CS 590M Page | of 6
Simulation April 16, 2020
Peter J. Haas Spring Semester 2020

Assignment #7 Solutions

1. Telephone model.
(a) GSMP building blocks:

State space: S:{(zl,...,zN)e {0,1,...,K}" :2;111“>(z/_)=0 or2forl<k< K}
Active events: for s=(z,,...,z,) €S,

e €E(s)iffz =0 (ISi<N)

ey, € E(s) iff 2111{,@. (z,)=2 (1<k<K)

State-transition probabilities: for s=(z,...,z, ) €S, define
m(s) = %2;; 27:11{ 1 (2;) = # of occupied links in state s
a(s)=min {k : 21/\; L, (z)= 0} = index of lowest-numbered avail. link in state s

Then the state-transition probabilities are defined as follows.

If ' =¢ (1Si<N),

-p(sis,e)=1
when s =(z,,...,z, ) withz, =0 and m(s) = K
and s’ =s
, s 1
-p(s'ss,e) = —N—llle{"2~“"“(Zf')
<j<

J#i
when s =(z,,...,z,) withz, =0 and m(s) < K
-p(s’;s,e*)=—land s'=s
N —
when s =(z,,...,z,) withz, =z, =0 and m(s) < K
and s"=(z,,...,z,) =5, except that z = z_ = a(s)
Ife' =e,, 1<k<K),

-p(s'ss,e) =1
whens=(z,...,z,) withz, = z,= k for some distinct 7, j

and 5’ =s except thatz, =z =0

Otherwise, p(s’;s,e’)=0.
Speeds: All speeds r(s,e) are equal to 1
Clock-setting distributions:
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ife'=e, (1<i< N)then F(x;s',ej,s,e*) =(1—e’”6)1(x20)
ife'=ey,, 1<k <K)then

0 ifx<0
F(x;s',ej,s,e*): x/6 if0<x<6
1 ifx>6

Initial distribution:
v(s)=1iff s =(0,0,...,0), and Fo(x;el.,s):(l-e'%)l(x 20) for 1S j<N,s, =lforI<i<N.

(Events of the form e, ,, are not active at time 0.)

(b) See the class web page for a program that solves the problem. Our results were as follows.

Performance Point 95% CI
measure Estimate CI Half-width
IQR for idle-links time 7.51 [6.59, 8.44] 0.924
Long-run frac. link 2 busy 0.20 [0.17,0.22] 0.027
SD for idle-links time 5.54 [ 5.20, 5.89] 0.35

The successive times at which the GSMP enters state s=(0,0,0,0) form a sequence of

regeneration points because (i) the state is trivially the same at each regeneration point and (ii) by
the memoryless property, the clock reading for all active events (whether new or old) is exp(1/6),

independent of past history.

To compute the approximate number of runs for £2% accuracy of the third performance measure,
note that the above confidence interval half-width is given by h=z,,..s.,,/+500. Thus

Zonssan | (V500 ) 0354500 )
o e B

. - ~ 4990
0.026 0.026 (0.02)(5.54)

So we would need 4990 runs.

(c) D&D procedure. For k=3 plans and P*=0.95,d*=0.1, and n, =40 , we have h =2.872 from
Table 10.11 in the textbook. We obtained the following results.

stage-1 stage-1 stage-2 weighted
Rate mean variance N, N, —n, mean weight mean
0.05 ‘ 3.93 0.16 132 92 3.93 0.309463 3.93
0.20 ‘ 4.90 3.22 2656 2616 5.09 0.015397 5.09

0.60 ‘ 4.22 10.24 8447 8407 4.35 0.00534 4.35

As can be seen, setting the call rate to $0.20 yields the highest weighted mean revenue, and hence is
identified as the best of the three plans.
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2. Multiple control variates.
(a) For m=2, we have

Var(X )= Var(X)+ afVar(Y“)) + aZZVar(Ym)
—2a,Cov(X,Y") = 2a,Cov(X,Y?)+2a,a,Cov(Y",Y®)

Taking derivatives with respect to @, and a, , setting the derivatives equal to 0, and then solving
_ Cov(X,Y")—a,Cov(Y",Y?)
i Var(Y™")
_ Cov(X,Y?)—aCov(Y",Y?)
%= Var(Y?)

yields

Similarly, for m=3, we have

Var(X,)= Var(X)+ afVar(Y(l)) + aszar(Y(z’) + afVar(Y“))
—2a,Cov(X,Y")—=2a,Cov(X,Y*?)—2a,Cov(X,Y?)
+2a,a,Cov(Y",Y*)+2a,a,Cov(Y",Y*?)+2a,a,Cov(Y?,Y?)

and we can solve to get

. Cov(X,Y")=a,Cov(Y",Y*)—a,Cov(Y",Y?)

‘ Var(Y™")

Y- Cov(X,Y?)—a,Cov(Y",Y?)—a,Cov(Y?, YY)
: Var(Y?)

Y- Cov(X,Y*)—aCov(Y",Y?)—a,Cov(Y?,Y?)
’ Var(Y?)

(b) If the covariates are uncorrelated with each other, then Cov(Y"”,Y"))=0 for i# j, and we have

: . " . X,y®
Var(X.)=Var(X)+ Y aVar(¥?)-2¥" a Cov(X,¥"), so that a, = % for
i= i= ar i

1<i<m

(c) We can estimate the optimal weights by substituting sample variances and covariances into the
foregoing formulas. If we know the variances and covariances we can just use the known values in
the above formulas instead of estimating them from the data. This yields more estimates with
lower variance.

