Simulation of Discrete-Time Markov Chains

Peter J. Haas

CS590M: Simulation
Spring Semester 2020

Simulation of Discrete-Time Markov Chains Discrete-Time Markov Chains (DTMCs) Numerical Solution of DTMCs
Simulation of DTMCs
Recursive Definition of a DTMC
Stationary Distribution of a DTMC General State Space Markov Chains

DTMC Definition

Simplest model for dynamic stochastic system

- $X_{n}=$ system state after nth transition
- $\left(X_{n}: n \geq 0\right)$ satisfies the Markov property

$$
\begin{aligned}
& P\left\{X_{n+1}=x \mid X_{n}=x_{n}, X_{n-1}=x_{n-1}, \ldots, X_{0}=x_{0}\right\} \\
& \quad=P\left\{X_{n+1}=x \mid X_{n}=x_{n}\right\}
\end{aligned}
$$

Time-homogeneous DTMC with state space S defined via

1. Transition matrix $P=(P(x, y): x, y \in S)$, with
$P(x, y)=P\left\{X_{n+1}=y \mid X_{n}=x\right\}$
2. Initial distribution $\mu=(\mu(x): x \in S)$, with $\mu(x)=P\left\{X_{0}=x\right\}$

Example: Markovian Jumping Frog

$X_{n}=$ lily pad occupied by frog after nth jump

- Frog starts in states 1 and 2 with equal probability

$$
\begin{aligned}
& 23 \\
& P=\underset{3}{\stackrel{L}{L}}\left[\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 3 & 0 & 2 / 3 \\
3 / 4 & 1 / 4 & 0
\end{array}\right] \text { and } \mu=2\left[\begin{array}{c}
1 / 2 \\
2
\end{array}\left[\begin{array}{c}
1 / 2 \\
0
\end{array}\right]\right.
\end{aligned}
$$

Computing Probabilities and Expectations

Example: $\theta=P$ \{frog on pad 2 after k th jump $\}$

- Write as $\theta=E\left[f\left(X_{k}\right)\right]$, where $f(x)=\left\{\begin{array}{ll}1 & \text { if } x=2 \\ 0 & \text { otherwise }\end{array} \quad P_{k}(x=2)\right.$
- Sometimes write indicator function $f(x)$ as $I(x=2)$
- Q: Why is this correct?

Numerical solution for arbitrary function f

- Q: What is probability distribution after first jump?
- Let $v_{n}(i)=P\{$ frog on pad i after nth jump $\} v_{n}=\left[\begin{array}{l}v_{n}(1) \\ v_{n}(2) \\ v_{n}(3)\end{array}\right]$
- Set $v_{0}=\mu$ and $v_{m+1}^{\top}=v_{m}^{\top} P$ for $m \geq 0$ I.e., $v_{m+1}(j)=\sum_{i=1}^{3} v_{m}(i) P(i, j)$
- Then $E\left[f\left(X_{k}\right)\right]=v_{k}^{\top} f$, where $f=[f(1), f(2), f(3)]^{\top}$
- Ex: For θ as above, take $f=(0,1,0)$ so that $v_{k}^{\top} f=v(2)$

Simulation of DTMCs

Why simulate? Huge state space, complex estimand
Naive method for generating a discrete random variable

- Goal: Generate Y having mf $p_{i}=P\left\{Y=y_{i}\right\}$ and $c d f$ $c_{i}=P\left\{Y \leq y_{i}\right\}$ for $1 \leq i \leq \tilde{m}$
- Example:

i	p_{i}	c_{i}
1	$3 / 12$	$3 / 12$

2	$8 / 12$	$11 / 12$

3	$1 / 12$	$12 / 12$

Ex: If $U=0.27$, then return $Y=y_{2}$
Q: How can we speed up this algorithm? sort in decreasing order \# of possible binary search

$$
\begin{align*}
& \text { larch } \\
& O(\log m)
\end{align*}
$$

Simulation of DTMCs, Continued

Generating a sample path X_{0}, X_{1}, \ldots

1. Generate X_{0} from μ and set $m=0$
2. Generate Y according to $P\left(X_{m}, \cdot\right)$ and set $X_{m+1}=Y$
3. Set $m \leftarrow m+1$ and go to 2 .

Estimating $\theta=E\left[f\left(X_{k}\right)\right]$

1. Generate $X_{0}, X_{1}, \ldots, X_{k}$ and set $Z=f\left(X_{k}\right)$
2. Repeat n times to generate $Z_{1}, Z_{2}, \ldots, Z_{n}$ (i.i.d.)
3. Compute point estimate $\theta_{n}=(1 / n) \sum_{i=1}^{n} Z_{i}$

Can generalize to estimate $\theta=E[f(W)]$, where $W=f\left(X_{0}, X_{1}, \ldots, X_{k}\right)$

DTMCs: Recursive Definition

Proposition

- Let U_{1}, U_{2}, \ldots be a sequence of i.i.d. random variables and X_{0} a given random variable
- $\left(X_{n}: n \geq 0\right)$ is a time homogeneous DTMC \Leftrightarrow $X_{n+1}=f\left(X_{n}, U_{n+1}\right)$ for $n \geq 0$ and some function f

