Simulation of Discrete-Time Markov Chains

Peter J. Haas

CS590M: Simulation
Spring Semester 2020

DTMC Definition

Simplest model for dynamic stochastic system

- X_n = system state after nth transition
- $(X_n : n \geq 0)$ satisfies the Markov property

$$P\{X_{n+1} = x \mid X_n = x_n, X_{n-1} = x_{n-1}, \ldots, X_0 = x_0\} = P\{X_{n+1} = x \mid X_n = x\}$$

Time-homogeneous DTMC with state space S defined via

1. Transition matrix $P = (P(x, y) : x, y \in S)$, with
 \[P(x, y) = P\{X_{n+1} = y \mid X_n = x\} \]
2. Initial distribution $\mu = (\mu(x) : x \in S)$, with
 \[\mu(x) = P\{X_0 = x\} \]

Example: Markovian Jumping Frog

$X_n = \text{lily pad occupied by frog after } n\text{th jump}$

- Frog starts in states 1 and 2 with equal probability

$$P = \begin{bmatrix}
0 & 1/2 & 1/2 \\
1/3 & 0 & 2/3 \\
3/4 & 1/4 & 0
\end{bmatrix} \quad \text{and} \quad \mu = \begin{bmatrix}
1/2 \\
1/2 \\
0
\end{bmatrix}$$
Computing Probabilities and Expectations

Example: \(\theta = P \{ \text{frog on pad 2 after } k \text{th jump} \} \)

- Write as \(\theta = E[f(X_k)] \), where \(f(x) = \begin{cases} 1 & \text{if } x = 2 \\ 0 & \text{otherwise} \end{cases} \)
- Sometimes write indicator function \(f(x) \) as \(I(x = 2) \)
- Q: Why is this correct?

Numerical solution for arbitrary function \(f \)

- Q: What is probability distribution after first jump?
- Let \(v_n(i) = P \{ \text{frog on pad } i \text{ after } n \text{th jump} \} \)

\[
\begin{bmatrix}
v_n(1) \\ v_n(2) \\ v_n(3)
\end{bmatrix}
\]

- Set \(v_0 = \mu \) and \(v_{m+1}^\top P \) for \(m \geq 0 \)

\[
\text{i.e., } v_{m+1}(j) = \sum_{i=1}^{3} v_m(i) P(i,j)
\]
- Then \(E[f(X_k)] = v_k^\top f \), where \(f = [f(1), f(2), f(3)]^\top \)
- Ex: For \(\theta \) as above, take \(f = (0, 1, 0) \) so that \(v_k^\top f = v(2) \)

Simulation of DTMCs

Why simulate?

Naive method for generating a discrete random variable

- Goal: Generate \(Y \) having pmf \(p_i = P\{Y = y_i\} \) and cdf \(c_i = P\{Y \leq y_i\} \) for \(1 \leq i \leq m \)

\[
\begin{array}{c|c|c}
 i & p_i & c_i \\
 \hline
 1 & 3/12 & 3/12 \\
 2 & 8/12 & 11/12 \\
 3 & 1/12 & 12/12 \\
\end{array}
\]

- Ex: If \(U = 0.27 \), then return \(Y = y_2 \)
- Q: How can we speed up this algorithm?

Simulation of DTMCs, Continued

Generating a sample path \(X_0, X_1, \ldots \)

1. Generate \(X_0 \) from \(\mu \) and set \(m = 0 \)
2. Generate \(Y \) according to \(P(X_m, \cdot) \) and set \(X_{m+1} = Y \)
3. Set \(m \leftarrow m + 1 \) and go to 2.

Estimating \(\theta = E[f(X_k)] \)

1. Generate \(X_0, X_1, \ldots, X_k \) and set \(Z = f(X_k) \)
2. Repeat \(n \) times to generate \(Z_1, Z_2, \ldots, Z_n \) (i.i.d.)
3. Compute point estimate \(\theta_n = (1/n) \sum_{i=1}^{n} Z_i \)

Can generalize to estimate \(\theta = E[f(W)] \), where \(W = f(X_0, X_1, \ldots, X_k) \)

DTMCs: Recursive Definition

Proposition

- Let \(U_1, U_2, \ldots \) be a sequence of i.i.d. random variables and \(X_0 \) a given random variable
- \((X_n : n \geq 0)\) is a time homogeneous DTMC \(\iff \ X_{n+1} = f(X_n, U_{n+1}) \) for \(n \geq 0 \) and some function \(f \)

In \(\Rightarrow \) direction, \(U_1, U_2, \ldots \) can be taken as uniform

Can use to prove that a given process \((X_n : n \geq 0)\) is a DTMC

Q: What if \(U_0, U_1, \ldots \) are independent but not identical?

Q: Practical advantages of recursive definition?
Example: (s, S) Inventory System

The model
- \(X_n \) = inventory level at the end of period \(n \)
- \(D_n \) = demand in period \(n \)
- If (s, S) policy is followed then

\[
X_{n+1} = \begin{cases}
X_n - D_{n+1} & \text{if } X_n - D_{n+1} \geq s; \\
S & \text{if } X_n - D_{n+1} < s
\end{cases}
\]

Claim: If \((D_n : n \geq 1)\) is i.i.d. then \((X_n : n \geq 0)\) is a DTMC with state space \(\{s, s+1, \ldots, S\}\)

Q: Critique of model—what might be missing?

