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Assignment #7 Solutions 
 

 
1. Telephone model.  

(a) GSMP building blocks: 

State space: 
   
S = (z1,…,zN )∈{0,1,…, K}N : 1{k}(z j )j=1

N∑ = 0 or 2 for 1≤ k ≤ K{ }   

Active events: for    s = (z1,…,zN )∈S ,  

  ei ∈E(s) iff zi = 0  (1≤ i ≤ N )  

{ }1
( ) iff 1 ( ) 2  (1 )+ =

∈ = ≤ ≤∑N
N k k jj
e E s z k K  

State-transition probabilities: for    s = (z1,…,zN )∈S , define 

         
{ }

1
{ }2 1 1

{ }1

( ) 1 ( )  # of occupied links in state 

( ) min : 1 ( ) 0  index of lowest-numbered avail. link in state 

= =

=

= =

= = =

∑ ∑
∑

K N
k jk j

N
k jj

m s z s

a s k z s
 

   Then the state-transition probabilities are defined as follows. 
 

  If *  (1 )= ≤ ≤ie e i N , 

   

- p( ′s ;s,e*) = 1 
when s = (z1,…,zN ) with zi = 0 and m(s) = K

and ′s = s

   

- p( ′s ;s,e*) = 1
N −1

1{1,2,…,K}(z j )
1≤ j≤N

j≠i

∑

when s = (z1,…,zN ) with zi = 0 and m(s) < K
and ′s = s

   

- p( ′s ;s,e*) = 1
N −1

when s = (z1,…,zN ) with zi = z j = 0 and m(s) < K

and ′s = (z1
' ,…,zN

' ) = s,  except that zi
' = z j

' = a(s)

 

*If  (1 ) += ≤ ≤N ke e k K , 

   

- p( ′s ;s,e*) = 1 
when s = (z1,…,zN ) with zi = z j = k  for some distinct i, j

and ′s = s except that z i
' = z j

' = 0

 

 
  Otherwise, *( ; , ) 0.′ =p s s e  

Speeds:  All speeds ( , )r s e  are equal to 1 
Clock-setting distributions: 
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Initial distribution:  

   
ν(s) = 1 iff s = (0,0,…,0), and F0(x;ei ,s)= 1-e-x/6( ) I(x ≥ 0) for 1≤ j ≤ N , s0, j = 1 for 1≤ i ≤ N .  

(Events of the form +N ke are not active at time 0.) 
 

(b)   See the class web page for a program that solves the problem. Our results were as follows. 
 

Performance 
measure 

Point 
Estimate 

95% 
CI 

CI 
Half-width 

IQR for idle-links time 7.51 [6.59, 8.44] 0.924 

Long-run frac. link 2 busy 0.20 [0.17, 0.22] 0.027 

SD for idle-links time 5.54 [ 5.20, 5.89]  0.35 

 
The successive times at which the GSMP enters state (0,0,0,0)=s  form a sequence of 
regeneration points because (i) the state is trivially the same at each regeneration point and (ii) by 
the memoryless property, the clock reading for all active events (whether new or old) is exp(1/6) , 
independent of past history. 
 
To compute the approximate number of runs for 2%± accuracy of the third performance measure,  
note that the above confidence interval half-width is given by 0.975 500 / 500h z s= . Thus 

 
  
n ≈

z0.975s500

0.02α̂
⎛
⎝⎜

⎞
⎠⎟

2

= h 500
0.02α̂

⎛

⎝
⎜

⎞

⎠
⎟

2

= 0.35 500
(0.02)(5.54)

⎛

⎝
⎜

⎞

⎠
⎟

2

≈ 4990  

So we would need 4990 runs. 
 

(c) D&D procedure. For 3k =  plans and   P* = 0.95, d* = 0.1,  and n0 = 40 , we have   h1 = 2.872  from 
Table 10.11 in the textbook. We obtained the following results. 

 
 

	
Rate		

stage-1	
mean	

stage-1	
variance	

	

iN 		
	

0iN n− 	
stage-2	
mean	

	
weight	

weighted	
mean	

0.05	 3.93	 0.16	 132	 92	 3.93	 0.309463	 3.93	

0.20	 4.90	 3.22	 2656	 2616	 5.09	 0.015397	 5.09	

0.60	 4.22	 10.24	 8447	 8407	 4.35	 0.00534	 4.35	

 
As can be seen, setting the call rate to $0.20 yields the highest weighted mean revenue, and hence is 
identified as the best of the three plans.  
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2. Multiple control variates. 

(a)  For   m = 2 , we have 
 

  

Var( XC ) = Var( X )+ a1
2Var(Y (1) )+ a2

2Var(Y (2) )

                   − 2a1Cov( X ,Y (1) )− 2a2Cov( X ,Y (2) )+ 2a1a2Cov(Y (1) ,Y (2) )
. 

