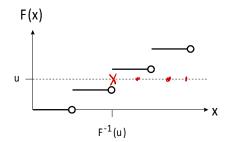
Proof: $P(V \neq x) = P(F^{-1}(u) \neq x) = P(F(F^{-1}(u)) \neq F(x))$ $= P(U \neq F(x)) = F(x)$

< □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ ? へ (~ 19/27

The Inversion Method: General Case

Generalized inverse

 $F^{-1}(u) = \min\{x : F(x) \ge u\}$



Claim still holds: $F^{-1}(u) \le x \iff u \le F(x)$ by definition

Exercise: Show that inversion method = naive method for discrete $\ensuremath{\mathsf{RVs}}$

Discrete-Event Systems and Generalized Semi-Markov Processes

Discrete-Event Stochastic Systems The GSMP Model Simulating GSMPs Generating Clock Readings: Inversion Method Markovian and Semi-Markovian GSMPs

Properties of the Exponential Distribution

If
$$X \stackrel{\mathsf{D}}{\sim} \exp(\lambda)$$
 and $Y \stackrel{\mathsf{D}}{\sim} \exp(\mu)$ then

- 1. $\min(X, Y) \stackrel{D}{\sim} \exp(\lambda + \mu)$ [indep. of whether min = X or Y] 2. $P(X < Y) = \frac{\lambda}{\lambda + \mu}$
- 3. $P(X > a + b | X > a) = e^{-\lambda b}$ [memoryless property]

Properties 1 and 2 generalize to multiple exponential RVs

Simple GSMP event e' $F(\cdot; s', e', s, E^*) \equiv F(\cdot; e')$ and $F_0(\cdot; e'; s) \equiv F(\cdot; e')$

Markovian GSMPs, Continued

Suppose that all events in a GSMP are simple with exponential clock-setting distn's

Key observation: By memoryless property, whenever GSMP jumps into a state s, clock readings for events in E(s) are mutually independent and exponentially distributed

Simplified Simulation Algorithm (No clock readings needed)

- 1. (Initialization) Select $s \stackrel{\mathrm{D}}{\sim} \nu$
- 2. Generate holding time $t^* \stackrel{D}{\sim} \exp(\lambda)$, where $\lambda = \lambda(s) = \sum_{e_i \in E(s)} \lambda_i$
- 3. Select $e_i \in E(s)$ as trigger event with probability λ_i/λ
- 4. Generate the next state $s' \stackrel{D}{\sim} p(\cdot; s, e_i)$
- 5. Set s = s' and go to Step 2

Markovian GSMPs, Continued

Structure of a Markovian GSMP

- ► Sequence $(S_n : n \ge 0)$ is a DTMC with transition matrix $R(s, s') = \sum_{e_i \in E(s)} p(s'; s, e_i)(\lambda_i / \lambda)$
- Given (S_n : n ≥ 0), holding times are mutually independent with holding time in S_n ^D exp(λ(S_n))

Often, occurrence of e_i in *s* causes state to change to a unique state $y_i = y_i(s)$ with probability 1

Super-Simplified Simulation Algorithm

- 1. (Initialization) Select $s \stackrel{D}{\sim} \nu$
- 2. Generate holding time $t^* \stackrel{\mathsf{D}}{\sim} \exp(\lambda)$, where $\lambda = \sum_{e_i \in E(s)} \lambda_i$
- 3. Set $s' = y_i(s)$ with probability λ_i/λ
- 4. Set s = s' and go to Step 2

Markovian GSMPs, Continued

A GSMP $(X(t): t \ge 0))$ with simple, exponential transitions is a continuous-time Markov chain (CTMC) [Ross, Ch. 6]

- Finite or countable state space
- Continuous-time Markov property

$$P(X(t+u) = s \mid X(s) : 0 \le s \le t) = P(X(t+u) = s \mid X(t))$$

All CTMCs have foregoing structure

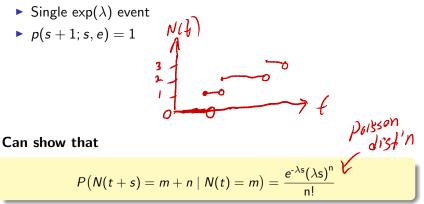
- State sequence is a DTMC
- Holding times mutually independent and $\exp(\lambda(s))$ in state s

Q: What can go wrong if events are not simple?

Example of Markovian GSMP: Poisson Process

Definition of Poisson process $(N(t) : t \ge 0)$ with rate λ

•
$$S = \{0, 1, 2, ...\}$$



Examples: # arrivals to a queue, # of lightbulb replacements

Semi-Markovian GSMPs

GSMP $(X(t) : t \ge 0)$ with simple events such that |E(s)| = 1 for all $s \in S$ is a semi-Markov process

Definition of semi-Markov process

- Discrete state space S
- State sequence (X_n : n ≥ 0) is a DTMC with transition matrix, say, R
- Holding time in $s \stackrel{\mathsf{D}}{\sim} F(\cdot; s)$
- "Markov property holds only at state-transition times"

Example: Renewal counting process

- $S = \{0, 1, 2, ...\}$
- R(s, s+1) = 1 for all $s \in S$
- $F(\cdot; s) \equiv G(\cdot)$ for some G