Simulation of Discrete-Time Markov Chains Peter J. Haas CS590M: Simulation Spring Semester 2020 Simulation of Discrete-Time Markov Chains Discrete-Time Markov Chains

1/13

$2 \, / \, 13$

DTMC Definition

Simplest model for dynamic stochastic system

- X_n = system state after *n*th transition
- $(X_n : n \ge 0)$ satisfies the Markov property

 $P\{X_{n+1} = x \mid X_n = x_n, X_{n-1} = x_{n-1}, \dots, X_0 = x_0\}$ = $P\{X_{n+1} = x \mid X_n = x_n\}$

Time-homogeneous DTMC with state space S defined via

- 1. Transition matrix $P = (P(x, y) : x, y \in S)$, with $P(x, y) = P\{X_{n+1} = y \mid X_n = x\}$
- 2. Initial distribution $\mu = (\mu(x) : x \in S)$, with $\mu(x) = P \{X_0 = x\}$

Example: Markovian Jumping Frog

$X_n =$ lily pad occupied by frog after *n*th jump

▶ Frog starts in states 1 and 2 with equal probability

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 \\ 1/3 & 0 & 2/3 \\ 3/4 & 1/4 & 0 \end{bmatrix} \text{ and } \mu = \begin{bmatrix} 1/2 \\ 1/2 \\ 0 \end{bmatrix}$$

Computing Probabilities and Expectations

Example: $\theta = P\{\text{frog on pad 2 after } k\text{th jump}\}$

- Write as $\theta = E[f(X_k)]$, where $f(x) = \begin{cases} 1 & \text{if } x = 2 \\ 0 & \text{otherwise} \end{cases}$
- Sometimes write indicator function f(x) as I(x = 2)
- Q: Why is this correct?

Numerical solution for arbitrary function f

- Q: What is probability distribution after first jump?
- Let $v_n(i) = P\{\text{frog on pad } i \text{ after } n\text{th jump}\} v_n = \begin{vmatrix} v_n(1) \\ v_n(2) \\ v_n(3) \end{vmatrix}$
- Set $v_0 = \mu$ and $v_{m+1}^\top = v_m^\top P$ for $m \ge 0$ i.e., $v_{m+1}(j) = \sum_{i=1}^3 v_m(i) P(i,j)$
- Then $E[f(X_k)] = v_k^\top f$, where $f = [f(1), f(2), f(3)]^\top$
- Ex: For θ as above, take f = (0, 1, 0) so that $v_k^{\top} f = v(2)$
- 5/13

Simulation of DTMCs

Why simulate?

Naive method for generating a discrete random variable

Simulation of DTMCs, Continued

Generating a sample path X_0, X_1, \ldots

- 1. Generate X_0 from μ and set m = 0
- 2. Generate Y according to $P(X_m, \cdot)$ and set $X_{m+1} = Y$
- 3. Set $m \leftarrow m + 1$ and go to 2.

Estimating $\theta = E[f(X_k)]$

- 1. Generate X_0, X_1, \ldots, X_k and set $Z = f(X_k)$
- 2. Repeat *n* times to generate Z_1, Z_2, \ldots, Z_n (i.i.d.)
- 3. Compute point estimate $\theta_n = (1/n) \sum_{i=1}^n Z_i$

Can generalize to estimate $\theta = E[f(W)]$, where $W = f(X_0, X_1, \dots, X_k)$

DTMCs: Recursive Definition

Proposition

- ▶ Let U₁, U₂,... be a sequence of i.i.d. random variables and X₀ a given random variable
- $(X_n : n \ge 0)$ is a time homogeneous DTMC \Leftrightarrow $X_{n+1} = f(X_n, U_{n+1})$ for $n \ge 0$ and some function f

In \Rightarrow direction, $\textit{U}_1,\textit{U}_2,\ldots$ can be taken as uniform

Can use to prove that a given process $(X_n : n \ge 0)$ is a DTMC

Q: What if U_0, U_1, \ldots are independent but <u>not</u> identical?

Q: Practical advantages of recursive definition?

Example: (s, S) Inventory System

The model

- X_n = inventory level at the end of period n
- D_n = demand in period n
- ▶ If (s, S) policy is followed then

 $X_{n+1} = \begin{cases} X_n - D_{n+1} & \text{if } X_n - D_{n+1} \ge s; \\ S & \text{if } X_n - D_{n+1} < s \end{cases}$

<u>Claim</u>: If $(D_n : n \ge 1)$ is i.i.d. then $(X_n : n \ge 0)$ is a DTMC with state space $\{s, s + 1, \dots, S\}$

Q: Critique of model—what might be missing?

Digression: Stationary Distribution of a DTMC

Definition

- Informal: π is a stationary distribution of the DTMC if $X_n \stackrel{D}{\sim} \pi$ implies $X_{n+1} \stackrel{D}{\sim} \pi$
- Formal:

$$\pi(j) = P(X_{n+1} = j) = \sum_{i} P(X_{n+1} = j \mid X_n = i) P(X_n = i)$$
$$= \sum_{i} P(i, j) \pi(i) \quad \text{or } \pi^\top = \pi^\top P$$

• So if
$$X_0 \stackrel{\mathsf{D}}{\sim} \pi$$
, then $X_n \stackrel{\mathsf{D}}{\sim} \pi$ for $n \ge 1$

Under appropriate conditions, $\lim_{n\to\infty} P(X_n = i) = \pi(i)$

• Also written as $X_n \Rightarrow X$, where $X \stackrel{D}{\sim} \pi$

How to estimate $\theta = \sum_{i} f(i)\pi(i) = E[f(X)]$ (where $X \stackrel{D}{\sim} \pi$)?

9/13

General State Space Markov Chains: GSSMCs

Problem: With continuous state space, $P{X_{n+1} = x' | X_n = x} = 0!$

- Solution: Use transition kernel $P(x, A) = P\{X_{n+1} \in A \mid X_n = x\}$
- ► In practice: Use recursive definition

Example: Continuous (s, S) inventory system

Example: Random walk on the real line

- ► Let *Y*₁, *Y*₂,... be an i.i.d. sequence of continuous, real-valued random variables
- Set $X_0 = 0$ and $X_{n+1} = X_n + Y_{n+1}$ for $n \ge 0$
- Then $(X_n : n \ge 0)$ is a GSSMC with state space \Re

GSSMC Example: Waiting times in GI/G/1 Queue

The GI/G/1 Queue

- Service center: single server, infinite-capacity waiting room
- Jobs arrive one at a time
- First-come, first served (FCFS) service discipline
- Successive interarrival times are i.i.d.
- Successive service times are i.i.d.

10/13

${\rm GI}/{\rm G}/{\rm 1}$ Waiting Times, Continued

Notation

- W_n = the waiting time of the nth customer (excl. of service)
- $A_n/D_n = \operatorname{arrival}/\operatorname{departure}$ time of the nth customer
- V_n = processing time of the nth customer

Recursion (Lindley Equation)

- $\blacktriangleright D_n = A_n + W_n + V_n$
- ► Thus

 $W_{n+1} = [D_n - A_{n+1}]^+ = [A_n + W_n + V_n - A_{n+1}]^+$ $= [W_n + V_n - I_{n+1}]^+$

- where $I_{n+1} = A_{n+1} A_n$ is (n+1)st interarrival time and $[x]^+ = \max(x, 0)$
- Thus $(W_n : n \ge 0)$ is a GSSMC
- To simulate: generate the V_n 's and I_n 's and apply recursion

13/13