 
Taking derivatives with respect to   a1  and   a2 , setting the derivatives equal to 0, and then solving 

yields 

  

a1 =
Cov( X ,Y (1) )− a2Cov(Y (1) ,Y (2) )

Var(Y (1) )

a2 =
Cov( X ,Y (2) )− a1Cov(Y (1) ,Y (2) )

Var(Y (2) )

  

 
Similarly, for   m = 3 , we have 
 

  

Var( XC ) = Var( X )+ a1
2Var(Y (1) )+ a2

2Var(Y (2) )+ a3
2Var(Y (3) )

                   − 2a1Cov( X ,Y (1) )− 2a2Cov( X ,Y (2) )− 2a3Cov( X ,Y (3) )

                   + 2a1a2Cov(Y (1) ,Y (2) )+ 2a1a3Cov(Y (1) ,Y (3) )+ 2a2a3Cov(Y (2) ,Y (3) )

 

 
and we can solve to get 
 

  

a1 =
Cov( X ,Y (1) )− a2Cov(Y (1) ,Y (2) )− a3Cov(Y (1) ,Y (3) )

Var(Y (1) )

a2 =
Cov( X ,Y (2) )− a1Cov(Y (1) ,Y (2) )− a3Cov(Y (2) ,Y (3) )

Var(Y (2) )

a3 =
Cov( X ,Y (3) )− a1Cov(Y (1) ,Y (3) )− a2Cov(Y (2) ,Y (3) )

Var(Y (3) )

 

 
(b) If the covariates are uncorrelated with each other, then   Cov(Y ( i) ,Y ( j ) ) = 0  for  i ≠ j , and we have 

 

  
Var( XC ) = Var( X )+ ai

2Var(Y ( i) )
i=1

m∑ − 2 aiCov( X ,Y ( i) )
i=1

m∑ , so that 
  
ai =

Cov( X ,Y ( i) )
Var(Y ( i) )

 for 

  1≤ i ≤ m   
 

(c) We can estimate the optimal weights by substituting sample variances and covariances into the 
foregoing formulas. If we know the variances and covariances we can just use the known values in 
the above formulas instead of estimating them from the data. This yields more estimates with 
lower variance. 
 

3. Synchronization for common random numbers. Simply use streams 1 and 2 for generating inter-
demand times and demand sizes for all five replications. As discussed in the text, model 1 and model 2 
use the same number of random numbers in each replication, so that these two streams are always 
synchronized. We can also use only stream 3 for the delivery lags (DLs) in all replications, but we 
need a synchronization step after each replication. For example, suppose model 1 used k random 
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numbers for DLs in replication 1 and model 2 used   j ( < k)  random numbers. Then, when simulating 
model 1 in replication 2, simply continue to use stream 3 for generating DLs. When simulating model 
2 in replication 2, first generate and discard  k − j  random numbers from stream 3 before starting the 
simulation. In this way, the DL random numbers will be synchronized across the two models during 
replication 2, since they will both start out using the (k+1)st random number in stream 3. We continue 
in this manner for the subsequent replications. 
 

4. Process monitoring 
 

(a) We have 

      

  

L(h) =
Pθ+h( X1 = G, X2 = B, X3 = G)
Pθ( X1 = G, X2 = B, X3 = G)

=
Pθ+h( X1 = G)Pθ+h( X2 = B | X1 = G)Pθ+h( X3 = G | X2 = B)

Pθ( X1 = G)Pθ( X2 = B | X1 = G)Pθ( X3 = G | X2 = B)

= (θ+ h)(1− θ− h)(θ+ h)2

θ(1− θ)θ2 = (θ+ h)3(1− θ− h)
θ3(1− θ)

 

 
(b)  Using the above formula,  

 

  

  

L '(h) = (θ+ h)3(−1)+ 3(θ+ h)2(1− θ− h)
θ3(1− θ)

L '(0) = 3− 4θ
θ(1− θ)

= 3− 2
0.5(1− 0.5)

= 4
 

 
Note: the formula for   L '(0)  can also be obtained using the trick described in class: 

 

  

  

L(h) = r1(h)r2(h)r3(h), where

r1(h) = θ+ h
θ

, r2(h) = 1− θ− h
1− θ

, r3(h) = (θ+ h)2

θ2 ,  so

r1
' (h) = 1

θ
, r2

' (h) = −1
1− θ

, r3
' (h) = 2(θ+ h)

θ2  and

L '(0) = r1
' (0)+ r2

' (0)+ r3
' (0) = 1

θ
− 1

1− θ
+ 2
θ
= 3− 4θ
θ(1− θ)

 

 
    The cost function is given by   c(N ,θ) = 4N + 0.5θ2 , where N is the number bad batches produced. 