3. Synchronization for common random numbers. Simply use streams 1 and 2 for generating inter-
demand times and demand sizes for all five replications. As discussed in the text, model 1 and model 2
use the same number of random numbers in each replication, so that these two streams are always
synchronized. We can also use only stream 3 for the delivery lags (DLs) in all replications, but we
need a synchronization step after each replication. For example, suppose model 1 used £ random
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numbers for DLs in replication 1 and model 2 used j ( < k) random numbers. Then, when simulating

model 1 in replication 2, simply continue to use stream 3 for generating DLs. When simulating model
2 in replication 2, first generate and discard k& — j random numbers from stream 3 before starting the

simulation. In this way, the DL random numbers will be synchronized across the two models during
replication 2, since they will both start out using the (k+1)st random number in stream 3. We continue
in this manner for the subsequent replications.

4. Process monitoring

(a) We have
L= BaX =G X, =8, X,26) K, (X =0k, (X, =8| X, =6k, (X, =G| X, = B)
P(X,=G,X,=B,X,=G) F(X,=G)R(X,=B|X =G)F(X,=G|X,=B)
_(0+h)(1-0-h)O+h) (0+h)’(1-06—h)
0(1-0)8° 0’°(1-98)

(b) Using the above formula,

(0+h) (=1)+3(0+h)*(1-0—h)
6°(1-96)

_3-40  3-2

S 9(1-0) 0.5(1-0.5)

L'(h)=

L'(0)
Note: the formula for L'(0) can also be obtained using the trick described in class:

L(h) = r.(h)ry(h)r,(h), where

0+h 1-0-h (0+h)
rl(h)=—e » h(h)= o r(h)= PR
, 1 : -1 , 2(0+h)
V](h)=6, rz(h)=m, r,(h)= o and

1 ,2_3-48
1-0 0 0(1-9)

L'(0)=7(0)+7,(0)+r(0)= %_

The cost function is given by ¢(N,0)=4N +0.50*, where N is the number bad batches produced.
So

_9¢(N.,0)
08
=0.5+[(4)(1)+0.5(0.5) ] x 4=17

Z

+c(N,B)L'(0)=0+(4N+0.507)4

(c) The Robbins-Monro recursion is 0, = l‘[(@n - ﬁZﬂ) , So
n

0, =T1(6, - aZ,)=T1(0.5—(0.01)(17)) =1(0.33) = 0.33
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5. Epidemiology.

(a) The arrival process to a specified quadrat is the superposition of the arrival process for the
individual residents. Because residents move around in an i.i.d. manner, the individual arrival
processes are independent and no arrival process dominates, so Khintchine’s Theorem implies that
the overall arrival process should be approximately a Poisson process. Therefore W , the number

e 2y)”
m! ’

of arrivals in a two-hour period, should be Poisson: P(W =m)=

(b) For B=10 bootstrap samples and an 80% confidence interval (so that 6 =0.2 ), compute a pivot
)_(: - )_(n for each row, sort them, and then use elements ((5 /2)x 10—‘ =1 and

((1 -6/2)x 10—| =9 as quantile estimates. As per the hint, when computing the pivots, you can

delay subtracting X , until after you sort, since this does not change the sort order. So the sorted

bootstrap means are: 2.0, 2.4, 2.8, 3.2, 3.6, 3.6, 4.6, 4.8, 5.4, 5.6. The 1™ and 9™ of these are 2.0
and 5.4. Now we can subtract )_( =4.0 to find that n* =54-40=1.4 and

n, =2.0-40=-2.0. So the 80% confidence interval is

[X . X~ }:[4.0—1.4,4.0+2.0]=[2.6,6.0].

n (1)?

(c) Our efficiency criterion says to compare the product of (expected cost per observation) times
(variance per observation), and prefer the smaller value. For method A the product is 2001 and

. 2 . _ 2 _o<2
for Method B the product is 267, . Since 6, =30, (so that 6, =90, ) the product for Method B

is 18(5i1 , and so we prefer Method B, because it is more efficient.

6. (Extra credit) Maintaining feasibility in the R-M algorithm.

(a) We need to project the point 6 onto the plane defined by a-x=>5. As per the hint, if y is an
arbitrary point on the plane P then, considering the right triangle formed by 6 , the projected
point 0' , and y, we see that the perpendicular distance from 6 to the plane is given by

a-(6, - y) a-6 -

[T

a6 —b
Thus, the actual projected point on the plane is computed as 9 =0 5[“ H] 0 - [*Ja .
a

0= ThlSlsbecauseH ” (0, y)—le9 y”xcosqﬁ-”@ ny

b, —yH

a-a

See the figure below; also, the website https://mathinsight.org/distance point_plane has a nice
interactive visualization of the geometry.



https://mathinsight.org/distance_point_plane
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X2

A a

(b) If the projected point violates the lower-bound constraint, we can achieve feasibility by moving
along the plane. (See the diagram below for the 2D case.) Let v be defined as in the hint; note that

v is easy to calculate: e.g., set v= (1,1,...,1,—(a1 ta,+-ta, )/ ad) .Let i* denote the dimension
corresponding to the largest violation of the lower bound constraint, i.e.,

. c.—06 .
c.—0 .>c.—0 fori=1,...,d . Thenset 8" =0 +rv, where r =———"— . The figure below
i n,i i n,i n n v g

i

illustrates this for two dimensions: the example with 6 shows the case where the projection

remains feasible and no adjustment is needed, and the example with 6 shows the case where the
above adjustment is needed.