Digression: Stationary Distribution of a DTMC

Definition
- Informal: \(\pi\) is a stationary distribution of the DTMC if \(X_n \sim \pi\) implies \(X_{n+1} \sim \pi\)
- Formal:

\[
\pi(j) = P(X_{n+1} = j) = \sum_i P(X_{n+1} = j \mid X_n = i) P(X_n = i) = \sum_i P(i,j)\pi(i) \quad \text{or } \pi^\top = \pi^\top P
\]

- So if \(X_0 \sim \pi\), then \(X_n \sim \pi\) for \(n \geq 1\)

Under appropriate conditions, \(\lim_{n \to \infty} P(X_n = i) = \pi(i)\)
- Also written as \(X_n \Rightarrow X\), where \(X \sim \pi\)

How to estimate \(\theta = \sum_i f(i)\pi(i) = E[f(X)]\) (where \(X \sim \pi\))? 9/13

General State Space Markov Chains: GSSMCs

Problem: With continuous state space,
\(P\{X_{n+1} = x' \mid X_n = x\} = 0!\)
- Solution: Use transition kernel
 \(P(x, A) = P\{X_{n+1} \in A \mid X_n = x\}\)
- In practice: Use recursive definition

Example: Continuous (s, S) inventory system

Example: Random walk on the real line
- Let \(Y_1, Y_2, \ldots\) be an i.i.d. sequence of continuous, real-valued random variables
- Set \(X_0 = 0\) and \(X_{n+1} = X_n + Y_{n+1}\) for \(n \geq 0\)
- Then \((X_n : n \geq 0)\) is a GSSMC with state space \(\mathbb{R}\)

Digression: Stationary Distribution of a DTMC

Definition
- Informal: \(\pi\) is a stationary distribution of the DTMC if \(X_n \sim \pi\) implies \(X_{n+1} \sim \pi\)
- Formal:

\[
\pi(j) = P(X_{n+1} = j) = \sum_i P(X_{n+1} = j \mid X_n = i) P(X_n = i) = \sum_i P(i,j)\pi(i) \quad \text{or } \pi^\top = \pi^\top P
\]

- So if \(X_0 \sim \pi\), then \(X_n \sim \pi\) for \(n \geq 1\)

Under appropriate conditions, \(\lim_{n \to \infty} P(X_n = i) = \pi(i)\)
- Also written as \(X_n \Rightarrow X\), where \(X \sim \pi\)

How to estimate \(\theta = \sum_i f(i)\pi(i) = E[f(X)]\) (where \(X \sim \pi\))? 9/13

GSSMC Example: Waiting times in GI/G/1 Queue

The GI/G/1 Queue
- Service center: single server, infinite-capacity waiting room
- Jobs arrive one at a time
- First-come, first served (FCFS) service discipline
- Successive interarrival times are i.i.d.
- Successive service times are i.i.d.

Example: Continuous (s, S) inventory system

Example: Random walk on the real line
- Let \(Y_1, Y_2, \ldots\) be an i.i.d. sequence of continuous, real-valued random variables
- Set \(X_0 = 0\) and \(X_{n+1} = X_n + Y_{n+1}\) for \(n \geq 0\)
- Then \((X_n : n \geq 0)\) is a GSSMC with state space \(\mathbb{R}\)

Digression: Stationary Distribution of a DTMC

Definition
- Informal: \(\pi\) is a stationary distribution of the DTMC if \(X_n \sim \pi\) implies \(X_{n+1} \sim \pi\)
- Formal:

\[
\pi(j) = P(X_{n+1} = j) = \sum_i P(X_{n+1} = j \mid X_n = i) P(X_n = i) = \sum_i P(i,j)\pi(i) \quad \text{or } \pi^\top = \pi^\top P
\]

- So if \(X_0 \sim \pi\), then \(X_n \sim \pi\) for \(n \geq 1\)

Under appropriate conditions, \(\lim_{n \to \infty} P(X_n = i) = \pi(i)\)
- Also written as \(X_n \Rightarrow X\), where \(X \sim \pi\)

How to estimate \(\theta = \sum_i f(i)\pi(i) = E[f(X)]\) (where \(X \sim \pi\))? 9/13

GSSMC Example: Waiting times in GI/G/1 Queue

The GI/G/1 Queue
- Service center: single server, infinite-capacity waiting room
- Jobs arrive one at a time
- First-come, first served (FCFS) service discipline
- Successive interarrival times are i.i.d.
- Successive service times are i.i.d.
GI/G/1 Waiting Times, Continued

Notation
- \(W_n \) = the waiting time of the \(n \)th customer (excl. of service)
- \(A_n / D_n \) = arrival/departure time of the \(n \)th customer
- \(V_n \) = processing time of the \(n \)th customer

Recursion (Lindley Equation)
- \(D_n = A_n + W_n + V_n \)
- Thus

\[
W_{n+1} = \left[D_n - A_{n+1} \right]^+ = \left[A_n + W_n + V_n - A_{n+1} \right]^+
\]

\[= \left[W_n + V_n - I_{n+1} \right]^+\]

where \(I_{n+1} = A_{n+1} - A_n \) is \((n + 1)\)st interarrival time and
\([x]^+ = \max(x, 0)\)
- Thus \((W_n : n \geq 0) \) is a GSSMC
- To simulate: generate the \(V_n \)'s and \(I_n \)'s and apply recursion