So 
 

   

  

Z1 =
∂c(N ,θ)

∂θ
+ c(N ,θ)L '(0) = θ+ 4N + 0.5θ2( )4

= 0.5+ [(4)(1)+ 0.5(0.5)2]× 4 = 17
 

 

(c) The Robbins-Monro recursion is 
  
θn+1 =Π θn −

a
n

Zn

⎛
⎝⎜

⎞
⎠⎟

, So  

 
  

  
θ2 =Π θ1 − aZ1( ) =Π 0.5− (0.01)(17)( ) =Π 0.33( ) = 0.33  
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5. Epidemiology. 

 
(a)  The arrival process to a specified quadrat is the superposition of the arrival process for the 

individual residents. Because residents move around in an i.i.d. manner, the individual arrival 
processes are independent and no arrival process dominates, so Khintchine’s Theorem implies that 
the overall arrival process should be approximately a Poisson process. Therefore  W , the number 

of arrivals in a two-hour period, should be Poisson: 
  
P(W = m) = e−2γ (2γ )m

m!
.  

 
(b)  For   B = 10  bootstrap samples and an 80% confidence interval (so that  δ = 0.2 ) , compute a pivot 

  Xn
* − Xn  for each row, sort them, and then use elements 

 
(δ / 2)×10⎡⎢ ⎤⎥ = 1  and 

 
(1−δ / 2)×10⎡⎢ ⎤⎥ = 9  as quantile estimates. As per the hint, when computing the pivots, you can 

delay subtracting  Xn  until after you sort, since this does not change the sort order. So the sorted 
bootstrap means are: 2.0, 2.4, 2.8, 3.2, 3.6, 3.6, 4.6, 4.8, 5.4, 5.6. The 1st and 9th of these are 2.0 
and 5.4. Now we can subtract   Xn = 4.0  to find that 

  
π ( l )

* = 5.4− 4.0 = 1.4   and 

  
π (u)

* = 2.0− 4.0 = −2.0 . So the 80% confidence interval is                                

  
Xn −π ( l )

* , Xn −π (u)
*⎡⎣ ⎤⎦ = 4.0−1.4,4.0+ 2.0⎡⎣ ⎤⎦ = 2.6,6.0⎡⎣ ⎤⎦ .  

 
(c)  Our efficiency criterion says to compare the product of  (expected cost per observation) times 

(variance per observation), and prefer the smaller value. For method A the product is   20σ A
2  and 

for Method B the product is   2σB
2 . Since   σB = 3σ A  (so that   σB

2 = 9σ A
2  ) the product for Method B 

is   18σ A
2 , and so we prefer Method B, because it is more efficient. 

 
 

6. (Extra credit) Maintaining feasibility in the R-M algorithm. 
 
(a) We need to project the point  θn  onto the plane defined by  a ⋅ x = b .  As per the hint, if y is an 

arbitrary point on the plane P then, considering the right triangle formed by  θn , the projected 

point   θn
' , and y, we see that the perpendicular distance from  θn  to the plane is given by 

  
δ =

a ⋅(θn − y)
a

=
a ⋅θn − b

a
. This is because 

    

a
a
⋅(θn− y) =1× θn− y ×cosφ= θn− y × δ

θn− y
 

Thus, the actual projected point on the plane is computed as
  
θn

' = θn −δ
a
a

⎛

⎝
⎜

⎞

⎠
⎟ = θn −

a ⋅θn − b
a ⋅a

⎛
⎝⎜

⎞
⎠⎟

a . 

See the figure below; also, the website https://mathinsight.org/distance_point_plane has a nice 
interactive visualization of the geometry. 

https://mathinsight.org/distance_point_plane
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(b) If the projected point violates the lower-bound constraint, we can achieve feasibility by moving 
along the plane. (See the diagram below for the 2D case.) Let v be defined as in the hint; note that 
v is easy to calculate: e.g., set 

   
v = 1,1,…,1,−(a1 + a2 +!+ ad−1) / ad( ) . Let   i*  denote the dimension 

corresponding to the largest violation of the lower bound constraint, i.e., 

   
c

i*
−θ

n,i*
' ≥ ci −θn,i

'  for i = 1,…,d . Then set   θn
+ = θn

' + rv , where 
  
r =

c
i*
−θ

n,i*
'

v
i*

.  The figure below 

illustrates this for two dimensions: the example with  θm  shows the case where the projection 

remains feasible and no adjustment is needed, and the example with  θn  shows the case where the 
above adjustment is needed. 
 

 