In \Rightarrow direction, U_{1}, U_{2}, \ldots can be taken as uniform
Can use to prove that a given process $\left(X_{n}: n \geq 0\right)$ is a DTMC
Q: What if U_{0}, U_{1}, \ldots are independent but not identical?
you get a non~homogeneous DTMC
Q: Practical advantages of recursive definition?

$$
\begin{aligned}
& \text { - easier to code } \\
& \sim \text { can handle large state spaces }
\end{aligned}
$$

Example: (s, S) Inventory System

The model

- $X_{n}=$ inventory level at the end of period n
- $D_{n}=$ demand in period n

$$
x_{n+1}=f\left(x_{n}, D_{n+1}\right)
$$

Claim: If ($D_{n}: n \geq 1$) is i.i.d. then $\left(X_{n}: n \geq 0\right)$ is a DTMC with state space $\{s, s+1, \ldots, S\}$ True because of recursive $\begin{array}{r}\text { represention }\end{array}$
Q: Critique of model-what might be missing?

$$
\begin{aligned}
& \text { now ind demand, item returns } \\
& \text { delivery delays (backlogs) }
\end{aligned}
$$

Digression: Stationary Distribution of a DTMC

Definition

- Informal: π is a stationary distribution of the DTMC if $X_{n} \stackrel{\mathrm{D}}{\sim} \pi$ implies $X_{n+1} \stackrel{\mathrm{D}}{\sim} \pi$
- Formal:

$$
\begin{aligned}
\pi(j) & =P\left(X_{n+1}=j\right)=\sum_{i} P\left(X_{n+1}=j \mid X_{n}=i\right) P\left(X_{n}=i\right) \\
& =\sum_{i} P(i, j) \pi(i) \quad \text { or } \pi^{\top}=\pi^{\top} P
\end{aligned}
$$

- So if $X_{0} \stackrel{\text { D }}{\sim} \pi$, then $X_{n} \stackrel{D}{\sim} \pi$ for $n \geq 1$

Under appropriate conditions, $\lim _{n \rightarrow \infty} P\left(X_{n}=i\right)=\pi(i)$

- Also written as $X_{n} \Rightarrow X$, where $X \stackrel{\mathrm{D}}{\sim} \pi$

How to estimate $\theta=\sum_{i} f(i) \pi(i)=E[f(X)]$ (where $X \stackrel{\mathrm{D}}{\sim} \pi$)?

General State Space Markov Chains: GSSMCs

Problem: With continuous state space,
$P\left\{X_{n+1}=x^{\prime} \mid X_{n}=x\right\}=0$!

- Solution: Use transition kernel

$$
P(x, A)=P\left\{X_{n+1} \in A \mid X_{n}=x\right\}
$$

- In practice: Use recursive definition

$$
\begin{aligned}
& \text { Random walk: } \\
& X_{n+1}=f\left(x_{n,}, Y_{n+1}\right) \\
& \text { where } f(x, y)=x+y
\end{aligned}
$$

Example: Continuous (s, S) inventory system
Example: Random walk on the real line

- Let Y_{1}, Y_{2}, \ldots be an i.i.d. sequence of continuous, real-valued random variables
- Set $X_{0}=0$ and $X_{n+1}=X_{n}+Y_{n+1}$ for $n \geq 0$
- Then $\left(X_{n}: n \geq 0\right)$ is a GSSMC with state space \Re (recursive representation given above)

GSSMC Example. Waiting times in GI / G (1) Queue senver
 $$
\begin{aligned} & \text { ample: : general distribation por pi,d, interararival times } \\ & G \text { : genenal service-time distribution } \end{aligned}
$$

The GI/G/1 Queue

- Service center: single server, infinite-capacity waiting room
- Jobs arrive one at a time
- First-come, first served (FCFS) service discipline
- Successive interarrival times are i.i.d.
- Successive service times are i.i.d.

GI/G/1 Waiting Times, Continued

Notation

- $W_{n}=$ the waiting time of the nth customer (excl. of service)
- $A_{n} / D_{n}=$ arrival/departure time of the nth customer
- $V_{n}=$ processing time of the nth customer

Recursion (Lindley Equation)

- $D_{n}=A_{n}+W_{n}+V_{n}$
- Thus

$$
\begin{aligned}
W_{n+1} & =\left[D_{n}-A_{n+1}\right]^{+}=\left[A_{n}+W_{n}+V_{n}-A_{n+1}\right]^{+} \\
& =\left[W_{n}+V_{n}-I_{n+1}\right]^{+}
\end{aligned}
$$

where $I_{n+1}=A_{n+1}-A_{n}$ is $(n+1)$ st interarrival time and $[x]^{+}=\max (x, 0)$

- Thus $\left(W_{n}: n \geq 0\right)$ is a GSSMC
- To simulate: generate the V_{n} 's and I_{n} 's and apply recursion

